Multiscale analysis of craniomaxillofacial bone repair: A preclinical mini-pig study
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35194780
DOI
10.1002/jper.21-0426
Knihovny.cz E-zdroje
- Klíčová slova
- bone remodeling, miniature swine, osteogenesis, osteotomy, tooth extraction,
- MeSH
- endoseální implantace zubů metody MeSH
- extrakce zubů metody MeSH
- miniaturní prasata MeSH
- prasata MeSH
- premolár chirurgie MeSH
- remodelace kosti MeSH
- zubní implantáty * MeSH
- zubní lůžko * diagnostické zobrazování chirurgie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- zubní implantáty * MeSH
BACKGROUND: The rate of reparative osteogenesis controls when an implant is sufficiently stable as to allow functional loading. Using a mini pig model, the rate of reparative osteogenesis in two types of implant sites for example, an osteotomy versus a fresh extraction socket were compared. METHODS: Eight adult mini pigs were used for the study. In phase I, three premolars were extracted on one side of the oral cavity; 12 weeks later, in phase II, osteotomies were produced in healed extraction sites, and contralateral premolars were extracted. Animals were sacrificed 1, 5, and 12 weeks after phase II. Bone repair and remodeling were evaluated using quantitative micro-computed tomographic imaging, histology, and histochemical assays coupled with quantitative dynamic histomorphometry. RESULTS: One week after surgery, extraction sockets and osteotomy sites exhibited similar patterns of new bone deposition. Five weeks after surgery, mineral apposition rates (MARs) were elevated at the injury sites relative to intact bone. Twelve weeks after surgery, the density of new bone in both injury sites was equivalent to intact bone but quantitative dynamic histomorphometry and cellular activity assays demonstrated bone remodeling was still underway. CONCLUSIONS: The mechanisms and rates of reparative osteogenesis were equivalent between fresh extraction sockets and osteotomies. The volume of new bone required to fill a socket, however, was significantly greater than the volume required to fill an osteotomy. These data provide a framework for estimating the rate of reparative osteogenesis and the time to loading of implants placed in healed sites versus fresh extraction sockets.
Zobrazit více v PubMed
Covani U, Barone A, Cornelini R, Crespi R. Soft tissue healing around implants placed immediately after tooth extraction without incision: a clinical report. Int J Oral Maxillofac Implants. 2004;19:549-553.
Esposito M, Grusovin MG, Maghaireh H, Worthington HV. Interventions for replacing missing teeth: different times for loading dental implants. Cochrane Database Syst Rev. 2013;3:CD003878.
Benic GI, Mir-Mari J, Hammerle CH. Loading protocols for single-implant crowns: a systematic review and meta-analysis. Int J Oral Maxillofac Implants. 2014;29(Suppl):222-238.
Mello CC, Lemos CAA, Verri FR, Dos Santos DM, Goiato MC, Pellizzer EP. Immediate implant placement into fresh extraction sockets versus delayed implants into healed sockets: a systematic review and meta-analysis. Int J Oral Maxillofac Surg. 2017;46:1162-1177.
Deng F, Zhang H, Zhang H, Shao H, He Q, Zhang P. A comparison of clinical outcomes for implants placed in fresh extraction sockets versus healed sites in periodontally compromised patients: a 1-year follow-up report. Int J Oral Maxillofac Implants. 2010;25:1036-1040.
Lindeboom JA, Tjiook Y, Kroon FH. Immediate placement of implants in periapical infected sites: a prospective randomized study in 50 patients. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101:705-710.
Atieh MA, Alsabeeha NH, Duncan WJ, et al. Immediate single implant restorations in mandibular molar extraction sockets: a controlled clinical trial. Clin Oral Implants Res. 2013;24:484-496.
Ribeiro FS, Pontes AE, Marcantonio E, Piattelli A, Neto RJ. Success rate of immediate nonfunctional loaded single-tooth implants: immediate versus delayed implantation. Implant Dent. 2008;17:109-117.
Koh RU, Rudek I, Wang HL. Immediate implant placement: positives and negatives. Implant Dent. 2010;19:98-108.
Barzilay I. Immediate implants: their current status. Int J Prosthodont. 1993;6:169-175.
Sheng L, Silvestrin T, Zhan J, et al. Replacement of severely traumatized teeth with immediate implants and immediate loading: literature review and case reports. Dent Traumatol. 2015;31:493-503.
de Oliveira-Neto OB, Lemos CA, Barbosa FT, de Sousa-Rodrigues CF. Immediate dental implants placed into infected sites present a higher risk of failure than immediate dental implants placed into non-infected sites: Systematic review and meta-analysis. Med Oral Patol Oral Cir Bucal. 2019;24:e518-e528.
Zhao D, Wu Y, Xu C, Zhang F. Immediate dental implant placement into infected vs. non-infected sockets: a meta-analysis. Clin Oral Implants Res. 2016;27:1290-1296.
Siegenthaler DW, Jung RE, Holderegger C, Roos M, Hammerle CH. Replacement of teeth exhibiting periapical pathology by immediate implants: a prospective, controlled clinical trial. Clin Oral Implants Res. 2007;18:727-737.
Novaes AB Jr., Vidigal Junior GM, Novaes AB, Grisi MF, Polloni S, Rosa A. Immediate implants placed into infected sites: a histomorphometric study in dogs. Int J Oral Maxillofac Implants. 1998;13:422-427.
Yuan X, Pei X, Zhao Y, et al. Biomechanics of immediate postextraction implant osseointegration. J Dent Res. 2018;97:987-994.
Chappuis E, Morel-Depeisse F, Bariohay B, Roux J. Alpha-Galacto-Oligosaccharides at low dose improve liver steatosis in a high-fat diet mouse model. Molecules. 2017;22:1725.
Mishra SK, Chowdhary R. Heat generated by dental implant drills during osteotomy-a review: heat generated by dental implant drills. J Indian Prosthodont Soc. 2014;14:131-143.
Mohlhenrich SC, Modabber A, Steiner T, Mitchell DA, Holzle F. Heat generation and drill wear during dental implant site preparation: Systematic review. Br J Oral Maxillofac Surg. 2015;53:679-689.
Aghvami M, Brunski JB, Serdar Tulu U, Chen CH, Helms JA. A thermal and biological analysis of bone drilling. J Biomech Eng. 2018;140:1010101-1010108.
Matthews LS, Hirsch C. Temperatures measured in human cortical bone when drilling. J Bone Joint Surg Am. 1972;54:297-308.
Field JR, Sumner-Smith G. Bone blood flow response to surgical trauma. Injury. 2002;33:447-451.
Albrektsson T, Eriksson A. Thermally induced bone necrosis in rabbits: relation to implant failure in humans. Clin Orthop Relat Res. 1985;195:311-312.
Eriksson AR, Albrektsson T. Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent. 1983;50:101-107.
Zondervan RL, Vorce M, Servadio N, Hankenson KD. Fracture apparatus design and protocol optimization for closed-stabilized fractures in rodents. J Vis Exp. 2018;138:58186.
Frankel VH, Kaplan DJ, Egol KA. Biomechanics of fractures. J Orthop Trauma. 2016;30(Suppl 2):S2-S6.
Litwic A, Edwards MH, Dennison EM, Cooper C. Epidemiology and burden of osteoarthritis. Br Med Bull. 2013;105:185-199.
Abramoff B, Caldera FE. Osteoarthritis: pathology, diagnosis, and treatment options. Med Clin North Am. 2020;104:293-311.
Liu Y, Li Z, Arioka M, Wang L, Bao C, Helms JA. WNT3A accelerates delayed alveolar bone repair in ovariectomized mice. Osteoporos Int. 2019;30:1873-1885.
Arioka M, Zhang X, Li Z, et al. Osteoporotic changes in the periodontium impair alveolar bone healing. J Dent Res. 2019;98:450-458.
Kim JE, Shin JM, Oh SO, et al. The three-dimensional microstructure of trabecular bone: analysis of site-specific variation in the human jaw bone. Imaging Sci Dent. 2013;43:227-233.
Perren SM. Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg Br. 2002;84:1093-1110.
McGrath JC, Drummond GB, McLachlan EM, Kilkenny C, Wainwright CL. Guidelines for reporting experiments involving animals: the ARRIVE guidelines. Br J Pharmacol. 2010;160:1573-1576.
National Research Council (U.S.). Committee for the Update of the Guide for the Care and use of Laboratory Animals, Institute for Laboratory Animal Research (U.S.), National Academies Press (U.S.). Guide for the Care and use of Laboratory Animals. In. National Academies Press; 2011:220. xxv.
Berglundh T, Armitage G, Araujo MG, et al. Peri-implant diseases and conditions: consensus report of workgroup 4 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. J Periodontol. 2018;89(Suppl 1):S313-S318.
Pan J, Pilawski I, Yuan X, et al. Interspecies comparison of alveolar bone biology: tooth extraction socket healing in mini pigs and mice. J Periodontol. 2020;91(12):1653-1663.
Wang L, Wu Y, Perez KC, et al. Effects of condensation on peri-implant bone density and remodeling. J Dent Res. 2017;96:413-420.
Yin X, Li J, Hoffmann W, Gasser A, Brunski JB, Helms JA. Mechanical and biological advantages of a tri-oval implant design. J Clin Med. 2019;8:427.
Pilawski I, Tulu US, Ticha P, et al. Interspecies comparison of alveolar bone biology, part I: morphology and physiology of pristine bone. JDR Clin Trans Res. 2020;6(3):352-360.
Laiblin C, Jaeschke G. [Clinical chemistry examinations of bone and muscle metabolism under stress in the gottingen miniature pig-an experimental study]. Berl Munch Tierarztl Wochenschr. 1979;92:124-128.
Verdugo F, Laksmana T, D'Addona A, Uribarri A. Facial cortical bone regeneration post-extraction in non-grafted sockets allows for early implant placement and long-term functional stability. Arch Oral Biol. 2020;112:104678.
Pei X, Wang L, Chen C, Yuan X, Wan Q, Helms JA. Contribution of the PDL to osteotomy repair and implant osseointegration. J Dent Res. 2017;96:909-916.
Yuan X, Pei X, Zhao Y, Tulu US, Liu B, Helms JA. A Wnt-responsive PDL population effectuates extraction socket healing. J Dent Res. 2018;97(7):803-809.
Trubiani O, Pizzicannella J, Caputi S, et al. Periodontal ligament stem cells: current knowledge and future perspectives. Stem Cells Dev. 2019;28:995-1003.
Nanci A, Bosshardt DD. Structure of periodontal tissues in health and disease. Periodontol 2000. 2006;40:11-28.
Kim JW, Seong TW, Cho S, Kim SJ. Randomized controlled trial on the effectiveness of absorbable collagen sponge after extraction of impacted mandibular third molar: split-mouth design. BMC Oral Health. 2020;20:77.
Covani U, Giammarinaro E, Marconcini S. Alveolar socket remodeling: the Tug-of-War Model. Med Hypotheses. 2020;142:109746.
Khodakaram-Tafti A, Mehrabani D, Shaterzadeh-Yazdi H. An overview on autologous fibrin glue in bone tissue engineering of maxillofacial surgery. Dent Res J (Isfahan). 2017;14:79-86.
Santos Tde S, Abuna RP, Almeida AL, Beloti MM, Rosa AL. Effect of collagen sponge and fibrin glue on bone repair. J Appl Oral Sci. 2015;23:623-628.
Lee J, Lee D, Oh SE, Park KM, Hu KS, Kim S. Delayed bone healing by collagen membrane in early phase of 4 weeks. Oral Surg Oral Med Oral Pathol Oral Radiol. 2018;126:469-476.