• This record comes from PubMed

Vacuum-Packed Steak Tartare: Prevalence of Listeria monocytogenes and Evaluation of Efficacy of ListexTM P100

. 2022 Feb 12 ; 11 (4) : . [epub] 20220212

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
QK1910121 Ministry of Agriculture
RVO0518 Ministry of Agriculture

Steak tartare is a raw, ready-to-eat meal popular in European countries, the safety of which is often discussed due to the risk of foodborne illness. The aim of this study was to determine the prevalence of Listeria monocytogenes in vacuum-packed steak tartare from retailers in the Czech Republic, characterize the strains obtained by typing methods and to evaluate the efficacy of ListexTM P100 against L. monocytogenes artificially inoculated into steak tartare samples. The prevalence of L. monocytogenes was 55% and 17 isolates belonging mostly to serotype 1/2a were obtained. Altogether 11 sequence types and 11 clonal complexes were assigned based on the whole genome sequencing (WGS) signifying the high diversity of L. monocytogenes isolates obtained. Core genome multi-locus sequence typing (cgMLST) did not confirm an epidemiological connection with human cases of listeriosis. The efficacy of ListexTM P100 treatment at concentrations of 108 and 109 PFU/g on artificially inoculated beef steak tartare samples was not efficient. Based on the results of this study, steak tartare from retailers can be considered as a source of L. monocytogenes that remains a challenge to the food industry.

See more in PubMed

Delhalle L., Korsak N., Taminiau B., Nezer C., Burteau S., Delcenserie V., Poullet J.B., Daube G. Exploring the Bacterial Diversity of Belgian Steak Tartare Using Metagenetics and Quantitative Real-Time PCR Analysis. J. Food Prot. 2016;79:220–229. doi: 10.4315/0362-028X.JFP-15-185. PubMed DOI

Matle I., Mbatha K.R., Madoroba E. A review of Listeria monocytogenes from meat and meat products: Epidemiology, virulence factors, antimicrobial resistance and diagnosis. Onderstepoort J. Vet.-Res. 2020;87:20. doi: 10.4102/ojvr.v87i1.1869. PubMed DOI PMC

WHO Listeriosis. Fact Sheet. Feb, 2018. [(accessed on 14 October 2021)]. Available online: http://www.who.int/mediacentre/factsheets/listeriosis/en/

European Food Safety Authority. European Centre for Disease Prevention and Control The European Union One Health 2019 Zoonoses Report. EFSA J. 2021;19:e06406. doi: 10.2903/j.efsa.2021.6406. PubMed DOI PMC

Buchanan R.L., Gorris L., Hayman M.M., Jackson T.C., Whiting R.C. A review of Listeria monocytogenes: An update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control. 2017;75:1–13. doi: 10.1016/j.foodcont.2016.12.016. DOI

Melero B., Manso B., Stessl B., Hernández M., Wagner M., Rovira J., Rodríguez-Lázaro D. Distribution and Persistence of Listeria monocytogenes in a Heavily Contaminated Poultry Processing Facility. J. Food Prot. 2019;82:1524–1531. doi: 10.4315/0362-028X.JFP-19-087. PubMed DOI

Thomas J., Govender N., McCarthy K.M., Erasmus L.K., Doyle T.J., Allam M., Ismail A., Ramalwa N., Sekwadi P., Ntshoe G., et al. Outbreak of Listeriosis in South Africa Associated with Processed Meat. N. Engl. J. Med. 2020;382:632–643. doi: 10.1056/NEJMoa1907462. PubMed DOI PMC

Gelbíčová T., Zobaníková M., Tomáštíková Z., Van Walle I., Ruppitsch W., Karpíšková R. An outbreak of listeriosis linked to turkey meat products in the Czech Republic, 2012–2016. Epidemiol. Infect. 2018;146:1407–1412. doi: 10.1017/S0950268818001565. PubMed DOI PMC

Wu S., Wu Q., Zhang J., Chen M., Yan Z., Hu H. Listeria monocytogenes Prevalence and Characteristics in Retail Raw Foods in China. PLoS ONE. 2015;10:e0136682. doi: 10.1371/journal.pone.0136682. PubMed DOI PMC

Kramarenko T., Roasto M., Keto-Timonen R., Mäesaar M., Meremäe K., Kuningas M., Hörman A., Korkeala H. Listeria monocytogenes in ready-to-eat vacuum and modified atmosphere packaged meat and fish products of Estonian origin at retail level. Food Control. 2016;67:48–52. doi: 10.1016/j.foodcont.2016.02.034. DOI

Commission Regulation (EC) No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs (Text with EEA Relevance) [(accessed on 20 October 2021)]. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02005R2073-20140601&from=DA.

D’Arrigo M., Mateo-Vivaracho L., Guillamón E., Fernández-León M.F., Bravo D., Peirotén Á., Medina M., García-Lafuente A. Characterization of persistent Listeria monocytogenes strains from ten dry-cured ham processing facilities. Food Microbiol. 2020;92:103581. doi: 10.1016/j.fm.2020.103581. PubMed DOI

Soni K.A., Desai M., Oladunjoye A., Skrobot F., Nannapaneni R. Reduction of Listeria monocytogenes in queso fresco cheese by a combination of listericidal and listeriostatic GRAS antimicrobials. Int. J. Food Microbiol. 2012;155:82–88. doi: 10.1016/j.ijfoodmicro.2012.01.010. PubMed DOI

EFSA Panel on Biological Hazards Evaluation of the safety and efficacy of Listex™ P100 for reduction of pathogens on different ready-to-eat (RTE) food products. EFSA J. 2016;14:4565. doi: 10.2903/j.efsa.2016.4565. DOI

International Organization for Standardization . Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria Monocytogenes and of Listeria spp. International Organization for Standardization; Geneva, Switzerland: 1996. Part 1: Detection method, ISO 11290-1; Part 2: Enumeration method, ISO 11290-2.

Doumith M., Buchrieser C., Glaser P., Jacquet C., Martin P. Differentiation of the Major Listeria monocytogenes Serovars by Multiplex PCR. J. Clin. Microbiol. 2004;42:3819–3822. doi: 10.1128/JCM.42.8.3819-3822.2004. PubMed DOI PMC

Ruppitsch W., Pietzka A.T., Prior K., Bletz S., Fernandez H.L., Allerberger F., Harmsen D., Mellmann A. Defining and Evaluating a Core Genome Multilocus Sequence Typing Scheme for Whole-Genome Sequence-Based Typing of Listeria monocytogenes. J. Clin. Microbiol. 2015;53:2869–2876. doi: 10.1128/JCM.01193-15. PubMed DOI PMC

Khen B.K., Lynch O., Carroll J., McDowell D., Duffy G. Occurrence, Antibiotic Resistance and Molecular Characterization ofListeria monocytogenesin the Beef Chain in the Republic of Ireland. Zoonoses Public Health. 2014;62:11–17. doi: 10.1111/zph.12106. PubMed DOI

Bohaychuk V.M., Gensler G.E., King R.K., Manninen K.I., Sorensen O., Wu J.T., Stiles M.E., McMullen L.M. Occurrence of Pathogens in Raw and Ready-to-Eat Meat and Poultry Products Collected from the Retail Marketplace in Edmonton, Alberta, Canada. J. Food Prot. 2006;69:2176–2182. doi: 10.4315/0362-028X-69.9.2176. PubMed DOI

Kalender H. Brucellosis in low-income and middle-income countries. Curr. Opin. Infect. Dis. 2013;26:404–412. doi: 10.1097/qco.0b013e3283638104. PubMed DOI PMC

Pouillot R., Klontz K.C., Chen Y., Al R.P.E., Macarisin D., Doyle M., Bally K.M., Strain E., Datta A.R., Hammack T.S., et al. Infectious Dose of Listeria monocytogenesin Outbreak Linked to Ice Cream, United States, 2015. Emerg. Infect. Dis. 2016;22:2113–2119. doi: 10.3201/eid2212.160165. PubMed DOI PMC

Awaisheh S.S. Incidence and Contamination Level of Listeria monocytogenes and Other Listeria spp. in Ready-to-Eat Meat Products in Jordan. J. Food Prot. 2010;73:535–540. doi: 10.4315/0362-028X-73.3.535. PubMed DOI

Bērziņš A., Hörman A., Lundén J., Korkeala H. Factors associated with Listeria monocytogenes contamination of cold-smoked pork products produced in Latvia and Lithuania. Int. J. Food Microbiol. 2007;115:173–179. doi: 10.1016/j.ijfoodmicro.2006.10.021. PubMed DOI

Kramarenko T., Roasto M., Meremäe K., Kuningas M., Põltsama P., Elias T. Listeria monocytogenes prevalence and serotype diversity in various foods. Food Control. 2013;30:24–29. doi: 10.1016/j.foodcont.2012.06.047. DOI

Hlucháňová L., Gelbíčová T., Karpíšková R. Genetic diversity of human Listeria monocytogenes strains from the Czech Republic in 2016–2020. Epidemiol. Mikrobiol. Imunol. 2022. in press . PubMed

Šteingolde Ž., Meistere I., Avsejenko J., Ķibilds J., Bergšpica I., Streikiša M., Gradovska S., Alksne L., Roussel S., Terentjeva M., et al. Characterization and Genetic Diversity of Listeria monocytogenes Isolated from Cattle Abortions in Latvia, 2013–2018. Veter-Sci. 2021;8:195. doi: 10.3390/vetsci8090195. PubMed DOI PMC

Kim S.W., Haendiges J., Keller E.N., Myers R., Kim A., Lombard J.E., Karns J.S., Van Kessel J.A.S., Haley B.J. Genetic diversity and virulence profiles of Listeria monocytogenes recovered from bulk tank milk, milk filters, and milking equipment from dairies in the United States (2002 to 2014) PLoS ONE. 2018;13:e0197053. doi: 10.1371/journal.pone.0197053. PubMed DOI PMC

Gelbíčová T., Florianová M., Tomáštíková Z., Pospíšilová L., Koláčková I., Karpíšková R. Prediction of Persistence of Listeria monocytogenes ST451 in a Rabbit Meat Processing Plant in the Czech Republic. J. Food Prot. 2019;82:1350–1356. doi: 10.4315/0362-028X.JFP-19-030. PubMed DOI

Schmitz-Esser S., Müller A., Stessl B., Wagner M. Genomes of sequence type 121 Listeria monocytogenes strains harbor highly conserved plasmids and prophages. Front. Microbiol. 2015;6:380. doi: 10.3389/fmicb.2015.00380. PubMed DOI PMC

Soni K.A., Nannapaneni R. Bacteriophage Significantly Reduces Listeria monocytogenes on Raw Salmon Fillet Tissue†. J. Food Prot. 2010;73:32–38. doi: 10.4315/0362-028X-73.1.32. PubMed DOI

Carlton R.M., Noordman W.H., Biswas B., de Meester E.D., Loessner M.J. Bacteriophage P100 for control of Listeria monocytogenes in foods: Genome sequence, bioinformatic analyses, oral toxicity study, and application. Regul. Toxicol. Pharmacol. 2005;43:301–312. doi: 10.1016/j.yrtph.2005.08.005. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...