The Effect of High-Pressure Processing on the Survival of Non-O157 Shiga Toxin-Producing Escherichia coli in Steak Tartare: The Good- or Best-Case Scenario?
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36838342
PubMed Central
PMC9964116
DOI
10.3390/microorganisms11020377
PII: microorganisms11020377
Knihovny.cz E-zdroje
- Klíčová slova
- STEC, contamination, meat color, minced meat, sous vide treatment, vacuum packing,
- Publikační typ
- časopisecké články MeSH
Samples of steak tartare were artificially contaminated with a cocktail of Shiga toxin-producing Escherichia coli (STEC) O91, O146, O153, and O156 to the level of 3 log and 6 log CFU/g. Immediately after vacuum packing, high-pressure processing (HPP) was performed at 400 or 600 MPa/5 min. Some of the samples not treated with HPP were cooked under conditions of 55 °C for 1, 3, or 6 h. HPP of 400 MPa/5 min resulted in a 1-2 log reduction in the STEC count. In contrast, HPP of 600 MPa/5 min led to the elimination of STEC even when inoculated to 6 log CFU/g. Nevertheless, sub-lethally damaged cells were resuscitated after enrichment, and STEC was observed in all samples regardless of the pressure used. STEC was not detected in the samples cooked in a 55 °C water bath for 6 h, even after enrichment. Unfortunately, the temperature of 55 °C negatively affected the texture of the steak tartare. Further experiments are necessary to find an optimal treatment for steak tartare to assure its food safety while preserving the character and quality of this attractive product.
Zobrazit více v PubMed
de Jonge R. Predictable and unpredictable survival of foodborne pathogens during nonisothermal heating. Int. J. Food Microbiol. 2019;291:151–160. doi: 10.1016/j.ijfoodmicro.2018.11.018. PubMed DOI
Ježek F., Kameník J., Macharáčková B., Bogdanovičová K., Bednář J. Cooking of meat: Effect on texture, cooking loss and microbiological quality—A review. Acta Vet. Brno. 2019;88:487–496. doi: 10.2754/avb201988040487. DOI
Lahou E., Wang V., De Boeck E., Verguldt E., Geeraerd A., Devlieghere F., Uyttendaelle M. Effectiveness of inactivation of foodborne pathogens during simulated home pan frying of steak, hamburger or meat strips. Int. J. Food Microbiol. 2015;206:118–129. doi: 10.1016/j.ijfoodmicro.2015.04.014. PubMed DOI
Delhalle L., Korsak N., Taminiau B., Nezer C., Burteau S., Delcenserie V., Poullet J.B., Daube G. Exploring the Bacterial Diversity of Belgian Steak Tartare Using Metagenetics and Quantitative Real-Time PCR Analysis. J. Food Protect. 2016;79:220–229. doi: 10.4315/0362-028X.JFP-15-185. PubMed DOI
Tirloni E., Bernardi C., Stella S. Shelf life and growth potential of Listeria monocytogenes in steak tartare. LWT Food Sci. Technol. 2020;118:e108807. doi: 10.1016/j.lwt.2019.108807. DOI
Hluchanova L., Korena K., Juricova H. Vacuum-Packed Steak Tartare: Prevalence of Listeria monocytogenes and Evaluation of Efficacy of Listex™ P100. Foods. 2022;11:533. doi: 10.3390/foods11040533. PubMed DOI PMC
Braeye T., Denayer S., De Rauw K., Forier A., Verluyten J., Fourie L., Dierick K., Botteldoorn N., Quoilin S., Cosse P., et al. Lessons learned from a textbook outbreak: EHEC-O157:H7 infections associated with the consumption of raw meat products, June 2012, Limburg, Belgium. Arch. Public Health. 2014;72:44. doi: 10.1186/2049-3258-72-44. PubMed DOI PMC
Greenland K., de Jager C., Heuvelink A., van der Zwaluw K., Heck M., Notermans D., van Pelt W., Friesema I. Nationwide outbreak of STEC O157 infection in the Netherlands, December 2008-January 2009: Continuous risk of consuming raw beef products. Euro Surveiilance. 2009;14:19129. doi: 10.2807/ese.14.08.19129-en. PubMed DOI
Essendoubi S., Stashko N., So I., Gensler G., Rolheiser D., Mainali C. Prevalence of Shiga toxin-producing Escherichia coli (STEC) O157:H7, Six non-O157 STECs, and Salmonella on beef carcasses in Provincially Licensed Abattoirs in Alberta, Canada. Food Control. 2019;105:226–232. doi: 10.1016/j.foodcont.2019.05.032. DOI
Dong P., Zhu L., Mao Y., Liang R., Niu L., Zhang Y., Luo X. Prevalence and characterization of Escherichia coli O157:H7 from samples along the production line in Chinese beef-processing plants. Food Control. 2015;54:39–46. doi: 10.1016/j.foodcont.2015.01.038. DOI
Koohmaraie M., Arthur T.M., Bosilevac J.M., Brichta-Harhay D.M., Kalchayanand N., Shackelford S.D., Wheeler T.L. Interventions to reduce/eliminate Escherichia coli O157:H7 in ground beef. Meat Sci. 2007;77:90–96. doi: 10.1016/j.meatsci.2007.04.004. PubMed DOI
Dong P., Xiao T., Nychas G.-J.E., Zhang Y., Zhu L., Luo X. Occurrence and characterization of Shiga toxin-producing Escherichia coli (STEC) isolated from Chinese beef processing plants. Meat Sci. 2020;168:e108188. doi: 10.1016/j.meatsci.2020.108188. PubMed DOI
de Assis D.C.S., da Silva T.M.L., Brito R.F., da Silva L.C.G., Lima W.G., Brito J.C.M. Shiga toxin-producing Escherichia coli (STEC) in bovine meat and meat products over the last 15 years in Brazil: A systematic Review and meta-analysis. Meat Sci. 2021;173:e108394. doi: 10.1016/j.meatsci.2020.108394. PubMed DOI
Torso L.M., Voorhees R.E., Forest S.A., Gordon A.Z., Silvestri S.A., Kissler B., Schlackman J., Sandt C.H., Toma P., Bachert J., et al. Escherichia coli O157:H7 Outbreak Associated with Restaurant Beef Grinding. J. Food Protect. 2015;78:1272–1279. doi: 10.4315/0362-028X.JFP-14-545. PubMed DOI
Attenborough M., Matthews K.R. Food safety through the meat supply chain. J. Appl. Microbiol. 2000;88:144–148. doi: 10.1111/j.1365-2672.2000.tb05342.x. PubMed DOI
Patterson M., McKay A.M., Connolly M., Linton M. Effect of high pressure on the microbiological quality of cooked chicken during storage at normal and abuse refrigeration temperatures. Food Microbiol. 2010;27:266–273. doi: 10.1016/j.fm.2009.10.007. PubMed DOI
Sheen S., Cassidy J., Scullen B., Sommers C. Inactivation of a diverse set of shiga toxin-producing Escherichia coli in ground beef by high pressure processing. Food Microbiol. 2015;52:84–87. doi: 10.1016/j.fm.2015.07.001. PubMed DOI
Bolumar T., Orlien V., Sikes A., Aganovic K., Bak K.H., Guyon C., Stübler A.-S., de Lamballerie M., Hertel C., Brügemann D.A. High-pressure processing of meat: Molecular impacts and industrial applications. Compr. Rev. Food Sci. Food Saf. 2021;20:332–368. doi: 10.1111/1541-4337.12670. PubMed DOI
Bernié I.M., Mussio P., Jorcin S., Rajchman M., López-Pedemonte T. Application of high hydrostatic pressure for the reduction of STEC on raw ground beef patties and its impact on physicochemical properties: pH and color. LWT. 2021;151:e112126. doi: 10.1016/j.lwt.2021.112126. DOI
Fagan P.K., Hornitzky M.A., Bettelheim K.A., Djordjevic S.P. Detection of Shiga-Like toxin (stx1 and stx2), Intimin (eaeA), and Enterohemorrhagic Escherichia coli (EHEC) Hemolysin (EHEC hlyA) Genes in Animal feces by Multiplex PCR. Appl. Environ. Microb. 1999;65:868–872. doi: 10.1128/AEM.65.2.868-872.1999. PubMed DOI PMC
Feiner G. Meat Products Handbook. Practical Science and Technology. 1st ed. Woodhead Publishing Limited; Boca Raton, FL, USA: 2006. 648p
Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 1: Colony Count at 30 °C by the Pour Plate Technique. International Organization for Standardization; Geneva, Switzerland: 2013. 9p
Gareis M., Kabisch J., Pichner R., Hechelmann H. Absterbekinetik von Salmonella spp. in Minisalamis (Behaviour and survival of Salmonella spp. in minisalami) Fleischwirtsch. 2010;90:98–106.
Black E.P., Hirneisen K.A., Hoover D.G., Kniel K.E. Fate of Escherichia coli O157:H7 in ground beef following high-pressure processing and freezing. J. Appl. Microbiol. 2010;108:1352–1360. doi: 10.1111/j.1365-2672.2009.04532.x. PubMed DOI
Jiang Y., Scheinberg J.A., Senevirathne R., Cutter C.N. The efficacy of short and repeated high-pressure processing treatments on the reduction of non-O157:H7 Shiga-toxin producing Escherichia coli in ground beef patties. Meat Sci. 2015;102:22–26. doi: 10.1016/j.meatsci.2014.12.001. PubMed DOI
Koutsoumanis K., Allende A., Alvarez-Ordóñez A., Bover-Cid S., Chemaly M., Davies R., De Cesare A., Herman L., Hilbert F., Lindqvist R., et al. Pathogenicity assessment of Shiga toxin-producing Escherichia coli (STEC) and the public health risk posed by contamination of food with STEC. EFSA J. 2020;18:5967.
Zhou Y., Karwe M.V., Matthews K.R. Differences in inactivation of Escherichia coli O157:H7 strains in ground beef following repeated high pressure processing treatments and cold storage. Food Microbiol. 2016;58:7–12. doi: 10.1016/j.fm.2016.02.010. PubMed DOI
Porto-Fett A.C.S., Jackson-Davis A., Kassama L.S., Daniel M., Oliver M., Jung Y., Luchansky J.B. Inactivation of Shiga Toxin-Producing Escherichia coli in Refrigerated and Frozen Meatballs Using High Pressure Processing. Microorganisms. 2020;8:360. doi: 10.3390/microorganisms8030360. PubMed DOI PMC
Hsu H., Sheen S., Sites J., Cassidy J., Scullen B., Sommers C. Effect of High Pressure Processing on the survival of Shiga Toxin-Producing Escherichia coli (Big Six vs. O157:H7) in ground beef. Food Microbiol. 2015;48:1–7. doi: 10.1016/j.fm.2014.12.002. PubMed DOI
Álvarez-Ordóñez A., Alvseike O., Omer M.K., Heir E., Axelsson L., Holck A., Prieto M. Heterogeneity in resistance to food-related stresses and biofilm formation ability among verocytotoxigenic Escherichia coli strains. Int. J. Food Microbiol. 2013;161:220–230. doi: 10.1016/j.ijfoodmicro.2012.12.008. PubMed DOI
Gayán E., Cambré A., Michiels C.W., Aertsen A. RpoS-independent evolution reveals the importance of attenuated cAMP/CRP regulation in high hydrostatic pressure resistence acquisition in E. coli. Sci. Rep. 2017;7:e8600. doi: 10.1038/s41598-017-08958-z. PubMed DOI PMC
Gayán E., Rutten N., Van Impe J., Michiels C.W., Aertsen A. Identification of novel genes involved in high hydrostatic pressure resistance of Escherichia coli. Food Microbiol. 2019;78:171–178. doi: 10.1016/j.fm.2018.10.007. PubMed DOI
Diez A.M., Björkroth J., Jaime I., Rovira J. Microbial, sensory and volatile changes during the anaerobic cold storage of morcilla de Burgos previously inoculated with Weissella viridescens and Leuconostoc mesenteroides. Int. J. Food Microbiol. 2009;131:168–177. doi: 10.1016/j.ijfoodmicro.2009.02.019. PubMed DOI
Vercammen A., Vanoirbeek K.G.A., Lurquin I., Steen L., Goemaere O., Szczepaniak S., Paelinck H., Hendrickx M.E.G., Michiels C.W. Shelf-life extension of cooked ham model product by high hydrostatic pressure and natural preservatives. Innov. Food Sci. Emerg. 2011;12:407–415. doi: 10.1016/j.ifset.2011.07.009. DOI
Barbosa A.D., Alexandre B., Tondo E.C., Malheiros P.S. Microbial survival in gourmet hamburger thermally processed by different degrees od doneness. Int. J. Gastron. Food Sci. 2022;28:100501. doi: 10.1016/j.ijgfs.2022.100501. DOI
Ferigolo L.P., Elias S.O., da Silva D.C., Lopes S.M., Geimba M.P., Tondo E.C. Escherichia coli inactivation on tenderloin beef medallions processed by sous vide treatment. Int. J. Gastron. Food Sci. 2021;25:e100366. doi: 10.1016/j.ijgfs.2021.100366. DOI
Kameník J., Saláková A., Hulánková R., Bořilová G. The effect of high pressure on the microbiological quality and other characteristics of cooked sausages packed in a modified atmosphere or vacuum. Food Control. 2015;57:232–237. doi: 10.1016/j.foodcont.2015.04.010. DOI
Bajovic B., Bolumar T., Heinz V. Quality considerations with high pressure processing of fresh and value added meat products. Meat Sci. 2012;92:280–289. doi: 10.1016/j.meatsci.2012.04.024. PubMed DOI
del Olmo A., Calzada J., Nuñez M. Effect of high pressure processing and modified atmosphere packaging on the safety and quality of sliced ready-to-eat „lacón“, a cured-cooked pork meat product. Innov. Food Sci. Emerg. 2014;23:25–32. doi: 10.1016/j.ifset.2014.03.003. DOI