Comparison of Phenolic Profile of Balsamic Vinegars Determined Using Liquid and Gas Chromatography Coupled with Mass Spectrometry
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-14893S
Czech Science Foundation
PubMed
35209145
PubMed Central
PMC8874619
DOI
10.3390/molecules27041356
PII: molecules27041356
Knihovny.cz E-zdroje
- Klíčová slova
- antioxidants, balsamic vinegar, gas chromatography, liquid chromatography, phenolic compounds,
- MeSH
- chemická frakcionace MeSH
- fenoly analýza MeSH
- kyselina octová analýza chemie izolace a purifikace MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí * MeSH
- tandemová hmotnostní spektrometrie * MeSH
- vysokoúčinná kapalinová chromatografie * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fenoly MeSH
- kyselina octová MeSH
Balsamic vinegar is one of the best known and most popular types of vinegar, and it is a rich source of polyphenolic compounds. The quality of balsamic vinegar as well as the content of phenolic substances vary depending on the production method. In the present work, we have developed a method for comprehensive characterization of the content of phenolic compounds in balsamic vinegars based on the combination of gas chromatography (GC) and high-performance liquid chromatography (HPLC) coupled with mass spectrometric detection in single mode (MS) and tandem mode (MS/MS). In total, 14 samples of different types of balsamic vinegar were analyzed without difficulty in sample preparation. The separation conditions and detection parameters of HPLC-MS/MS were optimized and used for the determination of 29 phenolic compounds and 6 phenolic acids. The profile of phenolic compounds was completed by semi-quantitative analysis of volatile organic compounds using GC-MS after optimized headspace solid-phase microextraction. Gallic acid, protocatechuic acid, caffeic acid, and p-coumaric acid have been identified as the major phenolic compounds in balsamic vinegars.
Zobrazit více v PubMed
Ho C.T. Phenolic Compounds in Food. In: Huang M.T., Ho C.T., Lee C.Y., editors. Phenolic Compounds in Food and Their Effects on Health II. American Chemical Society; Washington, DC, USA: 1992. pp. 2–7.
Tomás-Barberán F.A., Espín J.C. Phenolic compounds and related enzymes as determinants of quality in fruits a vegetables. J. Sci. Food Agric. 2001;81:853–876. doi: 10.1002/jsfa.885. DOI
Scalbert A., Williamson G. Dietary Intake and Bioavailability of Polyphenols. J. Nutr. 2000;130:2073–2085. doi: 10.1093/jn/130.8.2073S. PubMed DOI
Buonocore G., Perrone S., Tataranno M.L. Oxygen toxicity: Chemistry and biology of reactive oxygen species. Semin. Fetal Neonatal Med. 2010;15:186–190. doi: 10.1016/j.siny.2010.04.003. PubMed DOI
Shahidi F. Natural Antioxidants: An Overview. In: Shahidi F., editor. Natural Antioxidants: Chemistry, Health Effects and Applications. The American Oil Chemists Society; Urbana, IL, USA: 1997.
Soleas G.J., Grass L., Josephy P.D., Goldberg D.M., Diamais E.P. A comparison of the anticarcinogenic properties of four red wine polyphenols. Clin. Biochem. 2002;35:119–124. doi: 10.1016/S0009-9120(02)00275-8. PubMed DOI
Bernátová I., Pechánová O., Babál P., Kyselá S., Stvrtina S., Ariantsitohaina R. Wine polyphenols improve cardiovascular remodeling and vascular function in NO-deficient hypertension. Am. J. Physiol. Heart Circ. Physiol. 2002;282:942–948. doi: 10.1152/ajpheart.00724.2001. PubMed DOI
Barnaba C., Dellacassa E., Nicolini G., Nardin T., Malacarne M., Larcher R. Identification and quantification of 56 targeted phenols in wines, spirits, and vinegars by online solid-phase extraction—Ultrahigh-performance liquid chromatography—Quadrupole-orbitrap mass spectrometry. J. Chromatogr. A. 2015;1423:124–135. doi: 10.1016/j.chroma.2015.10.085. PubMed DOI
European Council Regulation (EC) 813/2000 of 17 April 2000 Supplementing the Annex to Commission Regulation (EC) No 1107/96 on the Registration of Geographical Indications and Designations of Origin under the Procedure Laid down in Article 17 of Regulation (EEC) No 2081/92. [(accessed on 10 January 2022)]. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32000R0813.
Giudici P., Gullo M., Solieri L. Traditional Balsamic Vinegar. In: Solieri L., Giudici P., editors. Vinegars of the World. 1st ed. Springer; Milano, Italy: 2009. pp. 157–177.
Caligiani A., Silva G., Palla G. Determination of 2,3-Butanediol a 2-Hydroxybutanone Stereoisomers in Batteries of Traditional Balsamic Vinegar. J. Agric. Food Chem. 2007;55:7810–7815. doi: 10.1021/jf071206n. PubMed DOI
European Commission Regulation (EC) 583/2009 of 3 July 2009 Entering a Name in the Register of Protected Designations of Origin and Protected Geographical Indications [Aceto Balsamico di Modena (PGI)] [(accessed on 10 January 2022)]. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32009R0583.
Mattia G. Balsamic vinegar of Modena: From product to market value: Competitive strategy of a typical Italian product. Br. Food J. 2004;106:722–745. doi: 10.1108/00070700410561351. DOI
Liu Q., Tang G.Y., Zhao C.N., Gan R.Y., Li H.B. Antioxidant Activities, Phenolic Profiles, and Organic Acid Contents of Fruit Vinegars. Antioxidants. 2019;8:78. doi: 10.3390/antiox8040078. PubMed DOI PMC
Bakir S., Devecioglu D., Kayacan S., Toydemir G., Karbancioglu-Guler F., Capanoglu E. Investigating the antioxidant and antimicrobial activities of different vinegars. Eur. Food Res. Technol. 2017;243:2083–2094. doi: 10.1007/s00217-017-2908-0. DOI
Natera R., Castro R., Hernáez M.J., García-Barroso C. Chemometric Studies of Vinegars from Different Raw Materials and Processes of Production. J. Agric. Food Chem. 2003;51:3345–3351. doi: 10.1021/jf021180u. PubMed DOI
Cerezo A.B., Tesfaye W., Soria-Díaz M.E., Torija M.J., Mateo E., Garcia-Parrilla M.C., Troncoso A.M. Effect of wood on the phenolic profile and sensory properties of wine vinegars during ageing. J. Food Compos. Anal. 2010;23:175–184. doi: 10.1016/j.jfca.2009.08.008. DOI
Cacciola F., Farnetti S., Dugo P., Marriott P.J., Mondello L. Comprehensive two-dimensional liquid chromatography for polyphenol analysis in foodstuffs. J. Sep. Sci. 2017;40:7–24. doi: 10.1002/jssc.201600704. PubMed DOI
Cacciola F., Rigano F., Dugo P., Mondello L. Comprehensive two-dimensional liquid chromatography as a powerful tool for the analysis of food and food products. TrAC Trends Anal. Chem. 2020;127:115894. doi: 10.1016/j.trac.2020.115894. DOI
Kalili K.M., Vestner J., Stander M.A., de Villiers A. Toward Unraveling Grape Tannin Composition: Application of Online Hydrophilic Interaction Chromatography × Reversed-Phase Liquid Chromatography–Time-of-Flight Mass Spectrometry for Grape Seed Analysis. Anal. Chem. 2013;85:9107–9115. doi: 10.1021/ac401896r. PubMed DOI
Montero L., Saez V., von Baer D., Cifuentes A., Herrero M. Profiling of Vitis vinifera L. canes (poly)phenolic compounds using comprehensive two-dimensional liquid chromatography. J. Chromatogr. A. 2018;1536:205–215. doi: 10.1016/j.chroma.2017.06.013. PubMed DOI
Wicht K., Baert M., Muller M., Bandini E., Schipperges S., von Doehren N., Desmet G., Lynen F. Comprehensive two-dimensional temperature-responsive × reversed phase liquid chromatography for the analysis of wine phenolics. Talanta. 2022;236:122889. doi: 10.1016/j.talanta.2021.122889. PubMed DOI
Cacciola F., Jandera P., Hajdu Z., Cesla P., Mondello L. Comprehensive two-dimensional liquid chromatography with parallel gradients for separation of phenolic and flavone antioxidants. J. Chromatogr. A. 2007;1149:73–87. doi: 10.1016/j.chroma.2007.01.119. PubMed DOI
Plessi M., Bertelli D., Miglietta F. Extraction and identification by GC-MS of phenolic acids in traditional balsamic vinegar from Modena. J. Food Comp. Anal. 2006;19:49–54. doi: 10.1016/j.jfca.2004.10.008. DOI
Sinanoglou V., Zoumpoulakis P., Fotakis C., Kalogeropoulos N., Sakellari A., Karavoltsos S., Strati I. On the Characterization and Correlation of Compositional, Antioxidant and Colour Profile of Common and Balsamic Vinegars. Antioxidants. 2018;7:139. doi: 10.3390/antiox7100139. PubMed DOI PMC
Arigo A., Česla P., Šilarová P., Calabro M.L., Česlová L. Development of extraction method for characterization of free and bonded polyphenols in barley (Hordeum vulgare L.) grown in Czech Republic using liquid chromatography-tandem mass spectrometry. Food Chem. 2018;245:829–837. doi: 10.1016/j.foodchem.2017.11.101. PubMed DOI
Durán Guerrero E., Chinnici F., Natali N., Marín R.N., Riponi C. Solid-phase extraction method for determination of volatile compounds in traditional balsamic vinegar. J. Sep. Sci. 2008;31:3030–3036. doi: 10.1002/jssc.200800307. PubMed DOI
Chinnici F., Durán Guerrero E., Sonni F., Natali N., Marín R.N., Riponi C. Gas Chromatography−Mass Spectrometry (GC−MS) Characterization of Volatile Compounds in Quality Vinegars with Protected European Geographical Indication. J. Agric. Food Chem. 2009;57:4784–4792. doi: 10.1021/jf804005w. PubMed DOI
Zeppa G., Giordano M., Gerbi V., Meglioli G. Characterisation of volatile compounds in three acetification batteries used for the production of Aceto Balsamico Tradizionale di Reggio Emilia. Ital. J. Food Sci. 2002;14:247–266.
Guerrero E.D., Marín R.N., Mejías R.C., Barroso C.G. Stir bar sorptive extraction of volatile compounds in vinegar: Validation study and comparison with solid phase microextraction. J. Chromatogr. A. 2007;1167:18–26. doi: 10.1016/j.chroma.2007.08.039. PubMed DOI
Marrufo-Curtido A., Cejudo-Bastante M.J., Durán-Guerrero E., Castro-Mejías R., Natera Marín R., Chinnici F., García-Barroso C. Characterization and differentiation of high quality vinegars by stir bar sorptive extraction coupled to gas chromatography-mass spectrometry (SBSE–GC–MS) Food Sci. Technol. 2012;47:332–341. doi: 10.1016/j.lwt.2012.01.028. DOI
Alissandrakis E., Tarantilis P.A., Harizanis P.C., Polissiou M. Comparison of the Volatile Composition in Thyme Honeys from Several Origins in Greece. J. Agric. Food Chem. 2007;55:8152–8157. doi: 10.1021/jf071442y. PubMed DOI
Sterckx F.L., Missiaen J., Saison D., Delvaux F.R. Contribution of monophenols to beer flavour based on flavour thresholds, interactions and recombination experiments. Food Chem. 2011;126:1679–1685. doi: 10.1016/j.foodchem.2010.12.055. PubMed DOI
Morcia C., Tumino G., Ghizzoni R., Terzi V. Essential Oils in Food Preservation, Flavor and Safety. Academic Press; Amsterdam, The Netherlands: 2016. Carvone (Mentha spicata L.) Oils; pp. 309–316.
Adams R.P. Cedar Wood Oil—Analyses and Properties. In: Linskens H.F., Jackon J.F., editors. Essential Oils and Waxes. Springer; Berlin/Heidelberg, Germany: 1991. pp. 159–173.
Food and Drugs. [(accessed on 10 January 2022)]; Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?FR=172.515.
Deng W.W., Wang R., Yang T., Jiang L., Zhang Z.-Z. Functional Characterization of Salicylic Acid Carboxyl Methyltransferase from Camellia sinensis, Providing the Aroma Compound of Methyl Salicylate during the Withering Process of White Tea. J. Agric. Food Chem. 2017;65:11036–11045. doi: 10.1021/acs.jafc.7b04575. PubMed DOI
Chatonnet P., Dubourdie D., Boidron J.N., Pons M. The origin of ethylphenols in wines. J. Sci. Food Agric. 1992;60:165–178. doi: 10.1002/jsfa.2740600205. DOI
Pineiro Z., Cantos-Villar E., Palma M., Puertas B. Direct Liquid Chromatography Method for the Simultaneous Quantification of Hydroxytyrosol and Tyrosol in Red Wines. J. Agric. Food Chem. 2011;59:11683–11689. doi: 10.1021/jf202254t. PubMed DOI
Burri J., Graf M., Lambelet P., Löliger J. Vanillin: More than a flavouring agent—A potent antioxidant. J. Sci. Food Agric. 1989;48:49–56. doi: 10.1002/jsfa.2740480107. DOI
Bicchi C., Cordero C., Liberto E., Sgorbini B., Rubiolo P. Headspace sampling of the volatile fraction of vegetable matrices. J. Chromatogr. A. 2008;1184:220–233. doi: 10.1016/j.chroma.2007.06.019. PubMed DOI