Effects of Various Drying Times on the Properties of 3D Printed Orodispersible Films

. 2022 Jan 21 ; 14 (2) : . [epub] 20220121

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35213983
Odkazy

PubMed 35213983
PubMed Central PMC8878870
DOI 10.3390/pharmaceutics14020250
PII: pharmaceutics14020250
Knihovny.cz E-zdroje

Orodispersible films are an innovative dosage form. Their main advantages are the application comfort and the possibility of personalization. This work aimed to evaluate the influence of different drying times on the properties of orodispersible films of various thicknesses, prepared in two different semisolid extrusion 3D printing setups. In the first experiment, drying times were dependent on the overall print time of each batch. In the second setup, the drying time was set equal according to the longest one. The evaluated parameters were films' weight uniformity, thickness, moisture content, surface pH, disintegration time, hardness, and tensile strength. Upon statistical comparison, significant differences in the moisture content were found, subsequently affecting the disintegration time. Moreover, statistically significant differences in films' mechanical properties (hardness, tensile strength) were also described, proving that moisture content simultaneously affects film plasticity and related properties. In conclusion, a mutual comparison of the manufactured orodispersible films showed that the drying time affects their physical and mechanical properties. The in-process drying setup was proved to be sufficient while allowing quicker manufacturing.

Zobrazit více v PubMed

Council of Europe . European Pharmacopoeia: (Ph. Eur. MMXVII) 9th ed. EDQM; Strasbourg, France: 2017.

FDA: Dosage Form. [(accessed on 1 June 2021)]; Available online: https://www.fda.gov/industry/structured-product-labeling-resources/dosage-forms.

Corniello C. Quick dissolving strips: From concept to commercialization. Drug Deliv. Technol. 2006;6:68–71.

Hoffmann E.M., Breitenbach A., Breitkreutz J. Advances in orodispersible films for drug delivery. Expert Opin. Drug Deliv. 2011;8:299–316. doi: 10.1517/17425247.2011.553217. PubMed DOI

Davidson R., Rousset J. Oral films—A multi-faceted drug delivery system and dosage form. CURE Pharm. 2018;88:14–17.

Patel A.R., Prajapati D.S., Raval J.A. Fast dissolving films (FDFs) as a newer venture in fast dissolving dosage forms. Int. J. Drug Dev. Res. 2010;2:232–246.

Hannan P.A., Khan J.A., Khan A., Safiullah S. Oral dispersible system: A new approach in drug delivery system. Indian J. Pharm. Sci. 2016;78:2. doi: 10.4103/0250-474X.180244. PubMed DOI PMC

Gupta M.S., Kumar T.P., Davidson R., Kuppu G.R., Pathak K., Gowda D.V. Printing Methods in the Production of Orodispersible Films. AAPS PharmSciTech. 2021;22:1–17. doi: 10.1208/s12249-021-01990-3. PubMed DOI

Ventola C.L. Medical applications for 3D printing: Current and projected uses. Pharm. Ther. 2014;39:704. PubMed PMC

Elbl J., Gajdziok J., Kolarczyk J. 3D printing of multilayered orodispersible films with in-process drying. Int. J. Pharm. 2020;575:118883. doi: 10.1016/j.ijpharm.2019.118883. PubMed DOI

Awad A., Trenfield S.J., Goyanes A., Gaisford S., Basit A.W. Reshaping drug development using 3D printing. Drug Discov. Today. 2018;23:1547–1555. PubMed

SjÖholm E., Sandler N. Additive manufacturing of personalized orodispersible warfarin films. Int. J. Pharm. 2019;564:117–123. doi: 10.1016/j.ijpharm.2019.04.018. PubMed DOI

Eleftheriadis S., Georgios K., Fatouros D.G. Haptic Evaluation of 3D-Printed Braille-Encoded Intraoral Films. Eur. J. Pharm. Sci. 2021;157:105605. doi: 10.1016/j.ejps.2020.105605. PubMed DOI

Jamróz W., Kurek M., Łyszczarz E., Szafraniec J., Knapik-Kowalczuk J., Syrek K., Jachowicz R. 3D printed orodispersible films with Aripiprazole. Int. J. Pharm. 2017;533:413–420. doi: 10.1016/j.ijpharm.2017.05.052. PubMed DOI

Musazzi U.M., Selmin F., Ortenzi M.A., Mohammed G.K., Franzé S., Minghetti P., Cilurzo F. Personalized orodispersible films by hot melt ram extrusion 3D printing. Int. J. Pharm. 2018;551:52–59. doi: 10.1016/j.ijpharm.2018.09.013. PubMed DOI

Mussazzi U.M., Khalid G.M., Selmin F., Minghetti P., Cilurzo F. Trends in the production methods of orodispersible films. Int. J. Pharm. 2020;576:118963. doi: 10.1016/j.ijpharm.2019.118963. PubMed DOI

Eleftheriadis G.K., Kantarelis E., Monou P.K., Andriotis E.G., Bouropoulos N., Tzimtzimis E.K., Fatouros D.G. Automated digital design for 3D-printed individualized therapies. Int. J. Pharm. 2021;599:120437. doi: 10.1016/j.ijpharm.2021.120437. PubMed DOI

El-Bary A.A., Al SharabiI I., Haza’a B.S. Effect of casting solvent, film-forming agent and solubilizer on orodispersible films of a polymorphic poorly soluble drug: An in vitro/in silico study. Drug Dev. Ind. Pharm. 2019;45:1751–1769. doi: 10.1080/03639045.2019.1656733. PubMed DOI

Preis M., Gronkowsky D., Grytzan D., Breitkreutz J. Comparative study on novel test systems to determine disintegration time of orodispersible films. J. Pharm. Pharmacol. 2014;66:1102–1111. doi: 10.1111/jphp.12246. PubMed DOI

Preis M., Knop K., Breitkreutz J. Mechanical strength test for orodispersible and buccal films. Int. J. Pharm. 2014;461:22–29. doi: 10.1016/j.ijpharm.2013.11.033. PubMed DOI

Borges A.F., Silva C., Coelho J.F., Simões S. Outlining critical quality attributes (CQAs) as guidance for the development of orodispersible films. Pharm. Dev. Technol. 2017;22:237–245. doi: 10.1080/10837450.2016.1199567. PubMed DOI

Foo W.C., Khong Y.M., Gokhale R., Chan S.Y. A novel unit-dose approach for the pharmaceutical compounding of an orodispersible film. Int. J. Pharm. 2018;539:165–174. doi: 10.1016/j.ijpharm.2018.01.047. PubMed DOI

Pechová V., Gajdziok J., Muselík J., Vetchý D. Development of orodispersible films containing benzydamine hydrochloride using a modified solvent casting method. AAPS PharmSciTech. 2018;19:2509–2518. doi: 10.1208/s12249-018-1088-y. PubMed DOI

Pechová V., Gajdziok J., Vetchý D. Texturní analýza jako moderní přístup k hodnocení lékových forem a zdravotnických prostředků. Chem. Listy. 2017;111:622–627.

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2021. [(accessed on 30 November 2021)]. Available online: https://www.R-project.org/

Ehtezazi T., Algellay M., Islam Y., Roberts M., Dempster N.M., Sarker S.D. The application of 3D printing in the formulation of multilayered fast dissolving oral films. J. Pharm. Sci. 2018;107:1076–1085. doi: 10.1016/j.xphs.2017.11.019. PubMed DOI

El-Setouhy D.A., Abd El-Malak N.S. Formulation of a novel tianeptine sodium orodispersible film. AAPS PharmSciTech. 2010;11:1018–1025. doi: 10.1208/s12249-010-9464-2. PubMed DOI PMC

Nair A.B., Kumria R., Harsha S., Attimarad M., Al-Dhubiab B.E., Alhaider I.A. In vitro techniques to evaluate buccal films. J. Control. Release. 2013;166:10–21. doi: 10.1016/j.jconrel.2012.11.019. PubMed DOI

Sudhakar Y., Kuotsu K., Bandyopadhyay A.K. Buccal bioadhesive drug delivery—A promising option for orally less efficient drugs. J. Control. Release. 2006;114:15–40. doi: 10.1016/j.jconrel.2006.04.012. PubMed DOI

Humphrey S.P., Williamson R.T. A review of saliva: Normal composition, flow, and function. J. Prosthet. Dent. 2001;85:162–169. doi: 10.1067/mpr.2001.113778. PubMed DOI

Roblegg E., Coughran A., Sirjani D. Saliva: An all-rounder of our body. Eur. J. Pharm. Biopharm. 2019;142:133–141. doi: 10.1016/j.ejpb.2019.06.016. PubMed DOI

FDA: Orally Disintegrating Tablets—Guidance for Industry. [(accessed on 3 June 2021)]; Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/orally-disintegrating-tablets.

Siddiqui M.N., Garg G., Sharma P.K. A short review on “A novel approach in oral fast dissolving drug delivery system and their patents”. Adv. Biol Res. 2011;5:291–303.

Khalid G.M., Musazzi U.M., Selmin F., Franzè S., Minghetti P., Cilurzo F. Extemporaneous printing of diclofenac orodispersible films for pediatrics. Drug Dev. Ind. Pharm. 2021;47:636–644. doi: 10.1080/03639045.2021.1908335. PubMed DOI

Panraksa P., Qi S., Udomsom S., Tipduangta P., Rachtanapun P., Jantanasakulwong K., Jantrawut P. Characterization of hydrophilic polymers as a syringe extrusion 3D printing material for orodispersible film. Polymers. 2021;13:3454. doi: 10.3390/polym13203454. PubMed DOI PMC

Gupta M.S., Kumar T.P. Characterization of orodispersible films: An overview of methods and introduction to a new disintegration test apparatus using LDR-LED sensors. J. Pharm. Sci. 2020;109:2925–2942. doi: 10.1016/j.xphs.2020.06.012. PubMed DOI

Preis M., Woertz C., Kleinebudde P., Breitkreutz J. Oromucosal film preparations: Classification and characterization methods. Expert Opin. Drug Deliv. 2013;10:1303–1317. doi: 10.1517/17425247.2013.804058. PubMed DOI

Khalid G.M., Selmin F., Musazzi U.M., Gennari C.G., Minghetti P., Cilurzo F. Trends in the Characterization Methods of Orodispersible Films. Curr. Drug Deliv. 2021;18:935–946. doi: 10.2174/1567201818999201210212557. PubMed DOI

Scarpa M., Stegemann S., Hsiao W.K., Pichler H., Gaisford S., Bresciani M., Orlu M. Orodispersible films: Towards drug delivery in special populations. Int. J. Pharm. 2017;523:327–335. doi: 10.1016/j.ijpharm.2017.03.018. PubMed DOI

Szakonyi G., Zelkó R. The effect of water on the solid state characteristics of pharmaceutical excipients: Molecular mechanisms, measurement techniques, and quality aspects of final dosage form. Int. J. Pharm. Investig. 2012;2:18. PubMed PMC

Karki S., Kim H., Na S.J., Shin D., Jo K., Lee J. Thin films as an emerging platform for drug delivery. Asian J. Pharm. Sci. 2016;11:559–574. doi: 10.1016/j.ajps.2016.05.004. DOI

Brniak W., Maślak E., Jachowicz R. Orodispersible films and tablets with prednisolone microparticles. Eur. J. Pharm. Sci. 2015;75:81–90. doi: 10.1016/j.ejps.2015.04.006. PubMed DOI

Manda P., Popescu C., Juluri A., Janga K., Kakulamarri P.R., Narishetty S., Repka M.A. Micronized zaleplon delivery via orodispersible film and orodispersible tablets. AAPS PharmSciTech. 2018;19:1358–1366. doi: 10.1208/s12249-017-0924-9. PubMed DOI

Visser J.C., Woerdenbag H.J., Crediet S., Gerrits E., Lesschen M.A., Hinrichs W.L., Frijlink H.W. Orodispersible films in individualized pharmacotherapy: The development of a formulation for pharmacy preparations. Int. J. Pharm. 2015;478:155–163. doi: 10.1016/j.ijpharm.2014.11.013. PubMed DOI

Visser J.C., Dohmen W.M., Hinrichs W.L., Breitkreutz J., Frijlink H.W., Woerdenbag H.J. Quality by design approach for optimizing the formulation and physical properties of extemporaneously prepared orodispersible films. Int. J. Pharm. 2015;485:70–76. doi: 10.1016/j.ijpharm.2015.03.005. PubMed DOI

Łyszczarz E., Brniak W., Szafraniec-Szczęsny J., Majka T.M., Majda D., Zych M., Jachowicz R. The impact of the preparation method on the properties of orodispersible films with aripiprazole: Electrospinning vs. casting and 3D printing methods. Pharmaceutics. 2021;13:1122. doi: 10.3390/pharmaceutics13081122. PubMed DOI PMC

Bülbül E.Ö., Mesut B., Cevher E., Öztaş E., Özsoy Y. Product transfer from lab-scale to pilot-scale of quetiapine fumarate orodispersible films using quality by design approach. J. Drug Deliv. Sci. Technol. 2019;54:101358. doi: 10.1016/j.jddst.2019.101358. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...