Effects of Various Drying Times on the Properties of 3D Printed Orodispersible Films
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35213983
PubMed Central
PMC8878870
DOI
10.3390/pharmaceutics14020250
PII: pharmaceutics14020250
Knihovny.cz E-zdroje
- Klíčová slova
- 3D print, drying time, moisture content, orodispersible films, semisolid extrusion,
- Publikační typ
- časopisecké články MeSH
Orodispersible films are an innovative dosage form. Their main advantages are the application comfort and the possibility of personalization. This work aimed to evaluate the influence of different drying times on the properties of orodispersible films of various thicknesses, prepared in two different semisolid extrusion 3D printing setups. In the first experiment, drying times were dependent on the overall print time of each batch. In the second setup, the drying time was set equal according to the longest one. The evaluated parameters were films' weight uniformity, thickness, moisture content, surface pH, disintegration time, hardness, and tensile strength. Upon statistical comparison, significant differences in the moisture content were found, subsequently affecting the disintegration time. Moreover, statistically significant differences in films' mechanical properties (hardness, tensile strength) were also described, proving that moisture content simultaneously affects film plasticity and related properties. In conclusion, a mutual comparison of the manufactured orodispersible films showed that the drying time affects their physical and mechanical properties. The in-process drying setup was proved to be sufficient while allowing quicker manufacturing.
Zobrazit více v PubMed
Council of Europe . European Pharmacopoeia: (Ph. Eur. MMXVII) 9th ed. EDQM; Strasbourg, France: 2017.
FDA: Dosage Form. [(accessed on 1 June 2021)]; Available online: https://www.fda.gov/industry/structured-product-labeling-resources/dosage-forms.
Corniello C. Quick dissolving strips: From concept to commercialization. Drug Deliv. Technol. 2006;6:68–71.
Hoffmann E.M., Breitenbach A., Breitkreutz J. Advances in orodispersible films for drug delivery. Expert Opin. Drug Deliv. 2011;8:299–316. doi: 10.1517/17425247.2011.553217. PubMed DOI
Davidson R., Rousset J. Oral films—A multi-faceted drug delivery system and dosage form. CURE Pharm. 2018;88:14–17.
Patel A.R., Prajapati D.S., Raval J.A. Fast dissolving films (FDFs) as a newer venture in fast dissolving dosage forms. Int. J. Drug Dev. Res. 2010;2:232–246.
Hannan P.A., Khan J.A., Khan A., Safiullah S. Oral dispersible system: A new approach in drug delivery system. Indian J. Pharm. Sci. 2016;78:2. doi: 10.4103/0250-474X.180244. PubMed DOI PMC
Gupta M.S., Kumar T.P., Davidson R., Kuppu G.R., Pathak K., Gowda D.V. Printing Methods in the Production of Orodispersible Films. AAPS PharmSciTech. 2021;22:1–17. doi: 10.1208/s12249-021-01990-3. PubMed DOI
Ventola C.L. Medical applications for 3D printing: Current and projected uses. Pharm. Ther. 2014;39:704. PubMed PMC
Elbl J., Gajdziok J., Kolarczyk J. 3D printing of multilayered orodispersible films with in-process drying. Int. J. Pharm. 2020;575:118883. doi: 10.1016/j.ijpharm.2019.118883. PubMed DOI
Awad A., Trenfield S.J., Goyanes A., Gaisford S., Basit A.W. Reshaping drug development using 3D printing. Drug Discov. Today. 2018;23:1547–1555. PubMed
SjÖholm E., Sandler N. Additive manufacturing of personalized orodispersible warfarin films. Int. J. Pharm. 2019;564:117–123. doi: 10.1016/j.ijpharm.2019.04.018. PubMed DOI
Eleftheriadis S., Georgios K., Fatouros D.G. Haptic Evaluation of 3D-Printed Braille-Encoded Intraoral Films. Eur. J. Pharm. Sci. 2021;157:105605. doi: 10.1016/j.ejps.2020.105605. PubMed DOI
Jamróz W., Kurek M., Łyszczarz E., Szafraniec J., Knapik-Kowalczuk J., Syrek K., Jachowicz R. 3D printed orodispersible films with Aripiprazole. Int. J. Pharm. 2017;533:413–420. doi: 10.1016/j.ijpharm.2017.05.052. PubMed DOI
Musazzi U.M., Selmin F., Ortenzi M.A., Mohammed G.K., Franzé S., Minghetti P., Cilurzo F. Personalized orodispersible films by hot melt ram extrusion 3D printing. Int. J. Pharm. 2018;551:52–59. doi: 10.1016/j.ijpharm.2018.09.013. PubMed DOI
Mussazzi U.M., Khalid G.M., Selmin F., Minghetti P., Cilurzo F. Trends in the production methods of orodispersible films. Int. J. Pharm. 2020;576:118963. doi: 10.1016/j.ijpharm.2019.118963. PubMed DOI
Eleftheriadis G.K., Kantarelis E., Monou P.K., Andriotis E.G., Bouropoulos N., Tzimtzimis E.K., Fatouros D.G. Automated digital design for 3D-printed individualized therapies. Int. J. Pharm. 2021;599:120437. doi: 10.1016/j.ijpharm.2021.120437. PubMed DOI
El-Bary A.A., Al SharabiI I., Haza’a B.S. Effect of casting solvent, film-forming agent and solubilizer on orodispersible films of a polymorphic poorly soluble drug: An in vitro/in silico study. Drug Dev. Ind. Pharm. 2019;45:1751–1769. doi: 10.1080/03639045.2019.1656733. PubMed DOI
Preis M., Gronkowsky D., Grytzan D., Breitkreutz J. Comparative study on novel test systems to determine disintegration time of orodispersible films. J. Pharm. Pharmacol. 2014;66:1102–1111. doi: 10.1111/jphp.12246. PubMed DOI
Preis M., Knop K., Breitkreutz J. Mechanical strength test for orodispersible and buccal films. Int. J. Pharm. 2014;461:22–29. doi: 10.1016/j.ijpharm.2013.11.033. PubMed DOI
Borges A.F., Silva C., Coelho J.F., Simões S. Outlining critical quality attributes (CQAs) as guidance for the development of orodispersible films. Pharm. Dev. Technol. 2017;22:237–245. doi: 10.1080/10837450.2016.1199567. PubMed DOI
Foo W.C., Khong Y.M., Gokhale R., Chan S.Y. A novel unit-dose approach for the pharmaceutical compounding of an orodispersible film. Int. J. Pharm. 2018;539:165–174. doi: 10.1016/j.ijpharm.2018.01.047. PubMed DOI
Pechová V., Gajdziok J., Muselík J., Vetchý D. Development of orodispersible films containing benzydamine hydrochloride using a modified solvent casting method. AAPS PharmSciTech. 2018;19:2509–2518. doi: 10.1208/s12249-018-1088-y. PubMed DOI
Pechová V., Gajdziok J., Vetchý D. Texturní analýza jako moderní přístup k hodnocení lékových forem a zdravotnických prostředků. Chem. Listy. 2017;111:622–627.
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2021. [(accessed on 30 November 2021)]. Available online: https://www.R-project.org/
Ehtezazi T., Algellay M., Islam Y., Roberts M., Dempster N.M., Sarker S.D. The application of 3D printing in the formulation of multilayered fast dissolving oral films. J. Pharm. Sci. 2018;107:1076–1085. doi: 10.1016/j.xphs.2017.11.019. PubMed DOI
El-Setouhy D.A., Abd El-Malak N.S. Formulation of a novel tianeptine sodium orodispersible film. AAPS PharmSciTech. 2010;11:1018–1025. doi: 10.1208/s12249-010-9464-2. PubMed DOI PMC
Nair A.B., Kumria R., Harsha S., Attimarad M., Al-Dhubiab B.E., Alhaider I.A. In vitro techniques to evaluate buccal films. J. Control. Release. 2013;166:10–21. doi: 10.1016/j.jconrel.2012.11.019. PubMed DOI
Sudhakar Y., Kuotsu K., Bandyopadhyay A.K. Buccal bioadhesive drug delivery—A promising option for orally less efficient drugs. J. Control. Release. 2006;114:15–40. doi: 10.1016/j.jconrel.2006.04.012. PubMed DOI
Humphrey S.P., Williamson R.T. A review of saliva: Normal composition, flow, and function. J. Prosthet. Dent. 2001;85:162–169. doi: 10.1067/mpr.2001.113778. PubMed DOI
Roblegg E., Coughran A., Sirjani D. Saliva: An all-rounder of our body. Eur. J. Pharm. Biopharm. 2019;142:133–141. doi: 10.1016/j.ejpb.2019.06.016. PubMed DOI
FDA: Orally Disintegrating Tablets—Guidance for Industry. [(accessed on 3 June 2021)]; Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/orally-disintegrating-tablets.
Siddiqui M.N., Garg G., Sharma P.K. A short review on “A novel approach in oral fast dissolving drug delivery system and their patents”. Adv. Biol Res. 2011;5:291–303.
Khalid G.M., Musazzi U.M., Selmin F., Franzè S., Minghetti P., Cilurzo F. Extemporaneous printing of diclofenac orodispersible films for pediatrics. Drug Dev. Ind. Pharm. 2021;47:636–644. doi: 10.1080/03639045.2021.1908335. PubMed DOI
Panraksa P., Qi S., Udomsom S., Tipduangta P., Rachtanapun P., Jantanasakulwong K., Jantrawut P. Characterization of hydrophilic polymers as a syringe extrusion 3D printing material for orodispersible film. Polymers. 2021;13:3454. doi: 10.3390/polym13203454. PubMed DOI PMC
Gupta M.S., Kumar T.P. Characterization of orodispersible films: An overview of methods and introduction to a new disintegration test apparatus using LDR-LED sensors. J. Pharm. Sci. 2020;109:2925–2942. doi: 10.1016/j.xphs.2020.06.012. PubMed DOI
Preis M., Woertz C., Kleinebudde P., Breitkreutz J. Oromucosal film preparations: Classification and characterization methods. Expert Opin. Drug Deliv. 2013;10:1303–1317. doi: 10.1517/17425247.2013.804058. PubMed DOI
Khalid G.M., Selmin F., Musazzi U.M., Gennari C.G., Minghetti P., Cilurzo F. Trends in the Characterization Methods of Orodispersible Films. Curr. Drug Deliv. 2021;18:935–946. doi: 10.2174/1567201818999201210212557. PubMed DOI
Scarpa M., Stegemann S., Hsiao W.K., Pichler H., Gaisford S., Bresciani M., Orlu M. Orodispersible films: Towards drug delivery in special populations. Int. J. Pharm. 2017;523:327–335. doi: 10.1016/j.ijpharm.2017.03.018. PubMed DOI
Szakonyi G., Zelkó R. The effect of water on the solid state characteristics of pharmaceutical excipients: Molecular mechanisms, measurement techniques, and quality aspects of final dosage form. Int. J. Pharm. Investig. 2012;2:18. PubMed PMC
Karki S., Kim H., Na S.J., Shin D., Jo K., Lee J. Thin films as an emerging platform for drug delivery. Asian J. Pharm. Sci. 2016;11:559–574. doi: 10.1016/j.ajps.2016.05.004. DOI
Brniak W., Maślak E., Jachowicz R. Orodispersible films and tablets with prednisolone microparticles. Eur. J. Pharm. Sci. 2015;75:81–90. doi: 10.1016/j.ejps.2015.04.006. PubMed DOI
Manda P., Popescu C., Juluri A., Janga K., Kakulamarri P.R., Narishetty S., Repka M.A. Micronized zaleplon delivery via orodispersible film and orodispersible tablets. AAPS PharmSciTech. 2018;19:1358–1366. doi: 10.1208/s12249-017-0924-9. PubMed DOI
Visser J.C., Woerdenbag H.J., Crediet S., Gerrits E., Lesschen M.A., Hinrichs W.L., Frijlink H.W. Orodispersible films in individualized pharmacotherapy: The development of a formulation for pharmacy preparations. Int. J. Pharm. 2015;478:155–163. doi: 10.1016/j.ijpharm.2014.11.013. PubMed DOI
Visser J.C., Dohmen W.M., Hinrichs W.L., Breitkreutz J., Frijlink H.W., Woerdenbag H.J. Quality by design approach for optimizing the formulation and physical properties of extemporaneously prepared orodispersible films. Int. J. Pharm. 2015;485:70–76. doi: 10.1016/j.ijpharm.2015.03.005. PubMed DOI
Łyszczarz E., Brniak W., Szafraniec-Szczęsny J., Majka T.M., Majda D., Zych M., Jachowicz R. The impact of the preparation method on the properties of orodispersible films with aripiprazole: Electrospinning vs. casting and 3D printing methods. Pharmaceutics. 2021;13:1122. doi: 10.3390/pharmaceutics13081122. PubMed DOI PMC
Bülbül E.Ö., Mesut B., Cevher E., Öztaş E., Özsoy Y. Product transfer from lab-scale to pilot-scale of quetiapine fumarate orodispersible films using quality by design approach. J. Drug Deliv. Sci. Technol. 2019;54:101358. doi: 10.1016/j.jddst.2019.101358. DOI