Development of 3D Printed Multi-Layered Orodispersible Films with Porous Structure Applicable as a Substrate for Inkjet Printing

. 2023 Feb 20 ; 15 (2) : . [epub] 20230220

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36840036

Grantová podpora
MUNI/A/1151/2021 Masaryk University

Odkazy

PubMed 36840036
PubMed Central PMC9961792
DOI 10.3390/pharmaceutics15020714
PII: pharmaceutics15020714
Knihovny.cz E-zdroje

The direct tailoring of the size, composition, or number of layers belongs to the advantages of 3D printing employment in producing orodispersible films (ODFs) compared to the frequently utilized solvent casting method. This study aimed to produce porous ODFs as a substrate for medicated ink deposited by a 2D printer. The innovative semi-solid extrusion 3D printing method was employed to produce multilayered ODFs, where the bottom layer assures the mechanical properties. In contrast, the top layer provides a porous structure for ink entrapment. Hydroxypropyl methylcellulose and polyvinyl alcohol were utilized as film-forming polymers, glycerol as a plasticizer, and sodium starch glycolate as a disintegrant in the bottom matrix. Several porogen agents (Aeroperl® 300, Fujisil®, Syloid® 244 FP, Syloid® XDP 3050, Neusilin® S2, Neusilin® US2, and Neusilin® UFL2) acted as porosity enhancers in the two types of top layer. ODFs with satisfactory disintegration time were prepared. The correlation between the porogen content and the mechanical properties was proved. A porous ODF structure was detected in most samples and linked to the porogen content. SSE 3D printing represents a promising preparation method for the production of porous ODFs as substrates for subsequent drug deposition by 2D printing, avoiding the difficulties arising in casting or printing medicated ODFs directly.

Zobrazit více v PubMed

Planchette C., Pichler H., Wimmer-Teubenbacher M., Gruber M., Gruber-Woelfler H., Mohr S., Tetyczka C., Hsiao W.-K., Paudel A., Roblegg E., et al. Printing Medicines as Orodispersible Dosage Forms: Effect of Substrate on the Printed Micro-Structure. Int. J. Pharm. 2016;509:518–527. doi: 10.1016/j.ijpharm.2015.10.054. PubMed DOI

Knowles L., Luth W., Bubela T. Paving the road to personalized medicine: Recommendations on regulatory, intellectual property and reimbursement challenges. J. Law Biosci. 2017;4:453–506. doi: 10.1093/jlb/lsx030. PubMed DOI PMC

Cohen J.S. Ways to Minimize Adverse Drug Reactions. Postgrad. Med. 1999;106:163–172. doi: 10.3810/pgm.1999.09.688. PubMed DOI

Pritchard D.E., Moeckel F., Villa M.S., Housman L.T., McCarty C.A., McLeod H.L. Strategies for integrating personalized medicine into healthcare practice. Pers. Med. 2017;14:141–152. doi: 10.2217/pme-2016-0064. PubMed DOI

Jamróz W., Kurek M., Łyszczarz E., Szafraniec J., Knapik-Kowalczuk J., Syrek K., Paluch M., Jachowicz R. 3D Printed Orodispersible Films with Aripiprazole. Int. J. Pharm. 2017;533:413–420. doi: 10.1016/j.ijpharm.2017.05.052. PubMed DOI

Sjöholm E., Sandler N. Additive Manufacturing of Personalized Orodispersible Warfarin Films. Int. J. Pharm. 2019;564:117–123. doi: 10.1016/j.ijpharm.2019.04.018. PubMed DOI

Roden D.F., Altman K.W. Causes of Dysphagia Among Different Age Groups: A Systematic Review of the Literature. Otolaryngol. Clin. N. Am. 2013;46:965–987. doi: 10.1016/j.otc.2013.08.008. PubMed DOI

Breitkreutz J., Boos J. Paediatric and Geriatric Drug Delivery. Expert Opin. Drug Deliv. 2007;4:37–45. doi: 10.1517/17425247.4.1.37. PubMed DOI

Preis M., Pein M., Breitkreutz J. Development of a Taste-Masked Orodispersible Film Containing Dimenhydrinate. Pharmaceutics. 2012;4:551–562. doi: 10.3390/pharmaceutics4040551. PubMed DOI PMC

Panraksa P., Tipduangta P., Jantanasakulwong K., Jantrawut P. Formulation of Orally Disintegrating Films as an Amorphous Solid Solution of a Poorly Water-Soluble Drug. Membranes. 2020;10:376. doi: 10.3390/membranes10120376. PubMed DOI PMC

Takeuchi Y., Nishimatsu T., Tahara K., Takeuchi H. Novel Use of Insoluble Particles as Disintegration Enhancers for Orally Disintegrating Films. J. Drug Deliv. Sci. Technol. 2019;54:101310. doi: 10.1016/j.jddst.2019.101310. DOI

Cilurzo F., Musazzi U.M., Franzé S., Selmin F., Minghetti P. Orodispersible dosage forms: Biopharmaceutical improvements and regulatory requirements. Drug Discov. Today. 2018;23:251–259. doi: 10.1016/j.drudis.2017.10.003. PubMed DOI

Slavkova M., Breitkreutz J. Orodispersible drug formulations for children and elderly. Eur. J. Pharm. Sci. 2015;75:2–9. doi: 10.1016/j.ejps.2015.02.015. PubMed DOI

Genina N., Janßen E.M., Breitenbach A., Breitkreutz J., Sandler N. Evaluation of Different Substrates for Inkjet Printing of Rasagiline Mesylate. Eur. J. Pharm. Biopharm. 2013;85:1075–1083. doi: 10.1016/j.ejpb.2013.03.017. PubMed DOI

Hoffmann E.M., Breitenbach A., Breitkreutz J. Advances in Orodispersible Films for Drug Delivery. Expert Opin. Drug Deliv. 2011;8:299–316. doi: 10.1517/17425247.2011.553217. PubMed DOI

Dixit R.P., Puthli S.P. Oral Strip Technology: Overview and Future Potential. J. Control. Release. 2009;139:94–107. doi: 10.1016/j.jconrel.2009.06.014. PubMed DOI

Janßen E.M., Schliephacke R., Breitenbach A., Breitkreutz J. Drug-Printing by Flexographic Printing Technology—A New Manufacturing Process for Orodispersible Films. Int. J. Pharm. 2013;441:818–825. doi: 10.1016/j.ijpharm.2012.12.023. PubMed DOI

Seoane-Viaño I., Januskaite P., Alvarez-Lorenzo C., Basit A.W., Goyanes A. Semi-solid extrusion 3D printing in drug delivery and biomedicine: Personalised solutions for healthcare challenges. J Control. Release. 2021;332:367–389. doi: 10.1016/j.jconrel.2021.02.027. PubMed DOI

Iftimi L.-D., Edinger M., Bar-Shalom D., Rantanen J., Genina N. Edible Solid Foams as Porous Substrates for Inkjet-Printable Pharmaceuticals. Eur. J. Pharm. Biopharm. 2019;136:38–47. doi: 10.1016/j.ejpb.2019.01.004. PubMed DOI

Edinger M., Bar-Shalom D., Sandler N., Rantanen J., Genina N. QR Encoded Smart Oral Dosage Forms by Inkjet Printing. Int. J. Pharm. 2018;536:138–145. doi: 10.1016/j.ijpharm.2017.11.052. PubMed DOI

Borges A.F., Silva C., Coelho J.F.J., Simões S. Oral Films: Current Status and Future Perspectives: I—Galenical Development and Quality Attributes. J. Control. Release. 2015;206:1–19. doi: 10.1016/j.jconrel.2015.03.006. PubMed DOI

Alomari M., Mohamed F.H., Basit A.W., Gaisford S. Personalised Dosing: Printing a Dose of One’s Own Medicine. Int. J. Pharm. 2015;494:568–577. doi: 10.1016/j.ijpharm.2014.12.006. PubMed DOI

Raijada D., Genina N., Fors D., Wisaeus E., Peltonen J., Rantanen J., Sandler N. A Step Toward Development of Printable Dosage Forms for Poorly Soluble Drugs. J. Pharm. Sci. 2013;102:3694–3704. doi: 10.1002/jps.23678. PubMed DOI

Vraníková B., Niederquell A., Šklubalová Z., Kuentz M. Relevance of the Theoretical Critical Pore Radius in Mesoporous Silica for Fast Crystallizing Drugs. Int. J. Pharm. 2020;591:120019. doi: 10.1016/j.ijpharm.2020.120019. PubMed DOI

Takeuchi H., Yamakawa R., Nishimatsu T., Takeuchi Y., Hayakawa K., Maruyama N. Design of Rapidly Disintegrating Drug Delivery Films for Oral Doses with Hydoxypropyl Methylcellulose. J. Drug Deliv. Sci. Technol. 2013;23:471–475. doi: 10.1016/S1773-2247(13)50068-2. DOI

Elbl J., Gajdziok J., Kolarczyk J. 3D Printing of Multilayered Orodispersible Films with In-Process Drying. Int. J. Pharm. 2020;575:118883. doi: 10.1016/j.ijpharm.2019.118883. PubMed DOI

Janigová N., Elbl J., Pavloková S., Gajdziok J. Effects of Various Drying Times on the Properties of 3D Printed Orodispersible Films. Pharmaceutics. 2022;14:250. doi: 10.3390/pharmaceutics14020250. PubMed DOI PMC

Preis M., Gronkowsky D., Grytzan D., Breitkreutz J. Comparative study on novel test systems to determine disintegration time of orodispersible films. J. Pharm. Pharmacol. 2014;66:1102–1111. doi: 10.1111/jphp.12246. PubMed DOI

Preis M., Knop K., Breitkreutz J. Mechanical Strength Test for Orodispersible and Buccal Films. Int. J. Pharm. 2014;461:22–29. doi: 10.1016/j.ijpharm.2013.11.033. PubMed DOI

Gupta M.S., Kumar T.P., Gowda D.V., Rosenholm J.M. Orodispersible Films: Conception to Quality by Design. Adv. Drug Deliv. Rev. 2021;178:113983. doi: 10.1016/j.addr.2021.113983. PubMed DOI

Rycerz K., Stepien K.A., Czapiewska M., Arafat B.T., Habashy R., Isreb A., Peak M., Alhnan M.A. Embedded 3D Printing of Novel Bespoke Soft Dosage Form Concept for Pediatrics. Pharmaceutics. 2019;11:630. doi: 10.3390/pharmaceutics11120630. PubMed DOI PMC

FDA Orally Disintegrating Tablets. [(accessed on 12 December 2022)]; Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/orally-disintegrating-tablets.

European Pharmacopoeia 10.8. [(accessed on 12 December 2022)]. Available online: https://www.edqm.eu/en/-/european-pharmacopoeia-supplement-10.8-now-available.

Liew K.B., Tan Y.T.F., Peh K.K. Effect of polymer, plasticizer and filler on orally disintegrating film. Drug Dev. Ind. Pharm. 2014;40:110–119. doi: 10.3109/03639045.2012.749889. PubMed DOI

Buanz A.B.M., Saunders M.H., Basit A.W., Gaisford S. Preparation of Personalized-Dose Salbutamol Sulphate Oral Films with Thermal Ink-Jet Printing. Pharm. Res. 2011;28:2386–2392. doi: 10.1007/s11095-011-0450-5. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...