Development of 3D Printed Multi-Layered Orodispersible Films with Porous Structure Applicable as a Substrate for Inkjet Printing
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MUNI/A/1151/2021
Masaryk University
PubMed
36840036
PubMed Central
PMC9961792
DOI
10.3390/pharmaceutics15020714
PII: pharmaceutics15020714
Knihovny.cz E-zdroje
- Klíčová slova
- 3D print, fast dissolving films, individualized therapy, inkjet print, oral films, porous films,
- Publikační typ
- časopisecké články MeSH
The direct tailoring of the size, composition, or number of layers belongs to the advantages of 3D printing employment in producing orodispersible films (ODFs) compared to the frequently utilized solvent casting method. This study aimed to produce porous ODFs as a substrate for medicated ink deposited by a 2D printer. The innovative semi-solid extrusion 3D printing method was employed to produce multilayered ODFs, where the bottom layer assures the mechanical properties. In contrast, the top layer provides a porous structure for ink entrapment. Hydroxypropyl methylcellulose and polyvinyl alcohol were utilized as film-forming polymers, glycerol as a plasticizer, and sodium starch glycolate as a disintegrant in the bottom matrix. Several porogen agents (Aeroperl® 300, Fujisil®, Syloid® 244 FP, Syloid® XDP 3050, Neusilin® S2, Neusilin® US2, and Neusilin® UFL2) acted as porosity enhancers in the two types of top layer. ODFs with satisfactory disintegration time were prepared. The correlation between the porogen content and the mechanical properties was proved. A porous ODF structure was detected in most samples and linked to the porogen content. SSE 3D printing represents a promising preparation method for the production of porous ODFs as substrates for subsequent drug deposition by 2D printing, avoiding the difficulties arising in casting or printing medicated ODFs directly.
Zobrazit více v PubMed
Planchette C., Pichler H., Wimmer-Teubenbacher M., Gruber M., Gruber-Woelfler H., Mohr S., Tetyczka C., Hsiao W.-K., Paudel A., Roblegg E., et al. Printing Medicines as Orodispersible Dosage Forms: Effect of Substrate on the Printed Micro-Structure. Int. J. Pharm. 2016;509:518–527. doi: 10.1016/j.ijpharm.2015.10.054. PubMed DOI
Knowles L., Luth W., Bubela T. Paving the road to personalized medicine: Recommendations on regulatory, intellectual property and reimbursement challenges. J. Law Biosci. 2017;4:453–506. doi: 10.1093/jlb/lsx030. PubMed DOI PMC
Cohen J.S. Ways to Minimize Adverse Drug Reactions. Postgrad. Med. 1999;106:163–172. doi: 10.3810/pgm.1999.09.688. PubMed DOI
Pritchard D.E., Moeckel F., Villa M.S., Housman L.T., McCarty C.A., McLeod H.L. Strategies for integrating personalized medicine into healthcare practice. Pers. Med. 2017;14:141–152. doi: 10.2217/pme-2016-0064. PubMed DOI
Jamróz W., Kurek M., Łyszczarz E., Szafraniec J., Knapik-Kowalczuk J., Syrek K., Paluch M., Jachowicz R. 3D Printed Orodispersible Films with Aripiprazole. Int. J. Pharm. 2017;533:413–420. doi: 10.1016/j.ijpharm.2017.05.052. PubMed DOI
Sjöholm E., Sandler N. Additive Manufacturing of Personalized Orodispersible Warfarin Films. Int. J. Pharm. 2019;564:117–123. doi: 10.1016/j.ijpharm.2019.04.018. PubMed DOI
Roden D.F., Altman K.W. Causes of Dysphagia Among Different Age Groups: A Systematic Review of the Literature. Otolaryngol. Clin. N. Am. 2013;46:965–987. doi: 10.1016/j.otc.2013.08.008. PubMed DOI
Breitkreutz J., Boos J. Paediatric and Geriatric Drug Delivery. Expert Opin. Drug Deliv. 2007;4:37–45. doi: 10.1517/17425247.4.1.37. PubMed DOI
Preis M., Pein M., Breitkreutz J. Development of a Taste-Masked Orodispersible Film Containing Dimenhydrinate. Pharmaceutics. 2012;4:551–562. doi: 10.3390/pharmaceutics4040551. PubMed DOI PMC
Panraksa P., Tipduangta P., Jantanasakulwong K., Jantrawut P. Formulation of Orally Disintegrating Films as an Amorphous Solid Solution of a Poorly Water-Soluble Drug. Membranes. 2020;10:376. doi: 10.3390/membranes10120376. PubMed DOI PMC
Takeuchi Y., Nishimatsu T., Tahara K., Takeuchi H. Novel Use of Insoluble Particles as Disintegration Enhancers for Orally Disintegrating Films. J. Drug Deliv. Sci. Technol. 2019;54:101310. doi: 10.1016/j.jddst.2019.101310. DOI
Cilurzo F., Musazzi U.M., Franzé S., Selmin F., Minghetti P. Orodispersible dosage forms: Biopharmaceutical improvements and regulatory requirements. Drug Discov. Today. 2018;23:251–259. doi: 10.1016/j.drudis.2017.10.003. PubMed DOI
Slavkova M., Breitkreutz J. Orodispersible drug formulations for children and elderly. Eur. J. Pharm. Sci. 2015;75:2–9. doi: 10.1016/j.ejps.2015.02.015. PubMed DOI
Genina N., Janßen E.M., Breitenbach A., Breitkreutz J., Sandler N. Evaluation of Different Substrates for Inkjet Printing of Rasagiline Mesylate. Eur. J. Pharm. Biopharm. 2013;85:1075–1083. doi: 10.1016/j.ejpb.2013.03.017. PubMed DOI
Hoffmann E.M., Breitenbach A., Breitkreutz J. Advances in Orodispersible Films for Drug Delivery. Expert Opin. Drug Deliv. 2011;8:299–316. doi: 10.1517/17425247.2011.553217. PubMed DOI
Dixit R.P., Puthli S.P. Oral Strip Technology: Overview and Future Potential. J. Control. Release. 2009;139:94–107. doi: 10.1016/j.jconrel.2009.06.014. PubMed DOI
Janßen E.M., Schliephacke R., Breitenbach A., Breitkreutz J. Drug-Printing by Flexographic Printing Technology—A New Manufacturing Process for Orodispersible Films. Int. J. Pharm. 2013;441:818–825. doi: 10.1016/j.ijpharm.2012.12.023. PubMed DOI
Seoane-Viaño I., Januskaite P., Alvarez-Lorenzo C., Basit A.W., Goyanes A. Semi-solid extrusion 3D printing in drug delivery and biomedicine: Personalised solutions for healthcare challenges. J Control. Release. 2021;332:367–389. doi: 10.1016/j.jconrel.2021.02.027. PubMed DOI
Iftimi L.-D., Edinger M., Bar-Shalom D., Rantanen J., Genina N. Edible Solid Foams as Porous Substrates for Inkjet-Printable Pharmaceuticals. Eur. J. Pharm. Biopharm. 2019;136:38–47. doi: 10.1016/j.ejpb.2019.01.004. PubMed DOI
Edinger M., Bar-Shalom D., Sandler N., Rantanen J., Genina N. QR Encoded Smart Oral Dosage Forms by Inkjet Printing. Int. J. Pharm. 2018;536:138–145. doi: 10.1016/j.ijpharm.2017.11.052. PubMed DOI
Borges A.F., Silva C., Coelho J.F.J., Simões S. Oral Films: Current Status and Future Perspectives: I—Galenical Development and Quality Attributes. J. Control. Release. 2015;206:1–19. doi: 10.1016/j.jconrel.2015.03.006. PubMed DOI
Alomari M., Mohamed F.H., Basit A.W., Gaisford S. Personalised Dosing: Printing a Dose of One’s Own Medicine. Int. J. Pharm. 2015;494:568–577. doi: 10.1016/j.ijpharm.2014.12.006. PubMed DOI
Raijada D., Genina N., Fors D., Wisaeus E., Peltonen J., Rantanen J., Sandler N. A Step Toward Development of Printable Dosage Forms for Poorly Soluble Drugs. J. Pharm. Sci. 2013;102:3694–3704. doi: 10.1002/jps.23678. PubMed DOI
Vraníková B., Niederquell A., Šklubalová Z., Kuentz M. Relevance of the Theoretical Critical Pore Radius in Mesoporous Silica for Fast Crystallizing Drugs. Int. J. Pharm. 2020;591:120019. doi: 10.1016/j.ijpharm.2020.120019. PubMed DOI
Takeuchi H., Yamakawa R., Nishimatsu T., Takeuchi Y., Hayakawa K., Maruyama N. Design of Rapidly Disintegrating Drug Delivery Films for Oral Doses with Hydoxypropyl Methylcellulose. J. Drug Deliv. Sci. Technol. 2013;23:471–475. doi: 10.1016/S1773-2247(13)50068-2. DOI
Elbl J., Gajdziok J., Kolarczyk J. 3D Printing of Multilayered Orodispersible Films with In-Process Drying. Int. J. Pharm. 2020;575:118883. doi: 10.1016/j.ijpharm.2019.118883. PubMed DOI
Janigová N., Elbl J., Pavloková S., Gajdziok J. Effects of Various Drying Times on the Properties of 3D Printed Orodispersible Films. Pharmaceutics. 2022;14:250. doi: 10.3390/pharmaceutics14020250. PubMed DOI PMC
Preis M., Gronkowsky D., Grytzan D., Breitkreutz J. Comparative study on novel test systems to determine disintegration time of orodispersible films. J. Pharm. Pharmacol. 2014;66:1102–1111. doi: 10.1111/jphp.12246. PubMed DOI
Preis M., Knop K., Breitkreutz J. Mechanical Strength Test for Orodispersible and Buccal Films. Int. J. Pharm. 2014;461:22–29. doi: 10.1016/j.ijpharm.2013.11.033. PubMed DOI
Gupta M.S., Kumar T.P., Gowda D.V., Rosenholm J.M. Orodispersible Films: Conception to Quality by Design. Adv. Drug Deliv. Rev. 2021;178:113983. doi: 10.1016/j.addr.2021.113983. PubMed DOI
Rycerz K., Stepien K.A., Czapiewska M., Arafat B.T., Habashy R., Isreb A., Peak M., Alhnan M.A. Embedded 3D Printing of Novel Bespoke Soft Dosage Form Concept for Pediatrics. Pharmaceutics. 2019;11:630. doi: 10.3390/pharmaceutics11120630. PubMed DOI PMC
FDA Orally Disintegrating Tablets. [(accessed on 12 December 2022)]; Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/orally-disintegrating-tablets.
European Pharmacopoeia 10.8. [(accessed on 12 December 2022)]. Available online: https://www.edqm.eu/en/-/european-pharmacopoeia-supplement-10.8-now-available.
Liew K.B., Tan Y.T.F., Peh K.K. Effect of polymer, plasticizer and filler on orally disintegrating film. Drug Dev. Ind. Pharm. 2014;40:110–119. doi: 10.3109/03639045.2012.749889. PubMed DOI
Buanz A.B.M., Saunders M.H., Basit A.W., Gaisford S. Preparation of Personalized-Dose Salbutamol Sulphate Oral Films with Thermal Ink-Jet Printing. Pharm. Res. 2011;28:2386–2392. doi: 10.1007/s11095-011-0450-5. PubMed DOI