Resource Allocation in Spectrum Access System Using Multi-Objective Optimization Methods
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2/KE/2021
University of Žilina
PubMed
35214219
PubMed Central
PMC8878853
DOI
10.3390/s22041318
PII: s22041318
Knihovny.cz E-zdroje
- Klíčová slova
- 5G, CBRS, SAS, channel assignment, linear assignment problems, multiobjective, optimization,
- Publikační typ
- časopisecké články MeSH
The paradigm of dynamic shared access aims to provide flexible spectrum usage. Recently, Federal Communications Commission (FCC) has proposed a new dynamic spectrum management framework for the sharing of a 3.5 GHz (3550-3700 MHz) federal band, called a citizen broadband radio service (CBRS) band, which is governed by spectrum access system (SAS). It is the responsibility of SAS to manage the set of CBRS-SAS users. The set of users are classified in three tiers: incumbent access (IA) users, primary access license (PAL) users and the general authorized access (GAA) users. In this article, dynamic channel assignment algorithm for PAL and GAA users is designed with the goal of maximizing the transmission rate and minimizing the total cost of GAA users accessing PAL reserved channels. We proposed a new mathematical model based on multi-objective optimization for the selection of PAL operators and idle PAL reserved channels allocation to GAA users considering the diversity of PAL reserved channels' attributes and the diversification of GAA users' business needs. The proposed model is estimated and validated on various performance metrics through extensive simulations and compared with existing algorithms such as Hungarian algorithm, auction algorithm and Gale-Shapley algorithm. The proposed model results indicate that overall transmission rate, net cost and data-rate per unit cost remain the same in comparison to the classical Hungarian method and auction algorithm. However, the improved model solves the resource allocation problem approximately up to four times faster with better load management, which validates the efficiency of our model.
Department of Computer Science Muslim Youth University Islamabad 45710 Pakistan
Department of Electrical and Computer Engineering COMSATS University Islamabad 45550 Pakistan
Zobrazit více v PubMed
Hong X., Wang J., Wang C., Shi J. Cognitive radio in 5G: A perspective on energy-spectral efficiency trade-off. IEEE Commun. Mag. 2014;52:46–53. doi: 10.1109/MCOM.2014.6852082. DOI
FCC . President’s Council of Advisors on Science and Technology; Washington, DC, USA: 2012. [(accessed on 6 September 2021)]. Realizing the Full Potential of Government-Held Spectrum to Spur Economic Growth. Available online: https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/pcast_spectrum_report_final_july_20_2012.pdf.
FCC . FCC; Washington, DC, USA: 2015. [(accessed on 8 September 2021)]. Amendment of the Commissions Rules with Regard to Commercial Operations in the 3550–3650 MHz Band; Report and Order and Second Further Notice of Proposed Rulemaking. Doc. No. 12–354. Available online: https://www.federalregister.gov/documents/2015/06/23/2015-14494/shared-commercial-operations-in-the-3550-3650-mhz-band.
Wireless Innovation Forum Spectrum Sharing Committee (SSC) CBRS–WINNFORUM; Washington, DC, USA: 2016. [(accessed on 6 July 2021)]. SAS to CBSD Protocol Technical Report-B. Doc. WINNF-15-P-0062, Ver. V1.0.0. Available online: https://cbrs.wirelessinnovation.org/reports-and-recommendations.
CBRS Alliance . Vol. 1. CBRS Alliance; CA, USA: 2018. [(accessed on 12 August 2021)]. CBRS Network Service Technical Specifications. CBRSA-TS-1002. Available online: https://ongoalliance.org/cbrsa-ts-1002-v1-0-0/
Sohul M.M., Yao M., Yang T., Reed J.H. Spectrum access system for the citizen broadband radio service. IEEE Commun. Mag. 2015;53:18–25. doi: 10.1109/MCOM.2015.7158261. DOI
Tonnemacher M., Tarver C., Chandrasekhar V., Chen H., Huang P., Ng B.L., Zhang J.C., Cavallaro J.R., Camp J. Opportunistic Channel Access Using Reinforcement Learning in Tiered CBRS Networks; Proceedings of the 2018 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN); Seoul, Korea. 22–25 October 2018; pp. 1–10. DOI
Ying X., Buddhikot M.M., Roy S. SAS-Assisted Coexistence-Aware Dynamic Channel Assignment in CBRS Band. IEEE Trans. Wirel. Commun. 2018;17:6307–6320. doi: 10.1109/TWC.2018.2858261. DOI
The Office of the Federal Register (OFR) and the Government Publishing Office OFR: Electronic Code of Federal Regulations, Title 47: Telecommunication, Part 96—Citizens Broadband Radio Service. [(accessed on 6 July 2021)]; Available online: http://www.ecfr.gov/cgi-bin/textidx?node=pt47.5.96&rgn=div5.
FCC Promoting Investment in the 3550–3700 MHz Band, Report and Order Notice of Proposed Rule Making. [(accessed on 6 July 2021)];2018 October 24; Doc.No. FCC18-149. Available online: https://docs.fcc.gov/public/attachments/FCC-18-149A1_Rcd.pdf.
CBRS Alliance . CBRS Alliance; CA, USA: Mar 16, 2021. [(accessed on 6 July 2021)]. CBRS Network Services Use Cases and Requirements. CBRSA-TS-1001 V4. 0.0. Available online: https://ongoalliance.org/wp-content/uploads/2021/06/OnGo-TS-1001-V4.0.0_Published-March-16-2021.pdf.
Kwon H.J., Jeon J., Bhorkar A., Ye Q., Harada H., Jiang Y., Liu L., Nagata S., Ng B.L., Novlan T., et al. Licensed-Assisted Access to Unlicensed Spectrum in LTE Release 13. IEEE Commun. Mag. 2017;55:201–207. doi: 10.1109/MCOM.2016.1500698CM. DOI
Bhattarai S., Park J.J., Gao B., Bian K., Lehr W. An Overview of Dynamic Spectrum Sharing: Ongoing Initiatives, Challenges, and a Roadmap for Future Research. IEEE Trans. Cogn. Commun. Netw. 2016;2:110–128. doi: 10.1109/TCCN.2016.2592921. DOI
Sahoo A. Fair resource allocation in the citizens broadband radio service band; Proceedings of the 2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN); Baltimore, MD, USA. 6–9 March 2017; pp. 1–2. DOI
Masonta M.T., Mzyece M., Ntlatlapa N. Spectrum Decision in Cognitive Radio Networks: A Survey. IEEE Commun. Surv. Tutor. 2013;15:1088–1107. doi: 10.1109/SURV.2012.111412.00160. DOI
Tragos E.Z., Zeadally S., Fragkiadakis A.G., Siris V.A. Spectrum Assignment in Cognitive Radio Networks: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2013;15:1108–1135. doi: 10.1109/SURV.2012.121112.00047. DOI
Ahmed E., Gani A., Abolfazli S., Yao L.J., Khan S.U. Channel Assignment Algorithms in Cognitive Radio Networks: Taxonomy, Open Issues, and Challenges. IEEE Commun. Surv. Tutor. 2016;18:795–823. doi: 10.1109/COMST.2014.2363082. DOI
Tehrani R.H., Vahid S., Triantafyllopoulou D., Lee H., Moessner K. Licensed Spectrum Sharing Schemes for Mobile Operators: A Survey and Outlook. IEEE Commun. Surv. Tutor. 2016;18:2591–2623. doi: 10.1109/COMST.2016.2583499. DOI
Alimi I.A., Patel R.K., Muga N.J., Pinto A.N., Teixeira A.L., Monteiro P.P. Towards Enhanced Mobile Broadband Communications: A Tutorial on Enabling Technologies, Design Considerations, and Prospects of 5G and beyond Fixed Wireless Access Networks. Appl. Sci. 2021;11:427. doi: 10.3390/app112110427. DOI
Manosha K.S., Joshi S., Hänninen T., Jokinen M., Pirinen P., Posti H., Horneman K., Yrjölä S., Latva-aho M. A channel allocation algorithm for Citizens Broadband Radio Service/Spectrum Access System; Proceedings of the 2017 European Conference on Networks and Communications (EuCNC); Oulu, Finland. 12–15 June 2017; pp. 1–6. DOI
Operations for Citizens Broadband Radio Service (CBRS) CBRS; Washington, DC, USA: Apr, 2019. [(accessed on 12 August 2021)]. GAA Spectrum Coordination-Approach 1 Technical Report, Version V1.0.0. Document WINNF-TR-2003. Available online: https://cbrs.wirelessinnovation.org/reports-and-recommendations-WINNF-TR-2003.
Operations for Citizens Broadband Radio Service (CBRS) CBRS; Washington, DC, USA: May, 2019. [(accessed on 12 August 2021)]. GAA Spectrum Coordination-Approach 2, Version 1.0.0. Document WINNF-TR-2004. Available online: https://cbrs.wirelessinnovation.org/reports-and-recommendations-WINNF-TR-2004.
Operations for Citizens Broadband Radio Service (CBRS) CBRS; Washington, DC, USA: May, 2019. [(accessed on 12 August 2021)]. GAA Spectrum Coordination (GSC) Technical Report-Approach 3, Version 1.0.0. Document WINNF-TR-3; WINNF-TR-2005. Available online: https://cbrs.wirelessinnovation.org/reports-and-recommendations(WINNF-TR-2005) Document WINNF-TR-3; WINNF-TR-2005.
Kułacz Ł., Kryszkiewicz P., Kliks A., Bogucka H., Ojaniemi J., Paavola J., Kalliovaara J., Kokkinen H. Coordinated Spectrum Allocation and Coexistence Management in CBRS-SAS Wireless Networks. IEEE Access. 2019;7:139294–139316. doi: 10.1109/ACCESS.2019.2940448. DOI
Youssef Z., Majeed E., Mueck M.D., Karls I., Drewes C., Bruck G., Jung P. Concept Design of Medium Access Control for Spectrum Access Systems in 3.5 GHz; Proceedings of the 2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET); Chennai, India. 22–24 March 2018; pp. 1–8. DOI
Ying X., Buddhikot M.M., Roy S. Coexistence-aware dynamic channel allocation for 3.5 GHz shared spectrum systems; Proceedings of the 2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN); Baltimore, MD, USA. 6–9 March 2017; pp. 1–2. DOI
Belikaidis I., Georgakopoulos A., Kosmatos E., Frascolla V., Demestichas P. Management of 3.5-GHz Spectrum in 5G Dense Networks: A Hierarchical Radio Resource Management Scheme. IEEE Veh. Technol. Mag. 2018;13:57–64. doi: 10.1109/MVT.2018.2814340. DOI
Krishnan N.N., Mandayam N., Seskar I., Kompella S. Experiment: Investigating Feasibility of Coexistence of LTE-U with a Rotating Radar in CBRS Bands; Proceedings of the 2018 IEEE 5G World Forum (5GWF); Santa Clara, CA, USA. 9–11 July 2018; pp. 65–70. DOI
Kliks A., Kryszkiewicz P., Kułacz Ł., Kowalik K., Kołodziejski M., Kokkinen H., Ojaniemi J., Kivinen A. Application of the CBRS model for wireless systems coexistence in 3.6–3.8 GHz band; Proceedings of the International Conference on Cognitive Radio Oriented Wireless Networks, CROWNCOM 2017; Lisbon, Portugal. 20–21 September 2017.
Caromi R., Souryal M., Yang W. Detection of Incumbent Radar in the 3.5 GHZ CBRS Band; Proceedings of the 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP); Anaheim, CA, USA. 26–29 November 2018; pp. 241–245. DOI
Lagunas E., Sharma S.K., Maleki S., Chatzinotas S., Ottersten B. Resource Allocation for Cognitive Satellite Communications with Incumbent Terrestrial Networks. IEEE Trans. Cogn. Commun. Netw. 2015;1:305–317. doi: 10.1109/TCCN.2015.2503286. DOI
Xiao Y., Shi S., Lou W., Wang C., Li X., Zhang N., Hou Y.T., Reed J.H. Decentralized Spectrum Access System: Vision, Challenges, and a Blockchain Solution. IEEE Wirel. Commun. 2022:1–9. doi: 10.1109/MWC.101.2100354. DOI
Grissa M., Yavuz A.A., Hamdaoui B., Tirupathi C. Anonymous Dynamic Spectrum Access and Sharing Mechanisms for the CBRS Band. IEEE Access. 2021;9:33860–33879. doi: 10.1109/ACCESS.2021.3061706. DOI
Biswas S., Bishnu A., Khan F.A., Ratnarajah T. In-Band Full-Duplex Dynamic Spectrum Sharing in Beyond 5G Networks. IEEE Commun. Mag. 2021;59:54–60. doi: 10.1109/MCOM.001.2000929. DOI
Sarkar S., Buddhikot M., Baset A., Kasera S.K. DeepRadar: A deep-learning-based environmental sensing capability sensor design for CBRS; Proceedings of the 27th Annual International Conference on Mobile Computing and Networking 2021; New Orleans, LA, USA. 25–29 October 2021; pp. 56–68. DOI
Dong X., Cheng L., Zheng G., Wang T. Network access and spectrum allocation in next-generation multi-heterogeneous networks. Int. J. Distrib. Sens. Netw. 2019;15:1550147719866140. doi: 10.1177/1550147719866140. DOI
Sharma G., Shroff N.B., Mazumdar R.R. Maximum weighted matching with interference constraints; Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOMW’06); Pisa, Italy. 13–17 March 2006; p. 5. DOI
Salameh H.A.B. Throughput-oriented channel assignment for opportunistic spectrum access networks. Math. Comput. Model. 2011;53:2108–2118. doi: 10.1016/j.mcm.2010.06.044. DOI
Kuhn H.W. The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 1955;2:83–97. doi: 10.1002/nav.3800020109. DOI
McVitie D.G., Wilson L.B. The stable marriage problem. Commun. ACM. 1971;14:486–490. doi: 10.1145/362619.362631. DOI
Bertsekas D.P. The auction algorithm for assignment and other network flow problems: A tutorial. Interfaces. 1990;20:133–149. doi: 10.1287/inte.20.4.133. DOI
Goldsmith A. Wireless Communications. Cambridge University Press; Cambridge, UK: 2005.