Spherical Robots for Special Purposes: A Review on Current Possibilities
Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
APVV-17-0014
APVV-17-0014 Smart tunnel: "Telematic support in case of emergencies in the road tunnel
VEGA 1/0241/22
VEGA 1/0241/22 Mobile robotic systems for support during crisis situations.
PubMed
35214320
PubMed Central
PMC8879192
DOI
10.3390/s22041413
PII: s22041413
Knihovny.cz E-resources
- Keywords
- LiDAR, cameras, gas sensors, inertial sensors, mobile robot, special applications, spherical robot, temperature sensors, tunnel applications,
- MeSH
- Robotics * MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
The review discusses the possibilities of different driving mechanisms and sensors of spherical robots, and a special kind of mobile robots is introduced and discussed. The sensors discussed can expand robots' sensing capabilities which are typically very limited. Most spherical robots have holonomic characteristics and protect the inner environment using a shell. Today, there are a diversity of driving mechanisms. Therefore, this article provides a review of all of them and identifies their basic properties. Accordingly, many spherical robots have only inner sensors for moving, balancing, driving, etc. However, a few of them are also equipped with sensors that can measure environmental properties. Therefore, in this paper, we propose the possibility of using such sensors as cameras, LiDARs, thermocouples, and gas sensors, which can be used for special purposes underground, for example, in mines, underground tunnels, or road tunnels. After combining all components are combined, it is possible to design a special type of spherical robot designed for underground exploration, such as accidents in mines or road tunnels.
See more in PubMed
Bujňák M., Pirník R., Nemec D., Hruboš M. Universal firefighter sensor for dangerous road tunnel environment. Transp. Res. Procedia. 2021;55:1019–1025. doi: 10.1016/j.trpro.2021.07.073. DOI
Chase R., Pandya A. A Review of Active Mechanical Driving Principles of Spherical Robots. Robotics. 2012;1:3–23. doi: 10.3390/robotics1010003. DOI
Borrmann D., Nüchter A., Bredenbeck A., Zevering J., Arzberger F., Reyes Mantilla C.A., Rossi A.P., Maurelli F., Unnithan V., Dreger H., et al. Lunar Caves Exploration with the DAEDALUS Spherical Robot; Proceedings of the 52nd Lunar and Planetary Science Conference 2021; Virtually. 15–19 March 2021; [(accessed on 26 September 2021)]. Available online: https://www.hou.usra.edu/meetings/lpsc2021/pdf/2073.pdf.
Southard L., Hoeg T.M., Palmer D.W., Antol J., Kolacinski R.M., Quinn R.D. Exploring Mars Using a Group of Tumbleweed Rovers; Proceedings of the 2007 IEEE International Conference on Robotics and Automation; Rome, Italy. 10–14 April 2007; pp. 775–780. DOI
Liang G., Luo H., Li M., Qian H., Lam T.L. FreeBOT: A Freeform Modular Self-reconfigurable Robot with Arbitrary Connection Point—Design and Implementation; Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); Las Vegas, NV, USA. 24 October–24 January 2020; pp. 6506–6513. DOI
Abad A.C., Sarmiento A.P.M., Danseco J.A.P., Leon J.S.D., Otani J.P., Aguilar P.S.B. Spherical Mobile Robots as Wireless Sensor Nodes for Ambient Temperature and Relative Humidity Monitoring; Proceedings of the 2017 International Conference on Advanced Computing and Applications (ACOMP); Ho Chi Minh City, Vietnam. 29 November–1 December 2017; pp. 88–92. DOI
Zhang M., Chai B., Cheng L., Sun Z., Yao G., Zhou L. Multi-Movement Spherical Robot Design and Implementation; Proceedings of the 2018 IEEE International Conference on Mechatronics and Automation (ICMA); Changchun, China. 5–8 August 2018; pp. 1464–1468. DOI
Yao Y., Deng Z., Zhang X., Lv C. Design and Implementation of a Quadrotor-Based Spherical Robot; Proceedings of the 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC); Chongqing, China. 12–14 March 2021; pp. 2430–2434. DOI
Dudley C.J., Woods A.C., Leang K.K. A micro spherical rolling and flying robot; Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); Hamburg, Germany. 28 September–2 October 2015; pp. 5863–5869. DOI
Lu P., Xu K., Ding X., Jiang S., Tang Z., Wang Y. Design and Analysis of a Flying-crawling Spherical Robot for Multi-mode Movement; Proceedings of the 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO); Dali, China. 6–8 December 2019; pp. 2855–2860. DOI
Geng L., Lin Y., Hu Z., Wang C., Meng L., Li D. A new concept spherical underwater robot propelled by thrust vector synthetic jet actuator; Proceedings of the OCEANS 2016; Shanghai, China. 10–13 April 2016; pp. 1–4. DOI
Bi L., Guo J., Guo S., Zhong Z. Kinematic analysis on land of an amphibious spherical robot system; Proceedings of the 2015 IEEE International Conference on Mechatronics and Automation (ICMA); Beijing, China. 2–5 August 2015; pp. 2082–2087. DOI
Xing H., Guo S., Shi L., Hou X., Liu Y., Liu H., Hu Y., Xia D., Li Z. A Novel Small-scale Turtle-inspired Amphibious Spherical Robot; Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); Macau, China. 3–8 November 2019; pp. 1702–1707. DOI
Prasad B., Agrawal A., Viswanathan V., Chowdhury A.R., Kumar R., Panda S.K. A visually guided spherical underwater robot; Proceedings of the 2015 IEEE Underwater Technology (UT); Chennai, India. 23–25 February 2015; pp. 1–6. DOI
Singh A., Paigwar A., Manchukanti S.T., Saroya M., Chiddarwar S. Design and motion analysis of Compliant Omnidirectional Spherical Modular Snake Robot (COSMOS); Proceedings of the 2018 International Conference on Reconfigurable Mechanisms and Robots (ReMAR); Delft, The Netherlands. 20–22 June 2018; pp. 1–10. DOI
Kim D., Kim J., Kim D. Development of an omni-directional mobile base utilizing spherical robots as wheels; Proceedings of the 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI); Jeju, Korea. 28 June–1 July 2017; pp. 370–371. DOI
Seeman M., Broxvall M., Saffiotti A., Wide P. An Autonomous Spherical Robot for Security Tasks; Proceedings of the 2006 IEEE International Conference on Computational Intelligence for Homeland Security and Personal Safety; Alexandria, VA, USA. 16–17 October 2006; pp. 51–55. DOI
Jose J.A.C., Basco J.V., Jolo J.K., Yambao P.K., Cabatuan M.K., Bandala A.A., Ching P.M.L., Dadios E.P. Spherical Mobile Robot for Monitoring and Tracking Children Indoors; Proceedings of the 2019 4th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS); Nagoya, Japan. 13–15 July 2019; pp. 159–163. DOI
Ping Y., Hanxu S., Zhongjiang Q., Jiazhen C. Design and motion control of a spherical robot with stereovision; Proceedings of the 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA); Hefei, China. 5–7 June 2016; pp. 1276–1282. DOI
Potapov E.V., Ipatov A.A., Priorov A.L., Romanov A.A. Developing Spherical Mobile Devices for Indoor Exploration; Proceedings of the 2020 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO); Svetlogorsk, Russia. 1–3 July 2020; pp. 1–4. DOI
Lin K., Liao Y., Guan Y., Yang Y. Design and control of a miniature rolling robot for entertainment; Proceedings of the 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO); Qingdao, China. 3–7 December 2016; pp. 1826–1831. DOI
Xie S., Chen J., Luo J., Li H., Yao J., Gu J. Dynamic analysis and control system of spherical robot for polar region scientific research; Proceedings of the 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO); Shenzhen, China. 12–14 December 2013; pp. 2540–2545. DOI
Culebro J., Aguirre J.L., Muñoz S. Lagrangian model, simulation and control of a spherical robot; Proceedings of the 2013 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE); Mexico City, Mexico. 30 September–4 October 2013; pp. 1–6. DOI
Niu X., Suherlan A.P., Soh G.S., Foong S., Wood K., Otto K. Mechanical development and control of a miniature nonholonomic spherical rolling robot; Proceedings of the 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV); Singapore. 10–12 December 2014; pp. 1923–1928. DOI
Mamaev I.S., Vetchanin E.V. Dynamics of a spherical robot with periodically changing moments of inertia; Proceedings of the 2020 International Conference Nonlinearity, Information and Robotics (NIR); Innopolis, Russia. 3–6 December 2020; pp. 1–5. DOI
Urakubo T., Monno M., Maekawa S., Tamaki H. Dynamic Modeling and Controller Design for a Spherical Rolling Robot Equipped With a Gyro. IEEE Trans. Control. Syst. Technol. 2016;24:1669–1679. doi: 10.1109/TCST.2015.2508008. DOI
Armour R.H., Vincent J.F.V. Rolling in nature and robotics: A review. J. Bionic Eng. 2006;3:195–208. doi: 10.1016/S1672-6529(07)60003-1. DOI
Nemec D., Janota A., Hruboš M. Šimák, V. Intelligent Real-Time MEMS Sensor Fusion and Calibration. IEEE Sens. J. 2016;16:7150–7160. doi: 10.1109/JSEN.2016.2597292. DOI
Halme A., Schonberg T., Wang Y. Motion control of a spherical mobile robot; Proceedings of the 4th IEEE International Workshop on Advanced Motion Control—AMC’96—MIE; Mie, Japan. 18–21 March 1996; pp. 259–264. DOI
Mizumura Y., Ishibashi K., Yamada S., Takanishi A., Ishii H. Mechanical design of a jumping and rolling spherical robot for children with developmental disorders; Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO); Macau, Macao. 5–8 December 2017; pp. 1062–1067. DOI
Zhan Q., Cai Y., Yan C. Design, Analysis and Experiments of an Omni-Directional Spherical Robot; Proceedings of the 2011 IEEE International Conference on Robotics and Automation (ICRA); Shanghai, China. 9–13 May 2011 2011; pp. 4921–4926. DOI
Bicchi A., Balluchi A., Prattichizzo D., Gorelli A. Introducing the “SPHERICLE”: An experimental testbed for research and teaching in nonholonomy; Proceedings of the International Conference on Robotics and Automation; Albuquerque, NM, USA. 25–25 April 1997; pp. 2620–2625. DOI
Ghariblu H., Mohammadi H. Structure and dynamic modelling of a spherical robot; Proceedings of the 2012 8th International Symposium on Mechatronics and its Applications; Sharjah, United Arab Emirates. 10–12 April 2012; pp. 1–5. DOI
Alves J., Dias J. Design and control of a spherical mobile robot. J. Syst. Control Eng. 2003;217:457–467. doi: 10.1177/095965180321700602. DOI
Chen W.-H., Chen C.-P., Tsai J.-S., Yang J., Lin P.-C. Design and implementation of a ball-driven omnidirectional spherical robot. Mech. Mach. Theory. 2013;68:35–48. doi: 10.1016/j.mechmachtheory.2013.04.012. DOI
Ivanov A.P. On the control of a robot ball using two omniwheels. Regul. Chaot. Dyn. 2015;20:441–448. doi: 10.1134/S1560354715040036. DOI
Chen W., Chen C., Yu W., Lin C., Lin P. Design and implementation of an omnidirectional spherical robot Omnicron; Proceedings of the 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM); Kaohsiung, Taiwan. 11–14 July 2012; pp. 719–724. DOI
Mukherjee R., Minor M.A., Pukrushpan J.T. Simple motion planning strategies for spherobot: A spherical mobile robot; Proceedings of the Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304); Phoenix, AZ, USA. 7–10 December 1999; pp. 2132–2137. DOI
Javadi A.H., Mojabi P. Introducing August: A novel strategy for an omnidirectional spherical rolling robot; Proceedings of the 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292); Washington, DC, USA. 11–15 May 2002; pp. 3527–3533. DOI
Javadi A.H., Mojabi P. Mojabi Introducing Glory: A novel strategy for an omnidirectional spherical rolling robot. J. Dyn. Syst. Meas. Control. 2004;126:678. doi: 10.1115/1.1789542. DOI
Zheng Y., Sun H., Jia Q., Shi C., Zhao K. An omni-directional rolling spherical robot with telescopic manipulator; Proceedings of the 2008 2nd International Symposium on Systems and Control in Aerospace and Astronautics; Shenzhen, China. 10–12 December 2008; pp. 1–6. DOI
Improve Your IAQ and Monitor CO2 (online), Onset Computer Corporation, March 2019. p. 14. [(accessed on 29 September 2021)]. Available online: www.onsetcomp.com/blog/improve-your-iaq-and-monitor-co2/
Zadeh F.K., Moallem P., Asiri S., Zadeh M.M. LQR motion control and analysis of a prototype spherical robot; Proceedings of the 2014 Second RSI/ISM International Conference on Robotics and Mechatronics (ICRoM); Tehran, Iran. 15–17 October 2014; pp. 890–895. DOI
Muraleedharan N., Cohen D.S., Isenberg D.R. Omnidirectional locomotion control of a pendulum driven spherical robot; Proceedings of the SoutheastCon 2016; Norfolk, VA, USA. 30 March–3 April 2016; pp. 1–6. DOI
Li W., Zhan Q. Kinematics-based four-state trajectory tracking control of a spherical mobile robot driven by a 2-DOF pendulum. Chin. J. Aeronaut. 2019;32:1530–1540. doi: 10.1016/j.cja.2018.09.002. DOI
Gajbhiye S., Banavar R.N. Geometric modeling and local controllability of a spherical mobile robot actuated by an internal pendulum. Int. J. Robust Nonlinear Control. 2016;26:2436–2454. doi: 10.1002/rnc.3457. DOI
Landa K., Pilat A.K. Design and start-up of spherical robot with internal pendulum; Proceedings of the 2015 10th International Workshop on Robot Motion and Control (Romoco); Poznan, Poland. 6–8 July 2015; pp. 27–32. DOI
Michaud F., Caron S. Roball, the Rolling Robot. Auton. Robot. 2002;12:211–222. doi: 10.1023/A:1014005728519. DOI
Zhao B., Wang P., Hu H., Li M., Sun L. Study on turning in place of a spherical robot based on stick-slip principle; Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO); Guilin, China. 19–23 December 2009; pp. 771–775. DOI
Zhao B., Li M., Yu H., Hu H., Sun L. Dynamics and motion control of a two pendulums driven spherical robot; Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems; Taipei, Taiwan. 18–22 October 2010; pp. 147–153. DOI
Ghanbari A., Mahboubi S., Fakhrabadi M.M.S. Design, dynamic modeling and simulation of a spherical mobile robot with a novel motion mechanism; Proceedings of the 2010 IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications; Qingdao, China. 15–17 July 2010; pp. 434–439. DOI
Yoon J., Ahn S., Lee Y. Spherical robot with new type of two-pendulum driving mechanism; Proceedings of the 2011 15th IEEE International Conference on Intelligent Engineering Systems; Poprad, Slovakia. 23–25 June 2011; pp. 275–279. DOI
Chen M., Sun W., Gao Y., Zhan S., Zhang G., Li W.J. Development of a holonomic mobile spherical robot with 3D center of gravity shifting actuators; Proceedings of the 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO); Qingdao, China. 3–7 December 2016; pp. 438–442. DOI
Asiri S., Khademianzadeh F., Monadjemi A., Moallem P. The Design and Development of a Dynamic Model of a Low-Power Consumption, Two-Pendulum Spherical Robot. IEEE/ASME Trans. Mechatron. 2019;24:2406–2415. doi: 10.1109/TMECH.2019.2934180. DOI
Ahn S.-S., Lee Y.-J. Novel Spherical Robot with Hybrid Pendulum Driving Mechanism. Adv. Mech. Eng. 2014;6 doi: 10.1155/2014/456727. DOI
DeJong B.P., Karadogan E., Yelamarthi K., Hasbany J. Design and Analysis of a Four-Pendulum Omnidirectional Spherical Robot. J. Intell. Robot. Syst. 2016;86:3–15. doi: 10.1007/s10846-016-0414-4. DOI
Bastola S., Zargarzadeh H. Super Twisting Sliding Mode Control of Spherical Robot; Proceedings of the 2019 IEEE International Symposium on Measurement and Control in Robotics (ISMCR); Houston, TX, USA. 19–21 September 2019; pp. B2-1-1–B2-1-9. DOI
Kabala M., Wnuk M. Design and construction of RoBall, a spherical, nonholonomic mobile robot. Wrocław 2004. INSTITUTE of CYBERNETYKI TECHNICZNE, WROCŁAW UNIVERSITY of TECHNOLOGY, PRE Series Report No. 48/2004. [(accessed on 2 October 2021)]. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.559.252&rep=rep1&type=pdf.
Ming Y., Zongquan D., Xinyi Y., Weizhen Y. Introducing HIT Spherical Robot: Dynamic Modeling and Analysis Based on Decoupled Subsystem; Proceedings of the 2006 IEEE International Conference on Robotics and Biomimetics; Kunming, China. 17–20 December 2006; pp. 181–186. DOI
Oumer N., Ylikorpi T. A B Development of Wireless Control System for a Spherical Robot. Master’s Thesis, Helsinki University of Technology, Department of Automation and Systems Technology, Helsinki, Finland, 2021. [(accessed on 5 October 2021)]. Available online: https://aaltodoc.aalto.fi/bitstream/handle/123456789/3054/urn100005.pdf?sequence=1.
Liu D., Sun H., Jia Q. A family of spherical mobile robot: Driving ahead motion control by feedback linearization; Proceedings of the 2008 2nd International Symposium on Systems and Control in Aerospace and Astronautics; Shenzhen, China. 10–12 December 2008; pp. 1–6. DOI
Liu D., Sun H., Jia Q., Wang L. Motion control of a spherical mobile robot by feedback linearization; Proceedings of the 2008 7th World Congress on Intelligent Control and Automation; Chongqing, China. 25–27 June 2008; pp. 965–970. DOI
Liu D., Sun H. Nonlinear sliding-mode control for motion of a spherical robot; Proceedings of the 29th Chinese Control Conference; Beijing, China. 29–31 July 2010; pp. 3244–3249.
Wang C., Mayer N.M., Lin R., Lu L. Mechanical and system design of Egg shape robot; Proceedings of the 2017 International Automatic Control Conference (CACS); Pingtung, Taiwan. 12–15 November 2017; pp. 1–5. DOI
Kim H.W., Jung S. Design and Control of a Sphere Robot Actuated by a Control Moment Gyroscope; Proceedings of the 2019 19th International Conference on Control, Automation and Systems (ICCAS); Jeju, Korea. 15–18 October 2019; pp. 1287–1290. DOI
Urakubo T., Osawa M., Tamaki H., Tada Y., Maekawa S. Development of a spherical rolling robot equipped with a gyro; Proceedings of the 2012 IEEE International Conference on Mechatronics and Automation; Chengdu, China. 5–8 August 2012; pp. 1602–1607. DOI
Bhattacharya S., Agrawal S.K. Spherical rolling robot: A design and motion planning studies. IEEE Trans. Robot. Autom. 2000;16:835–839. doi: 10.1109/70.897794. DOI
Tao Y., Hanxu S., Qingxuan J. Variable Structure Control of Pendulum-driven Spherical Mobile Robots; Proceedings of the 2010 3rd International Conference on Computer and Electrical Engineering (ICCEE 2010); Chengdu, China. 16–18 November 2010; Singapore: IACSIT Press; 2012. DOI
Joshi V., Banavar R. Motion analysis of a spherical mobile robot. Robotica. 2009;27:343–353. doi: 10.1017/S0263574708004748. DOI
Joshi V., Banavar R., Hippalgaonkar R. Design, Modeling and Controllability of a Spherical Mobile Robot; Proceedings of the 13th National Conference on Mechanisms and Machines (NaCoMM07); Bangalore, India. 12–13 December 2007.
Shu G., Zhan Q., Cai Y. Motion control of spherical robot based on conservation of angular momentum; Proceedings of the 2009 International Conference on Mechatronics and Automation; Changchun, China. 9–12 August 2009; pp. 599–604. DOI
Qingxuan J., Yili Z., Hanxu S., Hongyu C., Hongyi L. Motion control of a novel spherical robot equipped with a flywheel; Proceedings of the 2009 International Conference on Information and Automation; Zhuhai/Macau, China. 22–24 June 2009; pp. 893–898. DOI
Chen J., Ye P., Sun H., Jia Q. Design and motion control of a spherical robot with control moment gyroscope; Proceedings of the 2016 3rd International Conference on Systems and Informatics (ICSAI); Shanghai, China. 19–21 November 2016; pp. 114–120. DOI
Artusi M., Potz M., Aristizabal J., Menon C., Cocuzza S., Debei S. Electroactive Elastomeric Actuators for the Implementation of a Deformable Spherical Rover. IEEE/ASME Trans. Mechatron. 2011;16:50–57. doi: 10.1109/TMECH.2010.2090163. DOI
Wait K.W., Jackson P.J., Smoot L.S. Self locomotion of a spherical rolling robot using a novel deformable pneumatic method; Proceedings of the 2010 IEEE International Conference on Robotics and Automation; Anchorage, AK, USA. 3–7 May 2010; pp. 3757–3762. DOI
Mahboubi S., Fakhrabadi M.M.S., Ghanbari A. Design and Implementation of A Novel Hybrid Quadruped Spherical Mobile Robot. Robot. Auton. Syst. 2013;61:184–194. doi: 10.1016/j.robot.2012.09.026. DOI
Aoki T., Ito S., Sei Y. Development of quadruped walking robot with spherical shell-mechanical design for rotational locomotion; Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); Hamburg, Germany. 28 September–2 October 2015; pp. 5706–5711. DOI
Huang Z., Jia W., Sun Y., Ma S., Wang Z., Pu H., Tian Y. Design and analysis of a transformable spherical robot for multi-mode locomotion; Proceedings of the 2017 IEEE International Conference on Mechatronics and Automation (ICMA); Takamatsu, Japan. 6–9 August 2017; pp. 1469–1473. DOI
Jia W., Huang Z., Sun Y., Pu H., Ma S. Toward a novel deformable robot mechanism to transition between spherical rolling and quadruped walking; Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO); Macau, Macao. 5–8 December 2017; pp. 1539–1544. DOI
Guo S., Cao S., Guo J. Study on Collaborative Algorithm for a Spherical Multi-robot System based on Micro-blockchain; Proceedings of the 2019 IEEE International Conference on Mechatronics and Automation (ICMA); Tianjin, China. 4–7 August 2019; pp. 1465–1470. DOI
Passaro V.M.N., Cuccovillo A., Vaiani L., Carlo M., Campanella C.E. Gyroscope Technology and Applications: A Review in the Industrial Perspective. Sensors. 2017;17:2284. doi: 10.3390/s17102284. PubMed DOI PMC
aguchi K., Fukushima K., Ishitani A., Ikeda M. Proposal of a semiconductor ring laser gyroscope. Opt. Quantum Electron. 1999;31:1219–1226. doi: 10.1023/A:1006931311155. DOI
LeFevre Herve C. The Fiber-Optic Gyroscope. 2nd ed. Artech House; Boston, MA, USA: London, UK: 2014.
Yang Y., Shen T., Guo J. Fiber optic gyroscope technology and application. Infrared Laser Eng. 2007;36:626.
Acar C., Shkel A. MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2008.
Nemec D., Šimák V., Janota A., Hruboš M., Bubeníková E. Precise localization of the mobile wheeled robot using sensor fusion of odometry, visual artificial landmarks and inertial sensors. Robot. Auton. Syst. 2019;112:168–177. doi: 10.1016/j.robot.2018.11.019. DOI
Roy A.L., Bhattacharyya T.K. Design, fabrication and characterization of high performance SOI MEMS piezoresistive accelerometers. Microsyst. Technol. 2015;21:55–63. doi: 10.1007/s00542-013-1904-y. DOI
Partridge A., Reynolds J.K., Chui B.W., Chow E.M., Fitzgerald A.M., Zhang L., Maluf N.I., Kenny T.W. A high-performance planar piezoresistive accelerometer. J. Microelectromech. Syst. 2000;9:58–66. doi: 10.1109/84.825778. DOI
Han Z., Jiao P., Zhu Z. Combination of Piezoelectric and Triboelectric Devices for Robotic Self-Powered Sensors. Micromachines. 2021;12:813. doi: 10.3390/mi12070813. PubMed DOI PMC
Mukhiya R., Agarwal P., Badjatya S., Garg M., Gaikwad P., Sinha S., Singh A.K., Gopal R. Design, modelling and system level simulations of DRIE-based MEMS differential capacitive accelerometer. Microsyst. Technol. 2019;25:3521–3532. doi: 10.1007/s00542-018-04292-0. DOI
Keshavarzi M., Yavand Hasani J. Design and optimization of fully differential capacitive MEMS accelerometer based on surface micromachining. Microsyst. Technol. 2018;25:1369–1377. doi: 10.1007/s00542-018-4187-5. DOI
Choi B.J., Kim B., Jin S.M., Koo J.C., Chung W.K., Choi H.R., Moon H. Magnetic landmark-based position correction technique for mobile robots with hall sensors. Intell. Serv. Robot. 2010;3:99–113. doi: 10.1007/s11370-010-0062-7. DOI
Sokolov S.M., Trifonov O.V., Yaroshevsky V.S. Control system for spherical direct drive actuators with Hall sensors [mobile robots]; Proceedings of the 1999 IEEE/SICE/RSJ, International Conference on Multisensor Fusion and Integration for Intelligent Systems, MFI’99 (Cat. No.99TH8480); Taipei, Taiwan. 18 August 1999; pp. 183–188. DOI
Ripka P., Arafat M.M. Reference Module in Materials Science and Materials Engineering. Elsevier Reference Collection; Amsterdam, The Netherlands: 2019. Magnetic Sensors: Principles and Applications. DOI
You Z. Space Microsystems and Micro/Nano Satellites. Butterworth-Heinemann; Oxford, UK: 2018. Space Microsystems and Micro/nano Satellites, Chapter 9—Magnetometer Technology; pp. 341–360.
Ojeda L., Borenstein J. Experimental results with the KVH C-100 fluxgate compass in mobile robots; Proceedings of the IASTED International Conference on Robotics and Applications, Proceedings of the IASTED International Conference Robotics and Applications 2000; Honolulu, HI, USA. 14–16 August 2000.
Borenstein J., Everett H.R., Feng L., Wehe D. Mobile robot positioning: Sensors and techniques. J. Robot. Syst. 1997;14:231–249. doi: 10.1002/(SICI)1097-4563(199704)14:4<231::AID-ROB2>3.0.CO;2-R. DOI
Kraft A., Rupprecht C., Yam Y.-C. Superconducting Quantum Interference Device (SQUID). UBC Phys. 2017. [(accessed on 3 February 2022)]. Available online: https://phas.ubc.ca/~berciu/TEACHING/PHYS502/PROJECTS/17SQUID.pdf.
Ripka P. Magnetic Sensors and Magnetometers. 2nd ed. Artech House; Boston, MA, USA: London, UK: 2021.
Pedersen L. Robotic deployment of electromagnetic sensors for meteorite search; Proceedings of the 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146); Leuven, Belgium. 20 May 1998; pp. 618–623. DOI
Korepanov V., Pronenko V. Induction magnetometers-design peculiarities. Sens. Transducers J. 2010;120:92–106.
Coillot C., Leroy P., Kuang K. Magnetic Sensors—Principles and Applications. InTech; Vienna, Austria: 2012. Induction magnetometers principle, modeling and ways of improvement. No. 1.
Sandoval A.G., Tíjaro O.J., Moreno Y.T. Acquisition and storage of optical interference fringes by means of an embedded system; Proceedings of the 2019 XXII Symposium on Image, Signal Processing and Artificial Vision (STSIVA); Bucaramanga, Colombia. 24–26 April 2019; pp. 1–5. DOI
Xiong J., Pan Y., Hou Z., Zhang R. Research on the System of Image Acquisition and Wireless Transmission. Appl. Mech. Mater. 2014;668:1382–1385. doi: 10.4028/www.scientific.net/AMM.668-669.1382. DOI
Song W., Zhou X., Wan X., Li X. Realization Of Vision Acquisition Module Based On STM32+OV7670 For Tunnel Robot; Proceedings of the 2016 6th International Conference on Machinery; Materials, Environment, Biotechnology and Computer, Tianjin, China. 11–12 June 2016; Paris, France: Atlantis Press; 2016. pp. 1244–1247. DOI
Patel D., Parmar R., Desai A., Sheth S. Gesture recognition using FPGA and OV7670 camera; Proceedings of the 2017 International Conference on Inventive Systems and Control (ICISC); Coimbatore, India. 19–20 January 2017; pp. 1–4. DOI
Yao J., Yang D. A Procedure of Image Acquisition and Display Based on Ov7670; Proceedings of the 2015 International Conference on Applied Mechanics, Mechatronics and Intelligent Systems (AMMIS2015); Nanjing, China. 19–20 June 2015; pp. 381–384. DOI
Chen M., Mao G., Wang Y. A Wireless Image Transmission System Based on Visible Light Communication; Proceedings of the 2015 International Conference on Intelligent Systems Research and Mechatronics Engineering; Zhengzhou, China. 11–13 April 2015; Paris, France: Atlantis Press; 2015. pp. 827–830. DOI
Qi W., Wang Y., Li C., Zhang D. Video monitoring system of security based on Wi-Fi; Proceedings of the 2016 Chinese Control and Decision nce (CCDC); Yinchuan, China. 28–30 May 2016; pp. 2869–2874. DOI
Zhang Y., Xiao G., Xu J. The Wireless Image Transmission System of Capsule Endoscope Based on STM32F103; Proceedings of the 2016 2nd International Conference on Mechanical, Electronic and Information Technology Engineering (ICMITE 2016); Chongqing, China. 21–22 May 2016; pp. 297–303. DOI
Qin L., Hou Z., Wu Y., Tan F., He F. A high-speed image acquisition and processing system in photoelectric tracking; Proceedings of the SPIE 8194, International Symposium on Photoelectronic Detection and Imaging 2011: Advances in Imaging Detectors and Applications, 81942E; Beijing, China. 18 August 2011; DOI
Haro M.S., Bessia F.A., Pérez M., Blostein J.J., Balmaceda D.F., Berisso M.G., Lipovetzky J. Soft X-rays spectroscopy with a commercial CMOS image sensor at room temperature. Radiat. Phys. Chem. 2020;167:108354. doi: 10.1016/j.radphyschem.2019.108354. DOI
Géczy A., Melgar R.D.J., Bonyár A., Harsányi G. Passenger detection in cars with small form-factor IR sensors (Grid-eye); Proceedings of the 2020 IEEE 8th Electronics System-Integration Technology Conference (ESTC); Tonsberg, Norway. 15–18 September 2020; pp. 1–6. DOI
Ionescu V.M., Enescu F.M. Low cost thermal sensor array for wide area monitoring; Proceedings of the 2020 12th International Conference on Electronics, Computers and Artificial Intelligence (ECAI); Bucharest, Romania. 25–27 June 2020; pp. 1–4. DOI
Gochoo M., Tan T., Batjargal T., Seredin O., Huang S. Device-Free Non-Privacy Invasive Indoor Human Posture Recognition Using Low-Resolution Infrared Sensor-Based Wireless Sensor Networks and DCNN; Proceedings of the 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC); Miyazaki, Japan. 7–10 October 2018; pp. 2311–2316. DOI
Gu N., Yang B., Zhang T. Dynamic Fuzzy Background Removal for Indoor Human Target Perception Based on Thermopile Array Sensor. IEEE Sens. J. 2020;20:67–76. doi: 10.1109/JSEN.2019.2942320. DOI
Du P., She L., Wang Y., Chang S., Li H. Design of intelligent air cooling radiator system based on TMS320C6748; Proceedings of the 2020 39th Chinese Control Conference (CCC); Shenyang, China. 27–29 July 2020; pp. 2821–2826. DOI
He D., Zhang S., Chen L., Ying E., He L., Yang N., Zhang R., Xia M., Liu H. Research on Temperature Calculation Method of Electrical Equipment Based on IR Data Compensation; Proceedings of the 2019 5th International Conference on Environmental Science and Material Application; Guangzhou, China. 27–29 December 2019; DOI
OV9655 Color CMOS SXGA [Online Datasheet], OmniVision Technologies, Inc. Version 1.3. December 2005. [(accessed on 15 September 2021)]. Available online: www.arducam.com/downloads/modules/OV9655/ov9655_full.pdf.
OV7670/OV7171 COMS VGA (640 480) CameraChip Sensor with OmniPixel Technology [Online Datasheet], OmniVision Technologies, Inc. version 1.4. August 2006. [(accessed on 15 September 2021)]. Available online: web.mit.edu/6.111/www/f2016/tools/OV7670_2006.pdf.
OV2640 Colro CMOS UXGA (2,0 MegaPixel) CameraChip Sensor with OmniPixel Technology [Online Datasheet], OmniVision Technologies, Inc. version 1.6. February 2006. [(accessed on 16 September 2021)]. Available online: www.uctronics.com/download/cam_module/OV2640DS.pdf.
1/2-Inch Megapixel CMOS Digital Image Sensor [Online Datasheet], Micron Technology, Inc. 2004. [(accessed on 16 September 2021)]. Available online: pdf1.alldatasheet.com/datasheet-pdf/view/115168/MICRON/MT9M001.html.
Najib S.M., Idroas M., Ibrahim M.N., AbWahab N., Rahim N. New approach of optical tomography instrumentation system for particle sizing; Proceedings of the Mechanical Engineering Research Day 2018 (Merd); Tunggal, Malacca. 29–31 May 2018; pp. 132–133.
Infrared Array Sensor Grid-EYE (AMG88) [Online Datasheet], Pasasonic. Arpil 2017. [(accessed on 16 September 2021)]. Available online: cdn.sparkfun.com/assets/85 4/1/c/0/1/Grid-EYE_Datasheet.pdf.
MLX90640 32 24 IR Array [Online Datasheet], Melexis Inspired Engineering, Version 12. December 2019. [(accessed on 18 September 2021)]. Available online: www.melexis.com/-/media/files/documents/datasheets/mlx90640-datasheet-melexis.pdf.
Carbon Monoxide Attacks Unexpectedly! Protect Your Family with a CO Alarm [Online], CO Alarms, VSE a.s, (Slovak Language) [(accessed on 18 September 2021)]. Available online: www.vse.sk/web/sk/domacnosti/produkty-a-sluzby/co-alarm.
Widodo S., Amin M. Miftakhul and Supani, Ahyar and Handayani, Ade Silvia, Prototype Design of CO2, CH4 and SO2 Toxic Gas Detectors in the Room Using Microcontroller-Based Fuzzy Logic, 3rd Forum in Research, Science, and Technology (First 2019) International Conference. J. Phys. Conf. Ser. 2020;1500:012107. doi: 10.1088/1742-6596/1500/1/012107. DOI
Air Quality Gas Sensor (MQ135) [Datasheet Online], ZhengzhouWinsen Electronics Technology Co., Ltd. Version 1.4. March 2015. [(accessed on 18 September 2021)]. Available online: pdf1.alldatasheet.com/datasheet-pdf/view/1307647/WINSEN/MQ135.html.
Kelechi A.H., Alsharif M.H., Agbaetuo C., Ubadike O., Aligbe A., Uthansakul P., Kannadasan R., Aly A.A. Design of a Low-Cost Air Quality Monitoring System Using Arduino and ThingSpeak. Comput. Mater. Contin. 2022;70:151–169. doi: 10.32604/cmc.2022.019431. DOI
Ibrahim A.A. Carbon Dioxide and Carbon Monoxide Level Detector; Proceedings of the 2018 21st International Conference of Computer and Information Technology (ICCIT); Dhaka, Bangladesh. 21–23 December 2018; pp. 1–5. DOI
Bogdan M. Home Alarm System with Arduino and LabVIEW; Proceedings of the 15th International Conference on Virtual Learning (ICVL-2020); Bucharest, Romania. 31 October 31 2020; pp. 378–384.
Swain K.B., Santamanyu G., Senapati A.R. Smart industry pollution monitoring and controlling using LabVIEW based IoT; Proceedings of the 2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS); Chennai, India. 4–5 May 2017; pp. 74–78. DOI
Solid Electrolyte CO2 Gas Sensor (MG811), Zhengzhou Winsen Electronics Technology Co., Ltd. Version 1.2. March 2015. [(accessed on 19 September 2021)]. Available online: datasheetspdf.com/pdf-file/1415579/Winsen/MG811/1.
Maske V.R., Dhulap V.P. Development of Handy Prototype Gas Sensors Kit for Monitoring of Ambient Green House Gases from Solid Waste Disposal Sites of Solapur City; Proceedings of the Emerging Technologies: Micro to Nano (ETMN-2017), AIP Conference Proceedings 1989; Solapur, India. 23 July 2018; DOI
Mabunga Z., Magwili G. Greenhouse Gas Emissions and Groundwater Leachate Leakage Monitoring of Sanitary Landfill; Proceedings of the 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM); Laoag, Philippines. 29 November–1 December 2019; pp. 1–6. DOI
Géczy A., Kuglics L., Jakab L., Harsányi G. Wearable Smart Prototype for Personal Air Quality Monitoring; Proceedings of the 2020 IEEE 26th International Symposium for Design and Technology in Electronic Packaging (SIITME); Pitesti, Romania. 21–24 October 2020; pp. 84–88. DOI
Lasomsri P., Yanbuaban P., Kerdpoca O., Ouypornkochagorn T. A Development of Low-Cost Devices for Monitoring Indoor Air Quality in a Large-Scale Hospital; Proceedings of the 2018 15th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON); Chiang Rai, Thailand. 18–21 July 2018; pp. 282–285. DOI
CCS811Ultra-Low Power Digital Gas Sensor for Monitoring Indoor Air Quality [Datasheet, Online], Ams AG, Version 1.5. May 2018. [(accessed on 19 September 2021)]. Available online: pdf1.alldatasheet.com/datasheet-pdf/view/1047395/AMSCO/CCS811.html.
Wang S.K., Chew S.P., Jusoh M.T., Khairunissa A., Leong K.Y., Azid A.A. WSN Based Indoor Air Quality Monitoring In Classrooms; Proceedings of the 11th Asian Conference on Chemical Sensors (ACCS2015), AIP Conference Proceedings 1808; Penang, Malaysia. 16–18 November 2015; DOI
Zaharudin S.Z.B., Kazemi M., Malarvili M.B. Designing a respiratory CO2 measurement device for home monitoring of asthma severity; Proceedings of the 2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES); Kuala Lumpur, Malaysia. 8–10 December 2014; pp. 230–234. DOI
Evita M., Zakiyyatuddin A., Seno S., Kumalasari R., Lukado H., Djamal M. Development of a robust mobile robot for volcano monitoring application. J. Phys. Conf. Ser. 2020;1572:012016. doi: 10.1088/1742-6596/1572/1/012016. DOI
Sarjerao B.S., Prakasarao A. A Low Cost Smart Pollution Measurement System Using REST API and ESP32; Proceedings of the 2018 3rd International Conference for Convergence in Technology (I2CT); Pune, India. 6–8 April 2018; pp. 1–5. DOI
Technical Data MQ-7 Gas Sensor [Datasheet, Online], Hanwei Electronics Co., Ltd. [(accessed on 19 September 2021)]. Available online: datasheetspdf.com/pdf-file/694312/Hanwei/MQ7/1.
MQ-9 Semiconductor Sensor for CO/Combustible Gas, Hanwei Electronics Co., Ltd. [(accessed on 19 September 2021)]. Available online: www.haoyuelectronics.com/Attachment/MQ-9/MQ9.pdf.
Rane M.S., Naik A.R., Vachhani K. Real-time AQI Monitoring System: An Economical Approach Using Wireless Sensor Network; Proceedings of the 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT); Bengaluru, India. 10–12 July 2018; pp. 1–6. DOI
Ng K.M., Suhaimi M.A.H.M., Ahmad A., Razak N.A. Remote Air Quality Monitoring System by Using MyRIO-LabVIEW; Proceedings of the 2018 9th IEEE Control and System Graduate Research Colloquium (ICSGRC); Shah Alam, Malaysia. 3–4 August 2018; pp. 105–109. DOI
Firdaus R., Murti M.A., Alinursafa I. Air Quality Monitoring System Based Internet of Things (IoT) Using LPWAN LoRa; Proceedings of the 2019 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS); Bali, Indonesia. 5–7 November 2019; pp. 195–200. DOI
Kodali R.K., Sarjerao B.S. MQTT based air quality monitoring; Proceedings of the 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC); Dhaka, Bangladesh. 21–23 December 2017; pp. 742–745. DOI
Rojas-Ascate C.S., Escalaya-Angulo A., Tasayco-Abanto J., Huamaní-Navarrete P.F. Implementation of a CO concentration measurement and alert prototype applying IoT and mobile application; Proceedings of the 2019 IEEE 1st Sustainable Cities Latin America Conference (SCLA); Arequipa, Peru. 26–29 August 2019; pp. 1–6. DOI
Wonohardjo E.P., Kusuma G.P. Air Pollution Mapping using Mobile Sensor Based on Internet of Things. Procedia Comput. Sci. 2019;157:638–645. doi: 10.1016/j.procs.2019.08.224. DOI
Rathod M., Gite R., Pawar A., Singh S., Kelkar P. An air pollutant vehicle tracker system using gas sensor and GPS; Proceedings of the 2017 International Conference of Electronics, Communication and Aerospace Technology (ICECA); Coimbatore, India. 20–22 April 2017; pp. 494–498. DOI
Tao M.M. Esign of Mine Safety Detection Alarm Based on Single-chip; Proceedings of the 2014 International Conference on Automatic Control Theory and Application; Bangkok, Thailand. 17–19 June 2014; Paris, France: Atlantis Press; 2014. pp. 115–118.
Kouda S., Bendib T., Barra S., Dendouga A. ANN modeling of an industrial gas sensor behavior; Proceedings of the 2018 International Conference on Communications and Electrical Engineering (ICCEE); El Oued, Algeria. 17–18 December 2018; pp. 1–4. DOI
McGranahan D.A., Poling B.N. A Diy Thermocouple Datalogger is Suitably Comparable to a Commercial System for Wildland Fire Research. Fire Technol. 2021;57:1077–1093. doi: 10.1007/s10694-020-01032-7. DOI
McGranahan D.A. FeatherFlame: An Arduino-Based Thermocouple Datalogging System to Record Wildland Fire Flame Temperatures in Agris. Angeland Ecol. Manag. 2021;76:43–47. doi: 10.1016/j.rama.2021.01.008. DOI
Nasution T.H., Putramas A., Winto S., Fahmi, Siregar I. Proceedings of the 6th International Conference on Manufacturing, Optimization, Industrial and Material Engineering: MOIME18, AIP Conference Proceedings 2018. Volume 2044. Bandung, Indonesia; 25 March 2018: Automatic Coffee Roaster Design Using Arduino. DOI
Abidin A.S.Z., Kifli M.Z., Jamali A., Muslimen R. Development of Black Pepper Rotary Drum Dryer System. Int. J. Integr. Eng. 2021;12:11–19. doi: 10.30880/ijie.2020.12.07.002. DOI
Thedsakhulwong A., Hernmek P. Development of the low-cost hot plate temperature controller using Arduino Uno R3. J. Phys. Conf. Ser. 2018;1144:012169. doi: 10.1088/1742-6596/1144/1/012169. DOI
Gosai M., Bhavsar S.N. Experimental Study on Temperature Measurement in Turning Operation of Hardened Steel (EN36); Proceedings of the 3rd International Conference on Innovations in Automation and Mechatronics Engineering 2016, ICIAME 2016; Vallabh Vidhyanagar, India. 5–6 February 2016; pp. 311–318. DOI
Abdullah M.H., Ghani S.C., Zaulkafilai Z., Tajuddin S.N. Development open source microcontroller based temperature data logger; Proceedings of the 4th International Conference on Mechanical Engineering Research (ICMER2017); Pahang, Malaysia. 1–2 August 2017; DOI
Nabila K.T., Akter T., Hossain M., Rahman M.H., Alam R. Multi-probe Thermocouple Transducer For Simultaneous Temperature Measurement; Proceedings of the 2019 IEEE 5th International Conference for Convergence in Technology (I2CT); Bombay, India. 29–31 March 2019; pp. 1–4. DOI
Karan Y., Kahveci S. Wireless measurement of thermocouple with microcontroller; Proceedings of the 2015 23nd Signal Processing and Communications Applications Conference (SIU); Malatya, Turkey. 16–19 May 2015; pp. 120–123. DOI
Yordanov K., Zlateva P., Hadzhidimov I., Stoyanova A. Testing and clearing the high temperature module error from 0 to 1250 °C for measurement with 16 K-type thermocouples; Proceedings of the 2018 20th International Symposium on Electrical Apparatus and Technologies (SIELA); Bourgas, Bulgaria. 3–6 June 2018; pp. 1–4. DOI
Ostromecky M. Thermocouples: Function, Types, Selection and Application [Online], enDAQ. [(accessed on 19 September 2021)]. Available online: blog.endaq.com/thermocouples-function-types-selection-and-application.
Types of Thermocouple [Online], REOTEMP Instrument Corporation. [(accessed on 19 September 2021)]. Available online: www.thermocoupleinfo.com/thermocouple-types.htm.
Eitel J.U.H., Hö B., Vierling L.A., Abellán A., Asner G.P., Deems J.S., Glennie C.L., Joerg P.C., Lewinter A.L., Magney T.S., et al. Beyond 3-D: The new spectrum of lidar applications for earth and ecological sciences. Remote Sens. Environ. 2016;186:372–392. doi: 10.1016/j.rse.2016.08.018. DOI
Ebrahim M.A.-B. 3D Laser Scanners’ Techniques Overview. Int. J. Sci. Res. 2015;4:5–611.
Toth C., Jóźków G. Remote sensing platforms and sensors: A survey. ISPRS J. Photogramm. Remote Sens. 2016;115:22–36. doi: 10.1016/j.isprsjprs.2015.10.004. DOI
Colomina I., Molina P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014;92:79–97. doi: 10.1016/j.isprsjprs.2014.02.013. DOI
Nuchter A. Springer Tracts in Advanced Robotics. Vol. 52. Springer; Berlin/Heidelberg, Germany: 2009. 3D Robotic Mapping.
Yilmaz V. Automated ground filtering of LiDAR and UAS point clouds with metaheuristics. Opt. Laser Technol. 2021;138:106890. doi: 10.1016/j.optlastec.2020.106890. DOI
Baras N., Nantzios G., Ziouzios D., Dasygenis M. Autonomous Obstacle Avoidance Vehicle Using LIDAR and an Embedded System; Proceedings of the 2019 8th International Conference on Modern Circuits and Systems Technologies (MOCAST); Thessaloniki, Greece. 13–15 May 2019; pp. 1–4. DOI
Fouad A.M., Sharkawy R.M., Onsy A. Fixed Obstacle Detection for Autonomous Vehicle; Proceedings of the 2019 IEEE Conference on Power Electronics and Renewable Energy (CPERE); Aswan, Egypt. 23–25 October 2019; pp. 217–221. DOI
Singh A.K., Negi A., Azad S., Mudali S. Fuzzy Based Controller for Lidar Sensor of an Autonomous Vehicle. Energy Procedia. 2017;117:1160–1164. doi: 10.1016/j.egypro.2017.05.241. DOI
Wang Y., Goila A., Shetty R., Heydari M., Desai A., Yang H. Obstacle Avoidance Strategy and Implementation for Unmanned Ground Vehicle Using LIDAR. SAE Int. J. Commer. Veh. 2017;10:50–55. doi: 10.4271/2017-01-0118. DOI
Singh S.A.A.K., Negi A., Mudali S. Analysis of automatic sensing model of an autonomous vehicle; Proceedings of the 2017 International Conference on Inventive Systems and Control (ICISC); Coimbatore, India. 19–20 January 2017; pp. 1–5. DOI
Denysyuk P., Teslyuk V., Chorna I. Development of mobile robot using LIDAR technology based on Arduino controller; Proceedings of the 2018 XIV-th International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH); Lviv, Ukraine. 18–22 April 2018; pp. 240–244. DOI
Vlaminck M., Philips W., Luong H.Q. Liborg:A lidar-based Robot for Efficient 3D Mapping. In Applications of Digital Image Processing Xl; 19 September 2017; Volume 10396. [(accessed on 24 January 2022)]. Available online: https://biblio.ugent.be/publication/8530329/file/8544719.pdf.
Gatesichapakorn S., Takamatsu J., Ruchanurucks M. ROS based Autonomous Mobile Robot Navigation using 2D LiDAR and RGB-D Camera; Proceedings of the 2019 First International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP); Bangkok, Thailand. 16–18 January 2019; pp. 151–154. DOI
Hutabarat D., Rivai M., Purwanto D., Hutomo H. Lidar-based Obstacle Avoidance for the Autonomous Mobile Robot; Proceedings of the 2019 12th International Conference on Information & Communication Technology and System (ICTS); Surabaya, Indonesia. 18 July 2019; pp. 197–202. DOI
Hossain S., Doukhi O., Jo Y., Lee D.-J. Deep Reinforcement Learning-based ROS-Controlled RC Car for Autonomous Path Exploration in the Unknown Environment; Proceedings of the 2020 20th International Conference on Control, Automation and Systems (ICCAS); Busan, Korea. 13–16 October 2020; pp. 1231–1236. DOI
Ponte S., Ariante G., Papa U., Del Del Core G. An Embedded Platform for Positioning and Obstacle Detection for Small Unmanned Aerial Vehicles. Electronics. 2020;9:1175. doi: 10.3390/electronics9071175. DOI
Torres F.M., Tommaselli G., Maria A. A Lightweight Uav-Based Laser Scanning System for Forest Application. Bol. Cienc. Geod. 2018;24:318–334. doi: 10.1590/s1982-21702018000300021. DOI
Kadirova S.Y., Nenov T.R. Design of Power Wheelchair Controller; Proceedings of the 2020 7th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE); Ruse, Bulgaria. 12–14 November 2020; pp. 1–4. DOI
Ponce R., Canchingre G.M., Velarde P., Moya M. Design and Construction of an Automatic Transport System Inside the Home for People with Reduced Mobility; Proceedings of the 2018 International Conference on Information Systems and Computer Science (INCISCOS); Quito, Ecuador. 13–15 November 2018; pp. 88–93. DOI
Pathak P. Smart Helmet with Motorbike unit for Accident and Rash Driving Detection; Proceedings of the 2020 IEEE International Conference on Advances and Developments in Electrical and Electronics Engineering (ICADEE); Coimbatore, India. 10–11 December 2020; pp. 1–6. DOI
Van Brummelen J., Emran B., Yesilcimen K., Najjaran H. Reliable and Low-cost Cyclist Collision Warning System for Safer Commute on Urban Roads; Proceedings of the Reliable and Low-cost Cyclist Collision Warning System for Safer Commute on Urban Roads 2016; Budapest, Hungary. 9–12 October 2016; pp. 3731–3735. DOI
Verdict Media Strategies, iRobot 510 PackBot Multi-Mission Robot [Online], Army Technology. August 2021. [(accessed on 22 January 2022)]. Available online: https://www.army-technology.com/projects/irobot-510-packbot-multi-mission-robot/
Ismail R., Muthukumaraswamy S. Military Reconnaissance and Rescue Robot with Real-Time Object Detection. In: Reddy A., Marla D., Favorskaya M.N., Satapathy S.C., editors. Intelligent Manufacturing and Energy Sustainability. Vol. 213. Springer; Singapore: 2021. Smart Innovation, Systems and Technologies. DOI
Howe & Howe, Thermite, First Commercial Firefighting Robot Sold in the U.S. [Online] [(accessed on 22 January 2022)]. Available online: https://www.howeandhowe.com/civil/thermite.
Shark Robotics, Colossus [Online]. The Official Web Page of Shrk Robotics Company. [(accessed on 22 January 2022)]. Available online: https://www.shark-robotics.com/colossus.
ReconRobotics, Recon Scout [Online], The Official Web Page of ReconRobotics Company. [(accessed on 22 January 2022)]. Available online: https://reconrobotics.com/
Israel Defense, ODF Optronics [Online], The Official Web Page of Israel Defense [Used January 2022] [(accessed on 22 January 2022)]. Available online: https://www.israeldefense.co.il/en/
Szynkarczyk P., Czupryniak R., Trojnacki M., Andrzejuk A. Current state and development tendency inmobile robots for special applications; Proceedings of the International Conference WEISIC 6th Workshopon European Scientific and Industrial Collaboration on Promoting Advanced Technologies in Manufacturing; Bucharest, Romania. 25–26 September 2008; pp. 30–41.
Enforcement Technology Grupe, Eyeball r1 Surveillance Sensor Systems [Online], The Future of Technology…Today! [(accessed on 22 January 2022)]. Available online: https://etgi.us/