A systematic evaluation of the cucurbit[7]uril pharmacokinetics and toxicity after a single dose and short-term repeated administration in mice
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
18-08937S
Grantová Agentura České Republiky
PubMed
35220471
DOI
10.1007/s00204-022-03249-7
PII: 10.1007/s00204-022-03249-7
Knihovny.cz E-zdroje
- Klíčová slova
- Cucurbit[7]uril, Histopathology, Maximum tolerated dose, Mouse, NOAEL, Pharmacokinetics, Toxicity,
- MeSH
- heterocyklické sloučeniny bicyklické * toxicita MeSH
- imidazolidiny * toxicita MeSH
- makrocyklické sloučeniny * toxicita MeSH
- maximální tolerovaná dávka MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cucurbit(7)uril MeSH Prohlížeč
- heterocyklické sloučeniny bicyklické * MeSH
- imidazolidiny * MeSH
- makrocyklické sloučeniny * MeSH
Cucurbit[n]urils are macrocyclic compounds capable of forming host-guest complexes with different molecules. In this study, we focused on cucurbit[7]uril (CB[7]) safety and pharmacokinetics. We investigated CB[7] cytotocixity in human renal cells ACHN using the xCELLigence system. We also determined maximum tolerated doses (MTD) and no observed adverse effect levels (NOAEL) after intramuscular (i.m.), intraperitoneal (i.p.), and intragastric (i.g.) administration in mice using clinical observation, blood biochemistry, and histopathology. At NOAELs, we studied its pharmacokinetics in plasma and kidneys. Finally, we performed a 7 day repeated-dose toxicity study at 50% of NOAEL after i.p. administration, assaying CB[7] concentration in plasma, brain, kidney, and liver; we also assessed the liver and kidney histopathology. In vitro, CB[7] did not show toxicity up to 0.94 mg/mL. MTDs in vivo were set at 300, 350, and 600 mg/kg, and NOAEL were established at 150, 100, and 300 mg/kg after i.m., i.p., and i.g. administration, respectively. Parenteral administration produced tissue damage mainly to the kidney, while i.g. administration caused only minor liver damage. Parenteral CB[7] administration led to fast elimination from blood, accompanied with kidney accumulation; absorption from the gastrointestinal tract was minimal. Short repeated i.p. administration was well tolerated. After initial CB[7] accumulation in blood and kidney, the concentrations stabilised and decreased during the experiment. Approximately 3.6% of animals showed signs of nephrotoxicity. Although CB[7] appears to be a promising molecule, nephrotoxicity may be the most critical drawback of its parenteral use, because the kidney represents the main organ of its elimination.
Zobrazit více v PubMed
Aktanova A, Abramova T, Pashkina E, Boeva O, Grishina L, Kovalenko E, Kozlov V (2021) Assessment of the biocompatibility of cucurbiturils in blood cells. Nanomaterials (basel) 11(6):1356. https://doi.org/10.3390/nano11061356 DOI
Andrys R, Klusonova A, Lisa M, Kassa J, Zdarova Karasova J (2021) Effect of oxime encapsulation on acetylcholinesterase reactivation: pharmacokinetic study of the asoxime–cucurbit[7]uril complex in mice using hydrophilic interaction liquid chromatography-mass spectrometry. Mol Pharm 18(6):2416–2427. https://doi.org/10.1021/acs.molpharmaceut.1c00257 DOI
Brewster ME, Loftsson T (2007) Cyclodextrins as pharmaceutical solubilizers. Adv Drug Delivery Rev 5:645–666. https://doi.org/10.1016/j.addr.2007.05.012 DOI
Brewster ME, Loftsson T (2010) Pharmaceutical applications of cyclodextrins: basic science and product development. J Pharm Pharmacol 62(11):1607–1621. https://doi.org/10.1111/j.2042-7158.2010.01030.x DOI
Carvalho CP, Uzunova VD, Da Silva JP, Nau WM, Pischel U (2011) A photoinduced pH jump applied to drug release from cucurbit[7]uril. Chem Commun (camb) 47(31):8793–8795. https://doi.org/10.1039/c1cc12954f DOI
Challa R, Ahuja A, Ali J, Khar RK (2005) Cyclodextrins in drug delivery: an updated review. AAPS Pharm SciTech 6(2):E329-357. https://doi.org/10.1208/pt060243 DOI
Chen H, Chan JYW, Yang X, Wyman IW, Bardelang D, Macartney DH, Lee SMY, Wang R (2015) Developmental and organ-specific toxicity of cucurbit[7]uril: in vivo study on zebrafish models. RSC Adv 5:30067–30074. https://doi.org/10.1039/c5ra04335b DOI
Everds NE (2015) Evaluation of clinical pathology data: correlating changes with other study data. Toxicol Pathol 43(1):90–97. https://doi.org/10.1177/0192623314555340 DOI
Feng X, Wen Y, Peng FF, Wang N, Zhan X, Wu X (2020) Association between aminotransferase/alanine aminotransferase ratio and cardiovascular disease mortality in patients on peritoneal dialysis: a multi-center retrospective study. BMC Nephrol 21(1):209. https://doi.org/10.1186/s12882-020-01840-7 DOI
Fink S, Reddersen K, Wiegand C, Elsner P, Hipler U-C (2020) Evaluation of cell and hemocompatibility of Cucurbiturils. Eur J Pharm Sci 146:105271. https://doi.org/10.1016/j.ejps.2020.105271 DOI
Hettiarachchi G, Nguyen D, Wu J, Lucas D, Ma D, Isaac L, Briken V (2010) Toxicology and drug delivery by cucurbit[n]uril type molecular containers. PLoS ONE 5(5):e10514. https://doi.org/10.1371/journal.pone.0010514 DOI
IQ 3Rs Leadership Group (2016) Recommended dose volumes for common laboratory animals. International consortium for innovation and quality in pharmaceutical development. https://iqconsortium.org/images/LG-3Rs/IQ-CRO_Recommended_Dose_Volumes_for_Common_Laboratory_Animals_June_2016_(2).pdf . Accessed 24 Oct 2021
Irie T, Uekama K (1997) Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J Pharm Sci 86(2):147–162. https://doi.org/10.1021/js960213f DOI
Jeon YJ, Kim S-Y, Ko YH, Sakamoto S, Yamaguchi K, Kim K (2005) Novel molecular drug carrier: encapsulation of oxaliplatin in cucurbit[7]uril and its effects on stability and reactivity of the drug. Org Biomol Chem 3(11):2122–2125. https://doi.org/10.1039/b504487a DOI
Lagona J, Fettinger JC, Isaacs L (2005) Cucurbi[n]urils: synthetic and mechanistic studies. J Org Chem 70(25):10381–10392. https://doi.org/10.1021/jo051655r DOI
Li S, Chen H, Yang X, Bardelang D, Wyman IW, Wan J, Lee SMY, Wang R (2015) Supramolecular inhibition of neurodegeneration by a synthetic receptor. ACS Med Chem Lett 6(12):1174–1178. https://doi.org/10.1021/acsmedchemlett.5b00372 DOI
McInnes FJ, Anthony NG, Kennedy AR, Wheate NJ (2010) Solid state stabilisation of the orally delivered drugs atenolol, glibenclamide, memantine and paracetamol through their complexation with cucurbit[7]uril. Org Biomol Chem 8(4):765–773. https://doi.org/10.1039/b918372h DOI
Misik J, Nepovimova E, Pejchal J, Kassa J, Korabecny J, Soukup O (2018) Cholinesterase inhibitor 6-chlorotacrine—in vivo toxicological profile and behavioural effects. Curr Alzheimer Res 15(6):552–560. https://doi.org/10.2174/1567205015666171212105412 DOI
Montes-Navajas P, Gonzalez-Béjar M, Scaiano JC, Garcia H (2009) Cucurbituril complexes cross the cell membrane. Photochem Photobiol Sci 8(12):1743–1747. https://doi.org/10.1039/b9pp00041k DOI
Pashkina E, Aktanova A, Mirzaeva I, Kovalenko E, Andrienko I, Knauer N, Pronkina N, Kozlov V (2021) The effect of cucurbit[7]uril on the antitumor and immunomodulating properties of oxaliplatin and carboplatin. Int J Mol Sci 22(14):7337. https://doi.org/10.3390/ijms22147337 DOI
Pejchal J, Novotny J, Marak V, Osterreicher J, Tichy A, Vavrova J, Sinkorova Z, Zarybnicka L, Novotna E, Chladek J, Babicova A, Kubelkova K, Kuca K (2012) Activation of p38 MAPK and expression of TGF-β1 in rat colon enterocytes after whole body γ-irradiation. Int J Radiat Biol 88(4):348–358. https://doi.org/10.3109/09553002.2012.654044 DOI
Plumb JA, Venugopal B, Oun R, Gomez-Roman N, Kawazoe Y, Venkataramanan NS, Wheate NJ (2012) Cucurbit[7]uril encapsulated cisplatin overcomes cisplatin resistance via a pharmacokinetic effect. Metallomics 4:561–567. https://doi.org/10.1039/c2mt20054f DOI
Robinson S, Chapman K, Hudson S, Sparrow S, Spencer-Briggs D, Danks A, Hill R, Everett D, Mulier B, Old S, Bruce C (2009) Guidance on dose level selection for regulatory general toxicology studies for pharmaceuticals. National Centre for the Replacement, Refinement and Reduction of Animals in Research Laboratory Animal Science Association (NC3Rs)/Laboratory Animal Science Association (LASA), London
Saleh NI, Meetani MA, Al-Kaabi L, Ghosh I, Nau WM (2011) Effect of cucurbit[n]urils on tropicamide and potential application in ocular drug delivery. Supramol Chem 23(9):650–656. https://doi.org/10.1080/10610278.2011.593631 DOI
Uthatskaya EV, Kurkov SV, Matthews SE, Loftsson T (2013) Encapsulation of drug molecules into calix[n]arene nanobaskets. Role of aminocalix[n]arenes in biopharmaceutical field. J Pharm Sci 102:3485–3512. https://doi.org/10.1002/jps.23681 DOI
Uzunova VD, Cullinane C, Brix K, Nau WM, Day AI (2010) Toxicity of cucurbit[7]uril and cucurbit[8]uril: an exploratory in vitro and in vivo study. Org Biomol Chem 8(9):2037–2042. https://doi.org/10.1039/b925555a DOI
Wang R, Macartney DH (2008) Cucurbit[7]uril host-guest complexes of the histamine H2-receptor antagonist ranitidine. Org Biomol Chem 6(11):1955–1960. https://doi.org/10.1039/b801591k DOI
Wang R, Bardelang D, Waite M, Udachin KA, Leek DM, Yu K, Ratcliffe CI, Ripmeester JA (2009) Inclusion complexes of coumarin in cucurbiturils. Org Biomol Chem 7(11):2435–2439. https://doi.org/10.1039/b903057c DOI
Wheate NJ, Buck DP, Day AI, Collins JG (2006) Cucurbit[n]uril binding of platinum anti-cancer complexes. Dalton Trans 3:451–458. https://doi.org/10.1039/b513197a DOI
Wyman IW, Macartney DH (2010) Host-guest complexations of local anaesthetics by cucurbit[7]uril in aqueous solution. Org Biomol Chem 8(1):247–252. https://doi.org/10.1039/b915694a DOI
Yin H, Zhang X, Wei J, Lu S, Bardelang D, Wang R (2021a) Recent advances in supramolecular antidotes. Theranostics 11(3):1513–1526. https://doi.org/10.7150/thno.53459 DOI
Yin H, Bardelang D, Wang R (2021b) Macrocycles and related hosts as supramolecular antidotes. Trends Chem 3(1):1–4. https://doi.org/10.1016/j.trechm.2020.08.008 DOI
Zdarova Karasova J, Hepnarova V, Andrys R, Lisa M, Jost P, Muckova L, Pejchal J, Herman D, Jun D, Kassa J, Kuca K (2020a) Encapsulation of oxime K027 into cucurbit[7]uril: In vivo evaluation of safety, absorption, brain distribution and reactivation effectiveness. Toxicol Lett 320:64–72. https://doi.org/10.1016/j.toxlet.2019.11.021 DOI
Zdarova Karasova J, Mzik M, Kucera T, Vecera Z, Kassa J, Sestak V (2020b) Interaction of cucurbit[7]uril with oxime K027, atropine, and paraoxon: risky or advantageous delivery system? Int J Mol Sci 21(21):7883. https://doi.org/10.3390/ijms21217883 DOI
Zhang X, Xu X, Li S, Wang L-H, Zhang J, Wang R (2018) A systematic evaluation of the biocompatibility of cucurbit[7]uril in mice. Sci Rep 8(1):8819. https://doi.org/10.1038/s41598-018-27206-6 DOI
Zhang X, Xu X, Li S, Li L, Zhang J, Wang R (2019) A synthetic receptor as a specific antidote for paraquat poisoning. Theranostics 9(3):633–645. https://doi.org/10.7150/thno.31485 DOI
Zhao Y, Buck DP, Morris DL, Pourgholami MH, Day AI, Collins JG (2008) Solubilisation and cytotoxicity of albendazole encapsulated in cucurbit[n]uril. Org Biomol Chem 6(24):4509–4515. https://doi.org/10.1039/b813759e DOI
Zuelzer WW, Kurnetz R (1951) Lower nephron nephrosis. AMA Am J Dis Child 81(1):39–46. https://doi.org/10.1001/archpedi.1951.02040030046009 DOI