New methods for multiple testing in permutation inference for the general linear model
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34687243
DOI
10.1002/sim.9236
Knihovny.cz E-zdroje
- Klíčová slova
- function-on-scalar regression, general linear model, global envelope test, graphical method, multiple testing correction,
- MeSH
- lidé MeSH
- lineární modely MeSH
- mozek * diagnostické zobrazování MeSH
- neurozobrazování * MeSH
- počítačová simulace MeSH
- výzkumný projekt MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Permutation methods are commonly used to test the significance of regressors of interest in general linear models (GLMs) for functional (image) data sets, in particular for neuroimaging applications as they rely on mild assumptions. Permutation inference for GLMs typically consists of three parts: choosing a relevant test statistic, computing pointwise permutation tests, and applying a multiple testing correction. We propose new multiple testing methods as an alternative to the commonly used maximum value of test statistics across the image. The new methods improve power and robustness against inhomogeneity of the test statistic across its domain. The methods rely on sorting the permuted functional test statistics based on pointwise rank measures; still, they can be implemented even for large data. The performance of the methods is demonstrated through a designed simulation experiment and an example of brain imaging data. We developed the R package GET, which can be used for the computation of the proposed procedures.
Zobrazit více v PubMed
Winkler A, Ridgway G, Webster M, Smith S, Nichols T. Permutation inference for the general linear model. NeuroImage. 2014;92:381-397.
Nichols TE, Holmes E. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Human Brain M. 2001;15:1-25.
Lopez-Pintado S, Qian K. A depth-based global envelope test for comparing two groups of functions with applications to biomedical data. Stat Med. 2021;40(7):1639-1652. https://doi.org/10.1002/sim.8861
Fisher RA. The Design of Experiments. Oxford, UK: Oliver & Boyd; 1935.
Eklund A, Nichols TE, Knutsson H. Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci. 2016;113(28):7900-7905. https://doi.org/10.1073/pnas.1602413113
Pantazis D, Nichols TE, Baillet S, Leahya RM. A comparison of random field theory and permutation methods for the statistical analysis of MEG data. NeuroImage. 2005;25:383-394.
Hayasaka S, Phan K, Liberzon I, Worsley KJ, Nichols TE. Nonstationary cluster-size inference with random field and permutation methods. NeuroImage. 2004;22(2):676-687. https://doi.org/10.1016/j.neuroimage.2004.01.041
Salimi-Khorshidi G, Smith SM, Nichols TE. Adjusting the effect of nonstationarity in cluster-based and TFCE inference. NeuroImage. 2011;54(3):2006-2019. https://doi.org/10.1016/j.neuroimage.2010.09.088
Myllymäki M, Mrkvička T, Grabarnik P, Seijo H, Hahn U. Global envelope tests for spatial processes. J R Stat Soc B. 2017;79(2):381-404. https://doi.org/10.1111/rssb.12172
Narisetty NN, Nair VN. Extremal depth for functional data and applications. J Am Stat Assoc. 2016;111(516):1705-1714.
Hahn U. A note on simultaneous Monte Carlo tests. Technical report. Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University; 2015.
Mrkvička T, Myllymäki M, Hahn U. Multiple Monte Carlo testing, with applications in spatial point processes. Stat Comput. 2017;27(5):1239-1255. https://doi.org/10.1007/s11222-016-9683-9
Mrkvička T, Myllymäki M, Jílek M, Hahn U. A one-way ANOVA test for functional data with graphical interpretation. Kybernetika. 2020;56(3):432-458. https://doi.org/10.14736/kyb-2020-3-0432
Di Martino A, Yan C, Li Q, et al. The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol Psychiatry. 2014;19:659-667.
Myllymäki M, Mrkvička T. GET: global envelopes in R; 2020. arXiv:1911.06583 [stat.ME].
Christensen R. Plane Answers to Complex Questions. New York, NY: Springer; 2002.
Freedman D, Lane D. A nonstochastic interpretation of reported significance levels. J Bus Econ Stat. 1983;1(4):292-298.
Anderson M, Ter Braak C. Permutation tests for multi-factorial analysis of variance. J Stat Comput Simul. 2003;73(2):85-113.
Westfall PH, Young SS. Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment. 1st ed., New York, NY: Wiley; 1993.
Phipson B, Smyth GK. Permutation P-values should never be zero: calculating exact P-values when permutations are randomly drawn. Stat Appl Genet Mol Biol. 2010;9(1):39. https://doi.org/10.2202/1544-6115.1585
Xu M, Reiss P. Distribution-free pointwise adjusted P-values for functional hypotheses. In: Aneiros G, Horová I, Hušková MPV, eds. Functional and High-Dimensional Statistics and Related Fields. Contributions to Statistics. IWFOS 2020. Cham, Switzerland: Springer; 2020.
Zou QH, Zhu CZ, Yang Y, et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods. 2008;172:137-141.