• This record comes from PubMed

Biodiversity and Metabolic Potential of Bacteria in Bulk Soil from the Peri-Root Zone of Black Alder (Alnus glutinosa), Silver Birch (Betula pendula) and Scots Pine (Pinus sylvestris)

. 2022 Feb 27 ; 23 (5) : . [epub] 20220227

Language English Country Switzerland Media electronic

Document type Journal Article

The formation of specific features of forest habitats is determined by the physical, chemical, and biological properties of the soil. The aim of the study was to determine the structural and functional biodiversity of soil microorganisms inhabiting the bulk soil from the peri-root zone of three tree species: Alnus glutinosa, Betula pendula, and Pinus sylvestris. Soil samples were collected from a semi-deciduous forest located in an area belonging to the Agricultural Experimental Station IUNG-PIB in Osiny, Poland. The basic chemical and biological parameters of soils were determined, as well as the structural diversity of bacteria (16S ribosomal RNA (rRNA) sequencing) and the metabolic profile of microorganisms (Biolog EcoPlates). The bulk soils collected from peri-root zone of A. glutinosa were characterized by the highest enzymatic activities. Moreover, the highest metabolic activities on EcoPlates were observed in bulk soil collected in the proximity of the root system the A. glutinosa and B. pendula. In turn, the bulk soil collected from peri-root zone of P. sylvestris had much lower biological activity and a lower metabolic potential. The most metabolized compounds were L-phenylalanine, L-asparagine, D-mannitol, and gamma-hydroxy-butyric acid. The highest values of the diversity indicators were in the soils collected in the proximity of the root system of A. glutinosa and B. pendula. The bulk soil collected from P. sylvestris peri-root zone was characterized by the lowest Shannon's diversity index. In turn, the evenness index (E) was the highest in soils collected from the P. sylvestris, which indicated significantly lower diversity in these soils. The most abundant classes of bacteria in all samples were Actinobacteria, Acidobacteria_Gp1, and Alphaproteobacteria. The classes Bacilli, Thermoleophilia, Betaproteobacteria, and Subdivision3 were dominant in the B. pendula bulk soil. Streptosporangiales was the most significantly enriched order in the B. pendula soil compared with the A. glutinosa and P. sylvestris. There was a significantly higher mean proportion of aerobic nitrite oxidation, nitrate reduction, sulphate respiration, and sulfur compound respiration in the bulk soil of peri-root zone of A. glutinosa. Our research confirms that the evaluation of soil biodiversity and metabolic potential of bacteria can be of great assistance in a quality and health control tool in the soils of forested areas and in the forest production. Identification of bacteria that promote plant growth and have a high biotechnological potential can be assume a substantial improvement in the ecosystem and use of the forest land.

See more in PubMed

Bonan G.B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science. 2008;320:1444–1449. doi: 10.1126/science.1155121. PubMed DOI

Pawlik Ł., Buma B., Šamonil P., Kvaček J., Gałązka A., Kohout P., Malik I. Impact of trees and forests on the Devonian landscape and weathering processes with implications to the global Earth’s system properties—A critical review. Earth-Sci. Rev. 2021;205:103200. doi: 10.1016/j.earscirev.2020.103200. DOI

Brożek S., Zwydak M., Lasota J., Różański W. Założenia metodyczne badań związków między glebą a zespołami roślinnymi w lasach. Rocz. Glebozn. 2011;62:16–38. (In Polish)

Nannipieri P., Ascher J., Ceccherini M.T., Landi L., Pietramellara G., Renella G. Microbial diversity and soil functions. Eur. J. Soil Sci. 2003;54:655–670. doi: 10.1046/j.1351-0754.2003.0556.x. DOI

Prescott C.E., Grayston S.J. Tree species influence on microbial communities in litter and soil: Current knowledge and research needs. For. Ecol. Manag. 2013;309:19–27. doi: 10.1016/j.foreco.2013.02.034. DOI

Abramczyk K., Gałązka A. Różnorodność mikroorganizmów glebowych obszarów chronionych i o znaczących walorach przyrodniczych. Sylwan. 2017;161:496–503. (In Polish)

Buée M., de Boer W., Martin F., van Overbeek L., Jurkevitch E. The rhizosphere zoo: An overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil. 2009;321:189–212. doi: 10.1007/s11104-009-9991-3. DOI

Chemidlin A., Prevost-Boure N., Maron P.-A., Ranjard L., Nowak V., Dufrene E., Damesin C., Soudani K., Lata J.-C. Seasonal dynamics of the bacterial community in forest soils under different quantities of leaf litter. Appl. Soil Ecol. 2011;47:14–23. doi: 10.1016/j.apsoil.2010.11.006. DOI

Fierer N., Jackson R.B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA. 2006;103:626–631. doi: 10.1073/pnas.0507535103. PubMed DOI PMC

Hardoim P.R., Van Overbeek L.S., Berg G., Pirttilä A.M., Compant S., Campisano A., Döring M., Sessitsch A. The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 2015;79:293–320. doi: 10.1128/MMBR.00050-14. PubMed DOI PMC

Kuzyakov Y., Blagodatskaya E. Microbial hotspots and hot moments in soil: Concept & review. Soil Biol. Biochem. 2015;83:184–199. doi: 10.1016/j.soilbio.2015.01.025. DOI

Liu H., Carvalhais L.C., Crawford M., Singh E., Dennis P.G., Pieterse C.M.J., Schenk P.M. Inner plant values: Diversity, colonization and benefits from endophytic bacteria. Front. Microbiol. 2017;19:2552. doi: 10.3389/fmicb.2017.02552. PubMed DOI PMC

Baldrian P. Forest microbiome: Diversity, complexity and dynamics. nFEMS Microbiol. Rev. 2017;41:109–130. doi: 10.1093/femsre/fuw040. PubMed DOI

Abdul Rahman N.S.N., Abdul Hamid N.W., Nadarajah K. Effects of Abiotic Stress on Soil Microbiome. Int. J. Mol. Sci. 2021;22:9036. doi: 10.3390/ijms22169036. PubMed DOI PMC

Bergkemper F., Scholer A., Engel M., Lang F., Kruger J., Schloter M., Schulz S. Phosphorus depletion in forest soils shapes bacterial communities towards phosphorus recycling systems. Environ. Microbiol. 2016;18:1988–2000. doi: 10.1111/1462-2920.13188. PubMed DOI

Habiyaremye J.D., Goldmann K., Reitz T., Herrmann S., Buscot F. Tree Root Zone Microbiome: Exploring the Magnitude of Environmental Conditions and Host Tree Impact. Front. Microbiol. 2020;11:749. doi: 10.3389/fmicb.2020.00749. PubMed DOI PMC

Kim M., Kim W.S., Tripathi B.M., Adams J. Distinct bacterial communities dominate tropical and temperate zone leaf litter. Microb. Ecol. 2014;67:837–848. doi: 10.1007/s00248-014-0380-y. PubMed DOI

Kuźniar A., Włodarczyk K., Grządziel J., Goraj W., Gałązka A., Wolińska A. Culture-independent analysis of an endophytic core microbiome in two species of wheat: Triticum aestivum L. (cv. ‘Hondia’) and the first report of microbiota in Triticum spelta L. (cv. ‘Rokosz’) Syst. Appl. Microbiol. 2019;43:126025. doi: 10.1016/j.syapm.2019.126025. PubMed DOI

Uroz S., Courty P.E., Pierrat J.C., Peter M., Buéé M., Turpault M.P., Garbaye J., Frey-Klett P. Functional profiling and distribution of the forest soil bacterial communities along the soil mycorrhizosphere continuum. Microb. Ecol. 2013;66:404–415. doi: 10.1007/s00248-013-0199-y. PubMed DOI

Štursová M., Bárta J., Šantrùcková H., Baldrian P. Small-scale spatial heterogeneity of ecosystem properties, microbial community composition and microbial activities in a temperate mountain forest soil. FEMS Microbiol. Ecol. 2016;92:fiw185. doi: 10.1093/femsec/fiw185. PubMed DOI

Lladó S., López-Mondéjar R., Baldrian P. Forest soil bacteria: Diversity, involvement in ecosystem processes, and response to global change. Microbiol. Mol. Biol. Rev. 2017;81:e00063-16. doi: 10.1128/MMBR.00063-16. PubMed DOI PMC

Furtak K., Grządziel J., Gałązka A., Niedźwiecki J. Analysis of Soil Properties, Bacterial Community Composition, and Metabolic Diversity in Fluvisols of a Floodplain Area. Sustainability. 2019;11:3929. doi: 10.3390/su11143929. DOI

Gałązka A., Grzęda E., Jończyk K. Changes of Microbial Diversity in Rhizosphere Soils of New Quality Varieties of Winter Wheat Cultivation in Organic Farming. Sustainability. 2019;11:4057. doi: 10.3390/su11154057. DOI

Lasota J., Błońska E., Babiak T., Piaszczyk W., Stępniewska H., Jankowiak R., Boroń P., Lenart-Boroń A. Effect of Charcoal on the Properties, Enzyme Activities and Microbial Diversity of Temperate Pine Forest Soils. Forests. 2021;12:1488. doi: 10.3390/f12111488. DOI

Torsvik V., Øvreås L. Microbial diversity and function in soil: From genes to ecosystems. Curr. Opin. Microbiol. 2002;5:240–245. doi: 10.1016/S1369-5274(02)00324-7. PubMed DOI

Cong J., Yang Y., Liu X., Lu H., Liu X., Zhou J., Li D., Yin H., Ding J., Zhang Y. Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession. Sci. Rep. 2015;5:10007. doi: 10.1038/srep10007. PubMed DOI PMC

Xu J. In: Metagenomics and Ecosystems Biology: Conceptual Frameworks, Tools and Methods (w) Metagenomics. Theory, Methods and Applications, Red. Marco D., editor. Caister Academic Press; Norfolk, UK: 2010. pp. 1–14.

Lahti L., Shetty S. Tools for Microbiome Analysis in R. 2017. [(accessed on 19 July 2021)]. Available online: http://microbiome.github.com/microbiome.

Lebeis S.L. Greater than the sum of their parts: Characterizing plant microbiomes at the community-level. Curr. Opin. Plant Biol. 2015;24:82–86. doi: 10.1016/j.pbi.2015.02.004. PubMed DOI

Levy-Booth D.J., Prescott C.E., Grayston S.J. Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biol. Biochem. 2014;75:11–25. doi: 10.1016/j.soilbio.2014.03.021. DOI

Parks D.H., Beiko R.G. Identifying biologically relevant differences between metagenomic communities. Bioinformatics. 2010;26:715–721. doi: 10.1093/bioinformatics/btq041. PubMed DOI

Segata N., Izard J., Waldron L. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60. doi: 10.1186/gb-2011-12-6-r60. PubMed DOI PMC

Thomas T., Gilbert J., Meyer F. Metagenomics—A guide from sampling to data analysis. BMC Microb. 2012;Inf. Exp. 2:3. doi: 10.1186/2042-5783-2-3. PubMed DOI PMC

Torres-Cortés G., Millán V., Ramírez-Saad H.C., Nisa-Martínez R., Toro N., Martínez-Abarca F. Characterization of novel antibiotic resistance genes identified by functional metagenomics on soil samples. Environ. Microbiol. 2011;13:1101–1114. doi: 10.1111/j.1462-2920.2010.02422.x. PubMed DOI

Quality of Soil Collected Samples—Principles of Collected and Kept of Soil Samples to the Microbiological Research in Laboratory Conditions. Polish Standard. ISO; Geneva, Switzerland: 1998.

Kononowa M. Substancje Organiczne Gleby ich Budowa, Właściwości i Metody Badań. Wydawnictwo Rolnicze i Leśne Warszawa; Warsaw, Poland: 1968. (In Polish)

Kędziora A. Przyrodnicze podstawy ochrony ekosystemów rolniczych. Frag. Agronom. 2007;3:213–223. (In Polish)

Yadav A.N., Verma P., Singh B., Chauhan V.S., Suman A., Saxena A.K. Plant growth promoting bacteria: Biodiversity and multifunctional attributes for sustainable agriculture. Adv. Biotechnol. Microbiol. 2017;5:1–16. doi: 10.19080/AIBM.2017.05.555671. DOI

Baldrian P., Kolarˇík M., Štursová M., Kopecký J., Valaskova V., Větrovský T., Žifčáková L., Šnajdr J., Rídl J., Vlček C., et al. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J. 2012;6:248–258. doi: 10.1038/ismej.2011.95. PubMed DOI PMC

Brzostek E.R., Greco A., Drake J.E., Finzi A.C. Root carbon inputs to the rhizosphere stimulate extracellular enzyme activity and increase nitrogen availability in temperate forest soil. Biogeochemistry. 2012;115:65–76. doi: 10.1007/s10533-012-9818-9. DOI

Woźniak M., Gałązka A. The rhizosphere microbiome and its beneficial effects on plants. Postępy Mikrobiol. 2019;58:59–69. doi: 10.21307/PM-2019.58.1.059. DOI

Garland J.L., Mills A.L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl. Environ. Microbiol. 1991;57:2351–2359. doi: 10.1128/aem.57.8.2351-2359.1991. PubMed DOI PMC

Lladó S., Baldrian P. Community-level physiological profiling analyses show potential to identify the copiotrophic bacteria present in soil environments. PLoS ONE. 2017;12:e0171638. doi: 10.1371/journal.pone.0171638. PubMed DOI PMC

Grządziel J., Furtak K., Gałązka A. Community-level physiological profiles of microorganisms from different types of soil characteristic to Poland—A long-term microplot experiment. Sustainability. 2019;11:56. doi: 10.3390/su11010056. DOI

Wolińska A., Kuźniar A., Gałązka A. Biodiversity in the Rhizosphere of Selected Winter Wheat (Triticum aestivum L.) Cultivars—Genetic and Catabolic Fingerprinting. Agronomy. 2020;10:953. doi: 10.3390/agronomy10070953. DOI

Woźniak M., Gałązka A., Tyśkiewicz R., Jaroszuk-Ściseł J. Endophytic Bacteria Potentially Promote Plant Growth by Synthesizing Different Metabolites and their Phenotypic/Physiological Profiles in the Biolog GEN III MicroPlateTM Test. Int. J. Mol. Sci. 2019;20:5283. doi: 10.3390/ijms20215283. PubMed DOI PMC

Si P., Shao W., Yu H., Yang X., Gao D., Qiao X., Wang Z., Wu G. Rhizosphere Microenvironments of Eight Common Deciduous Fruit Trees Were Shaped by Microbes in Northern China. Front. Microbiol. 2018;9:3147. doi: 10.3389/fmicb.2018.03147. PubMed DOI PMC

Thiem D., Gołębiewski M., Hulisz P., Piernik A., Hrynkiewicz K. How Does Salinity Shape Bacterial and Fungal Microbiomes of Alnus glutinosa Roots? Front. Microbiol. 2018;9:651. doi: 10.3389/fmicb.2018.00651. PubMed DOI PMC

Rosier C.L., Polson S.W., D’Amico V., III, Kan J., Trammell T.L.E. Urbanization pressures alter tree rhizosphere microbiomes. Sci. Rep. 2021;11:9447. doi: 10.1038/s41598-021-88839-8. PubMed DOI PMC

Gałazka A., Niedźwiecki J., Grządziel J., Gawryjołek K. Evaluation of Changes in Glomalin-Related Soil Proteins (GRSP) Content, Microbial Diversity and Physical Properties Depending on the Type of Soil as the Important Biotic Determinants of Soil Quality. Agronomy. 2020;10:1279. doi: 10.3390/agronomy10091279. DOI

Warren D.A., Cheng L., Wang P. Soil acid and alkaline phosphatase activity as pH adjustment indicators. Soil Biol. Biochem. 2020;32:1915–1919. doi: 10.1016/S0038-0717(00)00166-8. DOI

Margalef O., Sardans J., Fernández-Martínez M., Molowny-Horas R., Janssens I.A., Ciais P., Goll D., Richter A., Obersteiner M., Asensio D., et al. Global patterns of phosphatase activity in natural soils. Sci. Rep. 2017;7:1337. doi: 10.1038/s41598-017-01418-8. PubMed DOI PMC

Lemanowicz A., Bartkowiak A. Changes in the activity of phosphatase and the content of phosphorus in salt-affected soils grassland habitat Natura 2000. Pol. J. Soil Sci. 2016;49:149. doi: 10.17951/pjss.2016.49.2.149. DOI

Kamutando C.N., Vikram S., Kamgan-Nkuekam G., Makhalanyane T.P., Greve M., Le Roux J.J., Richardson D.M., Cowan D.A., Valverde A. The Functional Potential of the Rhizospheric Microbiome of an Invasive Tree Species, Acacia dealbata. Microb. Ecol. 2019;77:191–200. doi: 10.1007/s00248-018-1214-0. PubMed DOI

Marupakula S., Mahmood S., Finlay R.D. Analysis of single root tip microbiomes suggests that distinctive bacterial communities are selected by Pinus sylvestris roots colonized by different ectomycorrhizal fungi. Environ. Microbiol. 2016;18:1470–1483. doi: 10.1111/1462-2920.13102. PubMed DOI

Izumi H., Anderson I.C., Alexander I.J., Killham K., Moore E.R. Endobacteria in some ectomycorrhiza of Scots pine (Pinus sylvestris) FEMS Microbiol. Ecol. 2006;56:34–43. doi: 10.1111/j.1574-6941.2005.00048.x. PubMed DOI

Pinho D., Barroso C., Froufe H., Brown N., Vanguelova E., Egas C., Denman S. Linking Tree Health, Rhizosphere Physicochemical Properties, and Microbiome in Acute Oak Decline. Forests. 2020;11:1153. doi: 10.3390/f11111153. DOI

Casida L.E.J., Klein D.A., Santoro T. Soil dehydrogenases activity. Soil Sei. 1964;98:371–376. doi: 10.1097/00010694-196412000-00004. DOI

Tabatabai M.A., Bremner J.M. Use of p-nitrophenyl phosphate for assay of soil phosphate activity. Soil Biol. Biochem. 1969;1:301–307. doi: 10.1016/0038-0717(69)90012-1. DOI

Gałązka A., Gawryjołek K., Perzyński A., Gałązka R., Księżak J. Changes of enzymatic activities and microbial communities in soil under long-term maize monoculture and crop rotation. Pol. J. Environ. 2017;26:39–46. doi: 10.15244/pjoes/64745. DOI

Grządziel J., Gałązka A. Microplot long-term experiment reveals strong soil type influence on bacteria composition and its functional diversity. Appl. Soil Ecol. 2017 doi: 10.1016/j.apsoil.2017.10.033. DOI

Klindworth A., Pruesse E., Schweer T., Peplies J., Quast C., Horn M., Glöckner F. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41 doi: 10.1093/nar/gks808. PubMed DOI PMC

Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A., Holmes S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2016.

Wright E.S. RDP v16 Modified Training Set for 16S rRNA Classification, 2019, [WWW Document] [(accessed on 19 July 2021)]. (Udostępniono 2.1.19) Available online: http://www2.decipher.codes/Classification/TrainingSets/RDP_v16-mod_March2018.RData.

Murali A., Bhargava A., Wright E.S. IDTAXA: A novel approach for accurate taxonomic classification of microbiome sequences. Microbiome. 2018;6:140. doi: 10.1186/s40168-018-0521-5. PubMed DOI PMC

McMurdie P.J., Holmes S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE. 2013;8:e61217. PubMed PMC

Louca S., Parfrey L.W., Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353:1272–1277. doi: 10.1126/science.aaf4507. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...