Managing hematological cancer patients during the COVID-19 pandemic: an ESMO-EHA Interdisciplinary Expert Consensus
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Practice Guideline
PubMed
35272130
PubMed Central
PMC8795783
DOI
10.1016/j.esmoop.2022.100403
PII: S2059-7029(22)00024-2
Knihovny.cz E-resources
- Keywords
- COVID-19, consensus manuscript, hematological malignancies,
- MeSH
- COVID-19 * MeSH
- Hematologic Neoplasms * epidemiology therapy MeSH
- Consensus MeSH
- Humans MeSH
- Pandemics MeSH
- COVID-19 Testing MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Practice Guideline MeSH
BACKGROUND: The COVID-19 pandemic has created enormous challenges for the clinical management of patients with hematological malignancies (HMs), raising questions about the optimal care of this patient group. METHODS: This consensus manuscript aims at discussing clinical evidence and providing expert advice on statements related to the management of HMs in the COVID-19 pandemic. For this purpose, an international consortium was established including a steering committee, which prepared six working packages addressing significant clinical questions from the COVID-19 diagnosis, treatment, and mitigation strategies to specific HMs management in the pandemic. During a virtual consensus meeting, including global experts and lead by the European Society for Medical Oncology and the European Hematology Association, statements were discussed and voted upon. When a consensus could not be reached, the panel revised statements to develop consensual clinical guidance. RESULTS AND CONCLUSION: The expert panel agreed on 33 statements, reflecting a consensus, which will guide clinical decision making for patients with hematological neoplasms during the COVID-19 pandemic.
Barts Cancer Institute Queen Mary University of London London UK
Centre for Haematology Imperial College London Hammersmith Hospital London UK
Clínica Universidad de Navarra CIBERONC Pamplona Spain
Department of Hematology Medical University of Lodz Lodz Poland
Department Of Hematology Portuguese Institute of Oncology Lisbon Portugal
Department of Hematooncology Faculty of Medicine University of Ostrava Ostrava Czech Republic
Department of Medicine 1 Division of Oncology Medical University of Vienna Vienna Austria
Department of Medicine 3 at LMU Hospital Munich Germany
Department of Medicine and Surgery University of Insubria Varese Italy
Department of Radiation Oncology University of Muenster Münster Germany
Department of Stem Cell Transplantation University Hospital Hamburg Eppendorf Hamburg Germany
Erasmus MC Cancer Institute Department of Haematology Rotterdam The Netherlands
Hematology Department Hospital Clínic IDIBAPS Barcelona Spain
Hematology Department of Translational and Precision Medicine Sapienza University Rome Italy
Hematology Department University Hospital Hotel Dieu Nantes France
Hematology Division Basel University Hospital Basel Switzerland
MDS Unit Hematology DMSC AOUC University of Florence Florence Italy
Munich Clinic Schwabing Academic Teaching Hospital Ludwig Maximilian University Munich Germany
Scientific and Medical Division European Society for Medical Oncology Lugano Switzerland
Université de Paris APHP Hôpital Saint Louis Centre d'Investigations Cliniques Paris France
See more in PubMed
Huang C., Wang Y., Li X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. PubMed PMC
Huang C., Huang L., Wang Y., et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021;397:220–232. PubMed PMC
Lee L.Y., Cazier J.B., Angelis V., et al. COVID-19 mortality in patients with cancer on chemotherapy or other anticancer treatments: a prospective cohort study. Lancet. 2020;395:1919–1926. PubMed PMC
Passamonti F., Cattaneo C., Arcaini L., et al. Clinical characteristics and risk factors associated with COVID-19 severity in patients with haematological malignancies in Italy: a retrospective, multicentre, cohort study. Lancet Haematol. 2020;7:e737–e745. PubMed PMC
Garcia-Suarez J., de la Cruz J., Cedillo A., et al. Impact of hematologic malignancy and type of cancer therapy on COVID-19 severity and mortality: lessons from a large population-based registry study. J Hematol Oncol. 2020;13:133. PubMed PMC
Wood W.A., Neuberg D.S., Thompson J.C., et al. Outcomes of patients with hematologic malignancies and COVID-19: a report from the ASH Research Collaborative Data Hub. Blood Adv. 2020;4:5966–5975. PubMed PMC
Vijenthira A., Gong I.Y., Fox T.A., et al. Outcomes of patients with hematologic malignancies and COVID-19: a systematic review and meta-analysis of 3377 patients. Blood. 2020;136:2881–2892. PubMed PMC
Chari A., Samur M.K., Martinez-Lopez J., et al. Clinical features associated with COVID-19 outcome in multiple myeloma: first results from the International Myeloma Society data set. Blood. 2020;136:3033–3040. PubMed PMC
Mato A.R., Roeker L.E., Lamanna N., et al. Outcomes of COVID-19 in patients with CLL: a multicenter international experience. Blood. 2020;136:1134–1143. PubMed PMC
Regalado-Artamendi I., Jimenez-Ubieto A., Hernandez-Rivas J.A., et al. Risk factors and mortality of COVID-19 in patients with lymphoma: a multicenter study. Hemasphere. 2021;5:e538. PubMed PMC
Sharma A., Bhatt N.S., St Martin A., et al. Clinical characteristics and outcomes of COVID-19 in haematopoietic stem-cell transplantation recipients: an observational cohort study. Lancet Haematol. 2021;8:e185–e193. PubMed PMC
Passamonti F., Romano A., Salvini M., et al. COVID-19 elicits an impaired antibody response against SARS-CoV-2 in patients with haematological malignancies. Br J Haematol. 2021;195:371–377. PubMed PMC
Toyoshima Y., Nemoto K., Matsumoto S., et al. SARS-CoV-2 genomic variations associated with mortality rate of COVID-19. J Hum Genet. 2020;65:1075–1082. PubMed PMC
Herzog Tzarfati K., Gutwein O., Apel A., et al. BNT162b2 COVID-19 vaccine is significantly less effective in patients with hematologic malignancies. Am J Hematol. 2021;96:1195–1203. PubMed PMC
Maneikis K., Sablauskas K., Ringeleviciute U., et al. Immunogenicity of the BNT162b2 COVID-19 mRNA vaccine and early clinical outcomes in patients with haematological malignancies in Lithuania: a national prospective cohort study. Lancet Haematol. 2021;8:e583–e592. PubMed PMC
Benda M., Mutschlechner B., Ulmer H., et al. Serological SARS-CoV-2 antibody response, potential predictive markers and safety of BNT162b2 mRNA COVID-19 vaccine in haematological and oncological patients. Br J Haematol. 2021;195:523–531. PubMed PMC
Greenberger L.M., Saltzman L.A., Senefeld J.W., et al. Antibody response to SARS-CoV-2 vaccines in patients with hematologic malignancies. Cancer Cell. 2021;39:1031–1033. PubMed PMC
Herishanu Y., Avivi I., Aharon A., et al. Efficacy of the BNT162b2 mRNA COVID-19 vaccine in patients with chronic lymphocytic leukemia. Blood. 2021;137:3165–3173. PubMed PMC
Roeker L.E., Knorr D.A., Thompson M.C., et al. COVID-19 vaccine efficacy in patients with chronic lymphocytic leukemia. Leukemia. 2021;35:2703–2705. PubMed PMC
Perry C., Luttwak E., Balaban R., et al. Efficacy of the BNT162b2 mRNA COVID-19 vaccine in patients with B-cell non-Hodgkin lymphoma. Blood Adv. 2021;5:3053–3061. PubMed PMC
Ghione P., Gu J.J., Attwood K., et al. Impaired humoral responses to COVID-19 vaccination in patients with lymphoma receiving B-cell directed therapies. Blood. 2021;138:811–814. PubMed PMC
Lim S.H., Campbell N., Johnson M., et al. Antibody responses after SARS-CoV-2 vaccination in patients with lymphoma. Lancet Haematol. 2021;8:e542–e544. PubMed PMC
Gurion R., Rozovski U., Itchaki G., et al. Humoral serologic response to the BNT162b2 vaccine is abrogated in lymphoma patients within the first 12 months following treatment with anti-CD2O antibodies. Haematologica. 2022;107(3):715–720. PubMed PMC
Terpos E., Gavriatopoulou M., Ntanasis-Stathopoulos I., et al. The neutralizing antibody response post COVID-19 vaccination in patients with myeloma is highly dependent on the type of anti-myeloma treatment. Blood Cancer J. 2021;11:138. PubMed PMC
Van Oekelen O., Gleason C.R., Agte S., et al. Highly variable SARS-CoV-2 spike antibody responses to two doses of COVID-19 RNA vaccination in patients with multiple myeloma. Cancer Cell. 2021;39:1028–1030. PubMed PMC
Pimpinelli F., Marchesi F., Piaggio G., et al. Fifth-week immunogenicity and safety of anti-SARS-CoV-2 BNT162b2 vaccine in patients with multiple myeloma and myeloproliferative malignancies on active treatment: preliminary data from a single institution. J Hematol Oncol. 2021;14:81. PubMed PMC
Bird S., Panopoulou A., Shea R.L., et al. Response to first vaccination against SARS-CoV-2 in patients with multiple myeloma. Lancet Haematol. 2021;8:e389–e392. PubMed PMC
Terpos E., Trougakos I.P., Gavriatopoulou M., et al. Low neutralizing antibody responses against SARS-CoV-2 in older patients with myeloma after the first BNT162b2 vaccine dose. Blood. 2021;137:3674–3676. PubMed PMC
Pimpinelli F., Marchesi F., Piaggio G., et al. Lower response to BNT162b2 vaccine in patients with myelofibrosis compared to polycythemia vera and essential thrombocythemia. J Hematol Oncol. 2021;14:119. PubMed PMC
Harrington P., de Lavallade H., Doores K.J., et al. Single dose of BNT162b2 mRNA vaccine against SARS-CoV-2 induces high frequency of neutralising antibody and polyfunctional T-cell responses in patients with myeloproliferative neoplasms. Leukemia. 2021;35:3573–3577. PubMed PMC
Harrington P., Doores K.J., Radia D., et al. Single dose of BNT162b2 mRNA vaccine against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) induces neutralising antibody and polyfunctional T-cell responses in patients with chronic myeloid leukaemia. Br J Haematol. 2021;194:999–1006. PubMed PMC
Harrington P., Harrison C.N., Dillon R., et al. Evidence of robust memory T-cell responses in patients with chronic myeloproliferative neoplasms following infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) Br J Haematol. 2021;193:692–696. PubMed PMC
Cowling B.J., Ali S.T., Ng T.W.Y., et al. Impact assessment of non-pharmaceutical interventions against coronavirus disease 2019 and influenza in Hong Kong: an observational study. Lancet Public Health. 2020;5:e279–e288. PubMed PMC
Bartoszko J.J., Farooqi M.A.M., Alhazzani W., Loeb M. Medical masks vs N95 respirators for preventing COVID-19 in healthcare workers: a systematic review and meta-analysis of randomized trials. Influenza Other Respir Viruses. 2020;14:365–373. PubMed PMC
Cheng V.C., Wong S.C., Chuang V.W., et al. The role of community-wide wearing of face mask for control of coronavirus disease 2019 (COVID-19) epidemic due to SARS-CoV-2. J Infect. 2020;81:107–114. PubMed PMC
Lewnard J.A., Liu V.X., Jackson M.L., et al. Incidence, clinical outcomes, and transmission dynamics of severe coronavirus disease 2019 in California and Washington: prospective cohort study. BMJ. 2020;369:m1923. PubMed PMC
Matrajt L., Leung T. Evaluating the effectiveness of social distancing interventions to delay or flatten the epidemic curve of coronavirus disease. Emerg Infect Dis. 2020;26:1740–1748. PubMed PMC
Cowling B.J., Zhou Y., Ip D.K., et al. Face masks to prevent transmission of influenza virus: a systematic review. Epidemiol Infect. 2010;138:449–456. PubMed
Leung N.H.L., Chu D.K.W., Shiu E.Y.C., et al. Respiratory virus shedding in exhaled breath and efficacy of face masks. Nat Med. 2020;26:676–680. PubMed PMC
Cho S.Y., Park S.S., Lee J.Y., et al. Successful prevention and screening strategies for COVID-19: focus on patients with haematologic diseases. Br J Haematol. 2020;190:e33–e37. PubMed PMC
van de Haar J., Hoes L.R., Coles C.E., et al. Caring for patients with cancer in the COVID-19 era. Nat Med. 2020;26:665–671. PubMed
Weisel K.C., Morgner-Miehlke A., Petersen C., et al. Implications of SARS-CoV-2 infection and COVID-19 crisis on clinical cancer care: report of the University Cancer Center Hamburg. Oncol Res Treat. 2020;43:307–313. PubMed PMC
Lemaitre M., Meret T., Rothan-Tondeur M., et al. Effect of influenza vaccination of nursing home staff on mortality of residents: a cluster-randomized trial. J Am Geriatr Soc. 2009;57:1580–1586. PubMed
Baden L.R., El Sahly H.M., Essink B., et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021;384:403–416. PubMed PMC
Polack F.P., Thomas S.J., Kitchin N., et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020;383:2603–2615. PubMed PMC
Voysey M., Clemens S.A.C., Madhi S.A., et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet. 2021;397:99–111. PubMed PMC
Meisel R., Kuypers L., Dirksen U., et al. Pneumococcal conjugate vaccine provides early protective antibody responses in children after related and unrelated allogeneic hematopoietic stem cell transplantation. Blood. 2007;109:2322–2326. PubMed
Beck C.R., McKenzie B.C., Hashim A.B., et al. Influenza vaccination for immunocompromised patients: summary of a systematic review and meta-analysis. Influenza. Other Respir Viruses. 2013;7(suppl 2):72–75. PubMed PMC
Bitterman R., Eliakim-Raz N., Vinograd I., et al. Influenza vaccines in immunosuppressed adults with cancer. Cochrane Database Syst Rev. 2018;2:CD008983. PubMed PMC
Winston D.J., Mullane K.M., Cornely O.A., et al. Inactivated varicella zoster vaccine in autologous haemopoietic stem-cell transplant recipients: an international, multicentre, randomised, double-blind, placebo-controlled trial. Lancet. 2018;391:2116–2127. PubMed
Rieger C.T., Liss B., Mellinghoff S., et al. Anti-infective vaccination strategies in patients with hematologic malignancies or solid tumors-Guideline of the Infectious Diseases Working Party (AGIHO) of the German Society for Hematology and Medical Oncology (DGHO) Ann Oncol. 2018;29:1354–1365. PubMed PMC
Mikulska M., Cesaro S., de Lavallade H., et al. Vaccination of patients with haematological malignancies who did not have transplantations: guidelines from the 2017 European Conference on Infections in Leukaemia (ECIL 7) Lancet Infect Dis. 2019;19:e188–e199. PubMed
Cordonnier C., Einarsdottir S., Cesaro S., et al. Vaccination of haemopoietic stem cell transplant recipients: guidelines of the 2017 European Conference on Infections in Leukaemia (ECIL 7) Lancet Infect Dis. 2019;19:e200–e212. PubMed
Giesen N., Sprute R., Rüthrich M., et al. 2021 update of the AGIHO guideline on evidence-based management of COVID-19 in patients with cancer regarding diagnostics, viral shedding, vaccination and therapy. Eur J Cancer. 2021;147:154–160. PubMed PMC
Wijn D.H., Groeneveld G.H., Vollaard A.M., et al. Influenza vaccination in patients with lung cancer receiving anti-programmed death receptor 1 immunotherapy does not induce immune-related adverse events. Eur J Cancer. 2018;104:182–187. PubMed
Bayle A., Khettab M., Lucibello F., et al. Immunogenicity and safety of influenza vaccination in cancer patients receiving checkpoint inhibitors targeting PD-1 or PD-L1. Ann Oncol. 2020;31:959–961. PubMed
Muir K.L., Kallam A., Koepsell S.A., Gundabolu K. Thrombotic thrombocytopenia after Ad26.COV2.S vaccination. N Engl J Med. 2021;384:1964–1965. PubMed PMC
Sadoff J., Davis K., Douoguih M. Thrombotic thrombocytopenia after Ad26.COV2.S vaccination - response from the manufacturer. N Engl J Med. 2021;384:1965–1966. PubMed PMC
Bourguignon A., Arnold D.M., Warkentin T.E., et al. Adjunct immune globulin for vaccine-induced immune thrombotic thrombocytopenia. N Engl J Med. 2021;385:720–728. PubMed PMC
Greinacher A., Thiele T., Warkentin T.E., et al. Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. N Engl J Med. 2021;384:2092–2101. PubMed PMC
Larson K.F., Ammirati E., Adler E.D., et al. Myocarditis after BNT162b2 and mRNA-1273 vaccination. Circulation. 2021;144:506–508. PubMed PMC
Arons M.M., Hatfield K.M., Reddy S.C., et al. Presymptomatic SARS-CoV-2 infections and transmission in a skilled nursing facility. N Engl J Med. 2020;382:2081–2090. PubMed PMC
Mondi A., Lorenzini P., Castilletti C., et al. Risk and predictive factors of prolonged viral RNA shedding in upper respiratory specimens in a large cohort of COVID-19 patients admitted in an Italian Reference Hospital. Int J Infect Dis. 2021;105:532–539. PubMed PMC
Avanzato V.A., Matson M.J., Seifert S.N., et al. Case study: prolonged infectious SARS-CoV-2 shedding from an asymptomatic immunocompromised individual with cancer. Cell. 2020;183:1901–1912.e9. PubMed PMC
Hao S., Lian J., Lu Y., et al. Decreased B cells on admission associated with prolonged viral RNA shedding from the respiratory tract in coronavirus disease 2019: a case-control study. J Infect Dis. 2020;222:367–371. PubMed PMC
van Kampen JJA, van de Vijver D., Fraaij P.L.A., et al. Duration and key determinants of infectious virus shedding in hospitalized patients with coronavirus disease-2019 (COVID-19) Nat Commun. 2021;12:267. PubMed PMC
Courtellemont L., Guinard J., Guillaume C., et al. High performance of a novel antigen detection test on nasopharyngeal specimens for diagnosing SARS-CoV-2 infection. J Med Virol. 2021;93:3152–3157. PubMed PMC
Peña-Rodrígez M., Viera-Segura O., García-Chagollán M., et al. Performance evaluation of a lateral flow assays for nasopharyngeal antigen detection for SARS-CoV-2 diagnosis. J Clin Lab Anal. 2021;35 PubMed PMC
Pérez-García F., Romanyk J., Gómez-Herruz P., et al. Diagnostic performance of CerTest and Panbio antigen rapid diagnostic tests to diagnose SARS-CoV-2 infection. J Clin Virol. 2021;137:104781. PubMed PMC
Pollock N.R., Jacobs J.R., Tran K., et al. Performance and implementation evaluation of the Abbott BinaxNOW rapid antigen test in a high-throughput drive-through community testing site in Massachusetts. J Clin Microbiol. 2021;59 e00083-21. PubMed PMC
Thommes L., Burkert F.R., Öttl K.W., et al. Comparative evaluation of four SARS-CoV-2 antigen tests in hospitalized patients. Int J Infect Dis. 2021;105:144–146. PubMed PMC
Merino P., Guinea J., Muñoz-Gallego I., et al. Multicenter evaluation of the Panbio™ COVID-19 rapid antigen-detection test for the diagnosis of SARS-CoV-2 infection. Clin Microbiol Infect. 2021;27:758–761. PubMed PMC
Silva J., Lucas C., Sundaram M., et al. Saliva viral load is a dynamic unifying correlate of COVID-19 severity and mortality. medRxiv. 2021
Wyllie A.L., Fournier J., Casanovas-Massana A., et al. Saliva or nasopharyngeal swab specimens for detection of SARS-CoV-2. N Engl J Med. 2020;383:1283–1286. PubMed PMC
Wang W., Xu Y., Gao R., et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. 2020;323:1843–1844. PubMed PMC
Moreira V.M., Mascarenhas P., Machado V., et al. Diagnosis of SARS-Cov-2 infection by RT-PCR using specimens other than naso- and oropharyngeal swabs: a systematic review and meta-analysis. Diagnostics (Basel) 2021;11:363. PubMed PMC
Stanoeva K.R., van der Eijk A.A., Meijer A., et al. Towards a sensitive and accurate interpretation of molecular testing for SARS-CoV-2: a rapid review of 264 studies. Euro Surveill. 2021;26:2001134. PubMed PMC
Nawar T., Morjaria S., Kaltsas A., et al. Granulocyte-colony stimulating factor in COVID-19: is it stimulating more than just the bone marrow? Am J Hematol. 2020;95:E210–E213. PubMed PMC
Zhang A.W., Morjaria S., Kaltsas A., et al. The effect of neutropenia and filgrastim (G-CSF) in cancer patients with COVID-19 infection. Clin Infect Dis. 2022;74(4):567–574. PubMed PMC
Fajgenbaum D.C., June C.H. Cytokine storm. N Engl J Med. 2020;383:2255–2273. PubMed PMC
Peyvandi F., Artoni A., Novembrino C., et al. Hemostatic alterations in COVID-19. Haematologica. 2021;106:1472–1475. PubMed PMC
Rhee C., Kanjilal S., Baker M., Klompas M. Duration of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infectivity: when is it safe to discontinue isolation? Clin Infect Dis. 2021;72:1467–1474. PubMed PMC
Rao S.N., Manissero D., Steele V.R., Pareja J. A systematic review of the clinical utility of cycle threshold values in the context of COVID-19. Infect Dis Ther. 2020;9:573–586. PubMed PMC
Aydillo T., Gonzalez-Reiche A.S., Aslam S., et al. Shedding of viable SARS-CoV-2 after immunosuppressive therapy for cancer. N Engl J Med. 2020;383:2586–2588. PubMed PMC
Choi B., Choudhary M.C., Regan J., et al. Persistence and evolution of SARS-CoV-2 in an immunocompromised host. N Engl J Med. 2020;383:2291–2293. PubMed PMC
Treon S.P., Castillo J.J., Skarbnik A.P., et al. The BTK inhibitor ibrutinib may protect against pulmonary injury in COVID-19-infected patients. Blood. 2020;135:1912–1915. PubMed PMC
Dreyling M., Aurer I., Federico M., et al. EHA/ESMO clinical practice gidelines for the management of malignant lymphoma: recommendations for the second phase of the COVID-19 pandemic. Hemasphere. 2021;5:e529. PubMed PMC
Rossi D., Shadman M., Condoluci A., et al. How we manage patients with chronic lymphocytic leukemia during the SARS-CoV-2 Pandemic. Hemasphere. 2020;4:e432. PubMed PMC
Rajkumar S.V., Dimopoulos M.A., Palumbo A., et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15:e538–e548. PubMed
Terpos E., Engelhardt M., Cook G., et al. Management of patients with multiple myeloma in the era of COVID-19 pandemic: a consensus paper from the European Myeloma Network (EMN) Leukemia. 2020;34:2000–2011. PubMed PMC
Terpos E., Kleber M., Engelhardt M., et al. European Myeloma Network guidelines for the management of multiple myeloma-related complications. Haematologica. 2015;100:1254–1266. PubMed PMC
Terpos E., Morgan G., Dimopoulos M.A., et al. International Myeloma Working Group recommendations for the treatment of multiple myeloma-related bone disease. J Clin Oncol. 2013;31:2347–2357. PubMed PMC
Kyriakou C., Molloy S., Vrionis F., et al. The role of cement augmentation with percutaneous vertebroplasty and balloon kyphoplasty for the treatment of vertebral compression fractures in multiple myeloma: a consensus statement from the International Myeloma Working Group (IMWG) Blood Cancer J. 2019;9:27. PubMed PMC
Terpos E., Zamagni E., Lentzsch S., et al. Treatment of multiple myeloma-related bone disease: recommendations from the Bone Working Group of the International Myeloma Working Group. Lancet Oncol. 2021;22:e119–e130. PubMed
Lakshman A., Rajkumar S.V., Buadi F.K., et al. Risk stratification of smoldering multiple myeloma incorporating revised IMWG diagnostic criteria. Blood Cancer J. 2018;8:59. PubMed PMC
Rogado J., Gullon P., Obispo B., et al. Prolonged SARS-CoV-2 viral shedding in patients with solid tumours and associated factors. Eur J Cancer. 2021;148:58–60. PubMed PMC
Martinez-Lopez J., Mateos M.V., Encinas C., et al. Multiple myeloma and SARS-CoV-2 infection: clinical characteristics and prognostic factors of inpatient mortality. Blood Cancer J. 2020;10:103. PubMed PMC
Group R.C., Horby P., Lim W.S., et al. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med. 2021;384:693–704. PubMed PMC
Rajkumar S.V. Multiple myeloma: 2020 update on diagnosis, risk-stratification and management. Am J Hematol. 2020;95:548–567. PubMed
Rosinol L., Oriol A., Rios R., et al. Bortezomib, lenalidomide, and dexamethasone as induction therapy prior to autologous transplant in multiple myeloma. Blood. 2019;134:1337–1345. PubMed PMC
Attal M., Lauwers-Cances V., Hulin C., et al. Lenalidomide, bortezomib, and dexamethasone with transplantation for myeloma. N Engl J Med. 2017;376:1311–1320. PubMed PMC
Dimopoulos M.A., Moreau P., Terpos E., et al. Multiple myeloma: EHA-ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2021;32:309–322. PubMed
Ntanasis-Stathopoulos I., Gavriatopoulou M., Kastritis E., et al. Multiple myeloma: role of autologous transplantation. Cancer Treat Rev. 2020;82:101929. PubMed
Moreau P., Attal M., Hulin C., et al. Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): a randomised, open-label, phase 3 study. Lancet. 2019;394:29–38. PubMed
Yimer H., Melear J., Faber E., et al. Daratumumab, bortezomib, cyclophosphamide and dexamethasone in newly diagnosed and relapsed multiple myeloma: LYRA study. Br J Haematol. 2019;185:492–502. PubMed PMC
Dimopoulos M.A., Leleu X., Palumbo A., et al. Expert panel consensus statement on the optimal use of pomalidomide in relapsed and refractory multiple myeloma. Leukemia. 2014;28:1573–1585. PubMed PMC
Attal M., Richardson P.G., Rajkumar S.V., et al. Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM): a randomised, multicentre, open-label, phase 3 study. Lancet. 2019;394:2096–2107. PubMed
Dimopoulos M.A., Dytfeld D., Grosicki S., et al. Elotuzumab plus pomalidomide and dexamethasone for multiple myeloma. N Engl J Med. 2018;379:1811–1822. PubMed
Chari A., Vogl D.T., Gavriatopoulou M., et al. Oral selinexor-dexamethasone for triple-class refractory multiple myeloma. N Engl J Med. 2019;381:727–738. PubMed
Lonial S., Lee H.C., Badros A., et al. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): a two-arm, randomised, open-label, phase 2 study. Lancet Oncol. 2020;21:207–221. PubMed
Barbui T., Vannucchi A.M., Alvarez-Larran A., et al. High mortality rate in COVID-19 patients with myeloproliferative neoplasms after abrupt withdrawal of ruxolitinib. Leukemia. 2021;35:485–493. PubMed PMC
Breccia M., Abruzzese E., Accurso V., et al. COVID-19 infection in chronic myeloid leukaemia after one year of the pandemic in Italy. A Campus CML report. Br J Haematol. 2022;196:559–565. PubMed PMC