Field experiments underestimate aboveground biomass response to drought
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, metaanalýza, práce podpořená grantem
PubMed
35273367
PubMed Central
PMC9085612
DOI
10.1038/s41559-022-01685-3
PII: 10.1038/s41559-022-01685-3
Knihovny.cz E-zdroje
- MeSH
- biomasa MeSH
- ekosystém * MeSH
- klimatické změny MeSH
- období sucha * MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
Researchers use both experiments and observations to study the impacts of climate change on ecosystems, but results from these contrasting approaches have not been systematically compared for droughts. Using a meta-analysis and accounting for potential confounding factors, we demonstrate that aboveground biomass responded only about half as much to experimentally imposed drought events as to natural droughts. Our findings indicate that experimental results may underestimate climate change impacts and highlight the need to integrate results across approaches.
CREAF Cerdanyola del Vallès Spain
CSIC Global Ecology Unit CREAF CSIC UAB Bellaterra Spain
Department of Biological Sciences Purdue University West Lafayette IN USA
Department of Ecology University of Innsbruck Innsbruck Austria
Department of Forestry and Natural Resources Purdue University West Lafayette IN USA
Experimental Plant Ecology University of Greifswald Greifswald Germany
Global Change Research Institute of the Czech Academy of Sciences Brno Czech Republic
Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam Amsterdam the Netherlands
Institute of Ecology and Botany Centre for Ecological Research Vácrátót Hungary
Namibia University of Science and Technology Windhoek Namibia
Plant Ecology Group University of Tübingen Tübingen Germany
Plants and Ecosystems Department of Biology University of Antwerp Wilrijk Belgium
Zobrazit více v PubMed
De Boeck HJ, et al. Global change experiments: challenges and opportunities. BioScience. 2015;65:922–931. doi: 10.1093/biosci/biv099. DOI
Leuzinger S, Fatichi S, Cusens J, Körner C, Niklaus PA. The ‘island effect’ in terrestrial global change experiments: a problem with no solution? AoB Plants. 2015;7:plv092. doi: 10.1093/aobpla/plv092. PubMed DOI PMC
Hillebrand H, et al. Thresholds for ecological responses to global change do not emerge from empirical data. Nat. Ecol. Evol. 2020;4:1502–1509. doi: 10.1038/s41559-020-1256-9. PubMed DOI PMC
Crowther TW, et al. Quantifying global soil carbon losses in response to warming. Nature. 2016;540:104–108. doi: 10.1038/nature20150. PubMed DOI
Anderegg WRL, et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science. 2015;349:528–532. doi: 10.1126/science.aab1833. PubMed DOI
Wolkovich EM, et al. Warming experiments underpredict plant phenological responses to climate change. Nature. 2012;485:494–497. doi: 10.1038/nature11014. PubMed DOI
Trenberth KE, et al. Global warming and changes in drought. Nat. Clim. Change. 2014;4:17–22. doi: 10.1038/nclimate2067. DOI
Cook BI, et al. Twenty-first century drought projections in the CMIP6 forcing scenarios. Earth’s Future. 2020;8:e2019EF001461. doi: 10.1029/2019EF001461. DOI
Reichstein M, et al. Climate extremes and the carbon cycle. Nature. 2013;500:287–295. doi: 10.1038/nature12350. PubMed DOI
Knapp AK, et al. A reality check for climate change experiments: do they reflect the real world? Ecology. 2018;99:2145–2151. doi: 10.1002/ecy.2474. PubMed DOI
Slette IJ, et al. How ecologists define drought, and why we should do better. Glob. Change Biol. 2019;25:3193–3200. doi: 10.1111/gcb.14747. PubMed DOI
Gao J, Zhang L, Tang Z, Wu S. A synthesis of ecosystem aboveground productivity and its process variables under simulated drought stress. J. Ecol. 2019;107:2519–2531. doi: 10.1111/1365-2745.13218. DOI
Zhang F, et al. When does extreme drought elicit extreme ecological responses? J. Ecol. 2019;107:2553–2563. doi: 10.1111/1365-2745.13226. DOI
Song J, et al. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nat. Ecol. Evol. 2019;3:1309–1320. doi: 10.1038/s41559-019-0958-3. PubMed DOI
Moise ERD, Henry HAL. Like moths to a street lamp: exaggerated animal densities in plot-level global change field experiments. Oikos. 2010;119:791–795. doi: 10.1111/j.1600-0706.2009.18343.x. DOI
Korell L, Auge H, Chase JM, Harpole S, Knight TM. We need more realistic climate change experiments for understanding ecosystems of the future. Glob. Change Biol. 2020;26:325–327. doi: 10.1111/gcb.14797. PubMed DOI
De Boeck HJ, Veerbeck H. Drought-associated changes in climate and their relevance for ecosystem experiments and models. Biogeosciences. 2011;8:1121–1130. doi: 10.5194/bg-8-1121-2011. DOI
Dooley SR, Treseder KK. The effect of fire on microbial biomass: a meta-analysis of field studies. Biogeochemistry. 2012;109:49–61. doi: 10.1007/s10533-011-9633-8. DOI
Jauni M, Gripenberg S, Ramula S. Non-native plant species benefit from disturbance: a meta-analysis. Oikos. 2015;124:122–129. doi: 10.1111/oik.01416. DOI
Murphy GEP, Romanuk TN. A meta-analysis of declines in local species richness from human disturbances. Ecol. Evol. 2014;4:91–103. doi: 10.1002/ece3.909. PubMed DOI PMC
Rossetti MR, Tscharntke T, Aguilar R, Batáry P. Responses of insect herbivores and herbivory to habitat fragmentation: a hierarchical meta-analysis. Ecol. Lett. 2017;20:264–272. doi: 10.1111/ele.12723. PubMed DOI
Ettinger AK, et al. Winter temperatures predominate in spring phenological responses to warming. Nat. Clim. Change. 2020;10:1137–1142. doi: 10.1038/s41558-020-00917-3. DOI
Terrer C, et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change. 2019;9:684–689. doi: 10.1038/s41558-019-0545-2. DOI
Wu Z, Dijkstra P, Koch GW, Peñuelas J, Hungate BA. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob. Change Biol. 2011;17:927–942. doi: 10.1111/j.1365-2486.2010.02302.x. DOI
Kröel-Dulay, G., Mojzes, A. & Szitár, K. Data and code to ‘Field experiments underestimate aboveground biomass response to drought’. figshare 10.6084/m9.figshare.17881073 (2022). PubMed PMC
Rohatgi, A. WebPlotDigitizer v.4.2 https://automeris.io/WebPlotDigitizer (2019).
DeSoto L, et al. Low growth resilience to drought is related to future mortality risk in trees. Nat. Commun. 2020;11:545. doi: 10.1038/s41467-020-14300-5. PubMed DOI PMC
Padullés Cubino J, et al. Contrasting impacts of cultivated exotics on the functional diversity of domestic gardens in three regions with different aridity. Ecosystems. 2021;24:875–890. doi: 10.1007/s10021-020-00556-x. DOI
Trabucco, A. & Zomer, R. Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v.2. figshare 10.6084/m9.figshare.7504448.v3 (2019).
Nakagawa S, Santos ES. Methodological issues and advances in biological meta-analysis. Evol. Ecol. 2012;26:1253–1274. doi: 10.1007/s10682-012-9555-5. DOI
Koricheva J, Gurevitch J. Uses and misuses of meta-analysis in plant ecology. J. Ecol. 2014;102:828–844. doi: 10.1111/1365-2745.12224. DOI
Van Groenigen KJ, Osenberg CW, Hungate BA. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature. 2011;475:214–216. doi: 10.1038/nature10176. PubMed DOI
Mengersen, K., Schmid, C. H., Jennions, M. D. & Gurevitch, J. in Handbook of Meta-analysis in Ecology and Evolution (eds Koricheva, J. et al.) 89–107 (Princeton Univ. Press, 2013).
Pittelkow CM, et al. Productivity limits and potentials of the principles of conservation agriculture. Nature. 2015;517:365–368. doi: 10.1038/nature13809. PubMed DOI
Hedges, L. V. & Olkin, I. Statistical Methods for Meta-analysis (Academic Press, 1985).
R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021); https://www.R-project.org
Viechtbauer W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 2010;36:1–48. doi: 10.18637/jss.v036.i03. DOI
Schielzeth H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 2010;1:103–113. doi: 10.1111/j.2041-210X.2010.00012.x. DOI
Bartoń, K. MuMIn: Multi-model inference. R package version 1.43.17 https://cran.r-project.org/package=MuMIn (2020).
Johnson JB, Omland KS. Model selection in ecology and evolution. Trends Ecol. Evol. 2004;19:101–108. doi: 10.1016/j.tree.2003.10.013. PubMed DOI
Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer Science and Business Media, 2009).
Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.1.5 https://cran.r-project.org/package%3dDHARMa (2017).
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team nlme: Linear and nonlinear mixed effects models. R package version 3.1-149 https://CRAN.R-project.org/package=nlme (2020).
Nakagawa S, Schielzeth H. A general and simple method for obtaining R2 from generalized linear mixed effects models. Methods Ecol. Evol. 2013;4:133–142. doi: 10.1111/j.2041-210x.2012.00261.x. DOI
Jaeger, B. r2glmm: Computes R squared for mixed (multilevel) models. R package version 0.1.2 https://cran.r-project.org/package=r2glmm (2017).
Brooks ME, et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 2017;9:378–400. doi: 10.32614/RJ-2017-066. DOI
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI
Ruppert JC, et al. Quantifying drylands’ drought resistance and recovery: the importance of drought intensity, dominant life history and grazing regime. Glob. Change Biol. 2015;21:1258–1270. doi: 10.1111/gcb.12777. PubMed DOI
Rosenberg MS. The file-drawer problem revisited: a general weighted method for calculating fail-safe numbers in meta-analysis. Evolution. 2005;59:464–468. doi: 10.1111/j.0014-3820.2005.tb01004.x. PubMed DOI
Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. Br. Med. J. 1997;315:629–634. doi: 10.1136/bmj.315.7109.629. PubMed DOI PMC
Extreme drought impacts have been underestimated in grasslands and shrublands globally
Field experiments underestimate aboveground biomass response to drought
figshare
10.6084/m9.figshare.17881073