Field experiments underestimate aboveground biomass response to drought

. 2022 May ; 6 (5) : 540-545. [epub] 20220310

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, metaanalýza, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35273367
Odkazy

PubMed 35273367
PubMed Central PMC9085612
DOI 10.1038/s41559-022-01685-3
PII: 10.1038/s41559-022-01685-3
Knihovny.cz E-zdroje

Researchers use both experiments and observations to study the impacts of climate change on ecosystems, but results from these contrasting approaches have not been systematically compared for droughts. Using a meta-analysis and accounting for potential confounding factors, we demonstrate that aboveground biomass responded only about half as much to experimentally imposed drought events as to natural droughts. Our findings indicate that experimental results may underestimate climate change impacts and highlight the need to integrate results across approaches.

Erratum v

PubMed

Zobrazit více v PubMed

De Boeck HJ, et al. Global change experiments: challenges and opportunities. BioScience. 2015;65:922–931. doi: 10.1093/biosci/biv099. DOI

Leuzinger S, Fatichi S, Cusens J, Körner C, Niklaus PA. The ‘island effect’ in terrestrial global change experiments: a problem with no solution? AoB Plants. 2015;7:plv092. doi: 10.1093/aobpla/plv092. PubMed DOI PMC

Hillebrand H, et al. Thresholds for ecological responses to global change do not emerge from empirical data. Nat. Ecol. Evol. 2020;4:1502–1509. doi: 10.1038/s41559-020-1256-9. PubMed DOI PMC

Crowther TW, et al. Quantifying global soil carbon losses in response to warming. Nature. 2016;540:104–108. doi: 10.1038/nature20150. PubMed DOI

Anderegg WRL, et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science. 2015;349:528–532. doi: 10.1126/science.aab1833. PubMed DOI

Wolkovich EM, et al. Warming experiments underpredict plant phenological responses to climate change. Nature. 2012;485:494–497. doi: 10.1038/nature11014. PubMed DOI

Trenberth KE, et al. Global warming and changes in drought. Nat. Clim. Change. 2014;4:17–22. doi: 10.1038/nclimate2067. DOI

Cook BI, et al. Twenty-first century drought projections in the CMIP6 forcing scenarios. Earth’s Future. 2020;8:e2019EF001461. doi: 10.1029/2019EF001461. DOI

Reichstein M, et al. Climate extremes and the carbon cycle. Nature. 2013;500:287–295. doi: 10.1038/nature12350. PubMed DOI

Knapp AK, et al. A reality check for climate change experiments: do they reflect the real world? Ecology. 2018;99:2145–2151. doi: 10.1002/ecy.2474. PubMed DOI

Slette IJ, et al. How ecologists define drought, and why we should do better. Glob. Change Biol. 2019;25:3193–3200. doi: 10.1111/gcb.14747. PubMed DOI

Gao J, Zhang L, Tang Z, Wu S. A synthesis of ecosystem aboveground productivity and its process variables under simulated drought stress. J. Ecol. 2019;107:2519–2531. doi: 10.1111/1365-2745.13218. DOI

Zhang F, et al. When does extreme drought elicit extreme ecological responses? J. Ecol. 2019;107:2553–2563. doi: 10.1111/1365-2745.13226. DOI

Song J, et al. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nat. Ecol. Evol. 2019;3:1309–1320. doi: 10.1038/s41559-019-0958-3. PubMed DOI

Moise ERD, Henry HAL. Like moths to a street lamp: exaggerated animal densities in plot-level global change field experiments. Oikos. 2010;119:791–795. doi: 10.1111/j.1600-0706.2009.18343.x. DOI

Korell L, Auge H, Chase JM, Harpole S, Knight TM. We need more realistic climate change experiments for understanding ecosystems of the future. Glob. Change Biol. 2020;26:325–327. doi: 10.1111/gcb.14797. PubMed DOI

De Boeck HJ, Veerbeck H. Drought-associated changes in climate and their relevance for ecosystem experiments and models. Biogeosciences. 2011;8:1121–1130. doi: 10.5194/bg-8-1121-2011. DOI

Dooley SR, Treseder KK. The effect of fire on microbial biomass: a meta-analysis of field studies. Biogeochemistry. 2012;109:49–61. doi: 10.1007/s10533-011-9633-8. DOI

Jauni M, Gripenberg S, Ramula S. Non-native plant species benefit from disturbance: a meta-analysis. Oikos. 2015;124:122–129. doi: 10.1111/oik.01416. DOI

Murphy GEP, Romanuk TN. A meta-analysis of declines in local species richness from human disturbances. Ecol. Evol. 2014;4:91–103. doi: 10.1002/ece3.909. PubMed DOI PMC

Rossetti MR, Tscharntke T, Aguilar R, Batáry P. Responses of insect herbivores and herbivory to habitat fragmentation: a hierarchical meta-analysis. Ecol. Lett. 2017;20:264–272. doi: 10.1111/ele.12723. PubMed DOI

Ettinger AK, et al. Winter temperatures predominate in spring phenological responses to warming. Nat. Clim. Change. 2020;10:1137–1142. doi: 10.1038/s41558-020-00917-3. DOI

Terrer C, et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change. 2019;9:684–689. doi: 10.1038/s41558-019-0545-2. DOI

Wu Z, Dijkstra P, Koch GW, Peñuelas J, Hungate BA. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob. Change Biol. 2011;17:927–942. doi: 10.1111/j.1365-2486.2010.02302.x. DOI

Kröel-Dulay, G., Mojzes, A. & Szitár, K. Data and code to ‘Field experiments underestimate aboveground biomass response to drought’. figshare 10.6084/m9.figshare.17881073 (2022). PubMed PMC

Rohatgi, A. WebPlotDigitizer v.4.2 https://automeris.io/WebPlotDigitizer (2019).

DeSoto L, et al. Low growth resilience to drought is related to future mortality risk in trees. Nat. Commun. 2020;11:545. doi: 10.1038/s41467-020-14300-5. PubMed DOI PMC

Padullés Cubino J, et al. Contrasting impacts of cultivated exotics on the functional diversity of domestic gardens in three regions with different aridity. Ecosystems. 2021;24:875–890. doi: 10.1007/s10021-020-00556-x. DOI

Trabucco, A. & Zomer, R. Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v.2. figshare 10.6084/m9.figshare.7504448.v3 (2019).

Nakagawa S, Santos ES. Methodological issues and advances in biological meta-analysis. Evol. Ecol. 2012;26:1253–1274. doi: 10.1007/s10682-012-9555-5. DOI

Koricheva J, Gurevitch J. Uses and misuses of meta-analysis in plant ecology. J. Ecol. 2014;102:828–844. doi: 10.1111/1365-2745.12224. DOI

Van Groenigen KJ, Osenberg CW, Hungate BA. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature. 2011;475:214–216. doi: 10.1038/nature10176. PubMed DOI

Mengersen, K., Schmid, C. H., Jennions, M. D. & Gurevitch, J. in Handbook of Meta-analysis in Ecology and Evolution (eds Koricheva, J. et al.) 89–107 (Princeton Univ. Press, 2013).

Pittelkow CM, et al. Productivity limits and potentials of the principles of conservation agriculture. Nature. 2015;517:365–368. doi: 10.1038/nature13809. PubMed DOI

Hedges, L. V. & Olkin, I. Statistical Methods for Meta-analysis (Academic Press, 1985).

R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021); https://www.R-project.org

Viechtbauer W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 2010;36:1–48. doi: 10.18637/jss.v036.i03. DOI

Schielzeth H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 2010;1:103–113. doi: 10.1111/j.2041-210X.2010.00012.x. DOI

Bartoń, K. MuMIn: Multi-model inference. R package version 1.43.17 https://cran.r-project.org/package=MuMIn (2020).

Johnson JB, Omland KS. Model selection in ecology and evolution. Trends Ecol. Evol. 2004;19:101–108. doi: 10.1016/j.tree.2003.10.013. PubMed DOI

Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer Science and Business Media, 2009).

Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.1.5 https://cran.r-project.org/package%3dDHARMa (2017).

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team nlme: Linear and nonlinear mixed effects models. R package version 3.1-149 https://CRAN.R-project.org/package=nlme (2020).

Nakagawa S, Schielzeth H. A general and simple method for obtaining R2 from generalized linear mixed effects models. Methods Ecol. Evol. 2013;4:133–142. doi: 10.1111/j.2041-210x.2012.00261.x. DOI

Jaeger, B. r2glmm: Computes R squared for mixed (multilevel) models. R package version 0.1.2 https://cran.r-project.org/package=r2glmm (2017).

Brooks ME, et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 2017;9:378–400. doi: 10.32614/RJ-2017-066. DOI

Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI

Ruppert JC, et al. Quantifying drylands’ drought resistance and recovery: the importance of drought intensity, dominant life history and grazing regime. Glob. Change Biol. 2015;21:1258–1270. doi: 10.1111/gcb.12777. PubMed DOI

Rosenberg MS. The file-drawer problem revisited: a general weighted method for calculating fail-safe numbers in meta-analysis. Evolution. 2005;59:464–468. doi: 10.1111/j.0014-3820.2005.tb01004.x. PubMed DOI

Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. Br. Med. J. 1997;315:629–634. doi: 10.1136/bmj.315.7109.629. PubMed DOI PMC

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.17881073

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...