Circulating levels of WISP-1 (Wnt1-inducible signaling pathway protein 1) and other selected adipokines in children with inflammatory bowel disease
Language English Country Czech Republic Media print-electronic
Document type Journal Article
PubMed
35275697
PubMed Central
PMC9150549
DOI
10.33549/physiolres.934854
PII: 934854
Knihovny.cz E-resources
- MeSH
- Adipokines MeSH
- Adiponectin MeSH
- Child MeSH
- Inflammatory Bowel Diseases * MeSH
- Humans MeSH
- CCN Intercellular Signaling Proteins blood MeSH
- Proto-Oncogene Proteins blood MeSH
- Resistin MeSH
- Signal Transduction MeSH
- Case-Control Studies MeSH
- Colitis, Ulcerative * MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Adipokines MeSH
- Adiponectin MeSH
- CCN4 protein, human MeSH Browser
- CCN Intercellular Signaling Proteins MeSH
- Proto-Oncogene Proteins MeSH
- Resistin MeSH
Wnt1 inducible protein-1 signaling pathway (WISP-1) is a relatively new adipokine involved in many cellular processes, including epithelial mucosa healing. The aim of the study was to compare circulating levels of WISP-1 and other selected adipokines [adiponectin, resistin and retinol-binding protein 4 (RBP-4)] in children with inflammatory bowel disease (IBD) with healthy controls and to investigate possible differences between Crohn's disease patients. (CD) or ulcerative colitis (UC). The study was performed as a case-control study. In addition to adipokines, anthropometric, lipid parameters, markers of inflammation or disease activity were evaluated in all participants. Compared to healthy controls (n=20), significantly lower levels of adiponectin and higher levels of resistin and WISP-1 were found in patients with IBD (n=58). Elevation of WISP-1 was detected only in the CD group (n=31). There were no differences in RBP-4 levels between the groups. Adiponectin, WISP-1 and RBP-4 were independently associated with body mass index only, resistin levels were associated with C-reactive protein levels and leukocyte counts. Adverse adipokines production reflects presence of dysfunctional fat tissue in IBD patients. Higher levels of WISP-1 in CD compared to patients with UC may indicate a specific role for mesenteric adipose tissue in WISP-1 production.
See more in PubMed
Bousvaros A. Use of immunomodulators and biologic therapies in children with inflammatory bowel disease. Expert Rev Clin Immunol. 2010;6:659–666. doi: 10.1586/eci.10.46. PubMed DOI
Gonçalves P, Magro F, Martel F. Metabolic inflammation in inflammatory bowel disease: crosstalk between adipose tissue and bowel. Inflamm Bowel Dis. 2015;21:453–467. doi: 10.1097/MIB.0000000000000209. PubMed DOI
Schwarz J, Vecka M, Stožický F, Pomahačová R, Staňková B, Tvrzická E, Kreslová M, Zahálková R, Sýkora J. The assessment of plasma fatty acid profiles in newly diagnosed treatment-naive paediatric Crohn’s disease. Physiol Res. 2021;70:799–808. doi: 10.33549/physiolres.934665. PubMed DOI PMC
Lackeyram D, Young D, Kim CJ, Yang C, Archbold TL, Mine Y, Fan MZ. Interleukin-10 is differentially expressed in the small intestine and the colon experiencing chronic inflammation and ulcerative colitis induced by dextran sodium sulfate in young pigs. Physiol Res. 2017;66:147–162. doi: 10.33549/physiolres.933259. PubMed DOI
Karaskova E, Velganova-Veghova M, Geryk M, Foltenova H, Kucerova V, Karasek D. Role of Adipose Tissue in Inflammatory Bowel Disease. Int J Mol Sci. 2021;22:4226. doi: 10.3390/ijms22084226. PubMed DOI PMC
Weidinger C, Ziegler JF, Letizia M, Schmidt F, Siegmund B. Adipokines and Their Role in Intestinal Inflammation. Front Immunol. 2018;9:1974. doi: 10.3389/fimmu.2018.01974. PubMed DOI PMC
Wang HH, Luo WY, Lin M, Li XJ, Xiang GD, Triganti DS. Plasma asprosin, CCDC80 and ANGPTL4 levels are associated with metabolic and cardiovascular risk in patients with inflammatory bowel disease. Physiol Res. 2021;70:203–211. doi: 10.33549/physiolres.934547. PubMed DOI PMC
Morshedzadeh N, Rahimlou M, Asadzadeh Aghdaei H, Shahrokh S, Reza Zali M, Mirmiran P. Association Between Adipokines Levels with Inflammatory Bowel Disease (IBD): Systematic Reviews. Dig Dis Sci. 2017;62:3280–3286. doi: 10.1007/s10620-017-4806-5. PubMed DOI
Wulster-Radcliffe MC, Ajuwon KM, Wang J, Christian JA, Spurlock ME. Adiponectin differentially regulates cytokines in porcine macrophages. Biochem Biophys Res Commun. 2004;316:924–929. doi: 10.1016/j.bbrc.2004.02.130. PubMed DOI
Singh UP, Singh NP, Guan H, Busbee B, Price RL, Taub DD, Mishra MK, Fayad R, Nagarkatti M, Nagarkatti PS. The emerging role of leptin antagonist as potential therapeutic option for inflammatory bowel disease. Int Rev Immunol. 2014;33:23–33. doi: 10.3109/08830185.2013.809071. PubMed DOI PMC
Sitaraman S, Liu X, Charrier L, Gu LH, Ziegler TR, Gewirtz A, Merlin D. Colonic leptin: source of a novel proinflammatory cytokine involved in IBD. FASEB J. 2004;18:696–698. doi: 10.1096/fj.03-0422fje. PubMed DOI
Harper JW, Zisman TL. Interaction of obesity and inflammatory bowel disease. World J Gastroenterol. 2016;22:7868–7881. doi: 10.3748/wjg.v22.i35.7868. PubMed DOI PMC
Eder P, Adler M, Dobrowolska A, Kamhieh-Milz J, Witowski J. The Role of Adipose Tissue in the Pathogenesis and Therapeutic Outcomes of Inflammatory Bowel Disease. Cells. 2019;8:628. doi: 10.3390/cells8060628. PubMed DOI PMC
Karmiris K, Koutroubakis IE, Xidakis C, Polychronaki M, Kouroumalis EA. The effect of infliximab on circulating levels of leptin, adiponectin and resistin in patients with inflammatory bowel disease. Eur J Gastroenterol Hepatol. 2007;19:789–794. doi: 10.1097/MEG.0b013e3282202bca. PubMed DOI
Valentini L, Wirth EK, Schweizer U, Hengstermann S, Schaper L, Koernicke T, Dietz E, Norman K, Buning C, Winklhofer-Roob BM, Lochs H, Ockenga J. Circulating adipokines and the protective effects of hyperinsulinemia in inflammatory bowel disease. Nutrition. 2009;25:172–181. doi: 10.1016/j.nut.2008.07.020. PubMed DOI
Roma E, Krini M, Hantzi E, Sakka S, Panayiotou I, Margeli A, Papassotiriou I, Kanaka-Gantenbein C. Retinol Binding Protein 4 in children with Inflammatory Bowel Disease: a negative correlation with the disease activity. Hippokratia. 2012;16:360–365. PubMed PMC
Perbal B, Tweedie S, Bruford E. The official unified nomenclature adopted by the HGNC calls for the use of the acronyms, CCN1–6, and discontinuation in the use of CYR61, CTGF, NOV and WISP 1–3 respectively. J Cell Commun Signal. 2018;12:625–629. doi: 10.1007/s12079-018-0491-1. PubMed DOI PMC
Feng M, Jia S. Dual effect of WISP-1 in diverse pathological processes. Chin J Cancer Res. 2016;28:553–560. doi: 10.21147/j.issn.1000-9604.2016.06.01. PubMed DOI PMC
Barchetta I, Cimini FA, Capoccia D, De Gioannis R, Porzia A, Mainiero F, Di Martino M, Bertoccini L, De Bernardinis M, Leonetti F, Baroni MG, Lenzi A, Cavallo MG. WISP1 Is a Marker of Systemic and Adipose Tissue Inflammation in Dysmetabolic Subjects With or Without Type 2 Diabetes. J Endocr Soc. 2017;1:660–670. doi: 10.1210/js.2017-00108. PubMed DOI PMC
Murahovschi V, Pivovarova O, Ilkavets I, Dmitrieva RM, Döcke S, Keyhani-Nejad F, Gögebakan Ö, Osterhoff M, Kemper M, Hornemann S, Markova M, Klöting N, Stockmann M, Weickert MO, Lamounier-Zepter V, Neuhaus P, Konradi A, Dooley S, von Loeffelholz C, Blüher M, Pfeiffer AF, Rudovich N. WISP1 is a novel adipokine linked to inflammation in obesity. Diabetes. 2015;64:856–866. doi: 10.2337/db14-0444. PubMed DOI
Levine A, Koletzko S, Turner D, Escher JC, Cucchiara S, de Ridder L, Kolho KL, Veres G, Russell RK, Paerregaard A, Buderus S, Greer ML, Dias JA, Veereman-Wauters G, Lionetti P, Sladek M, Martin de Carpi J, Staiano A, Ruemmele FM, Wilson DC European Society of Pediatric Gastroenterology, Hepatology and Nutrition. ESPGHAN revised porto criteria for the diagnosis of inflammatory bowel disease in children and adolescents. J Pediatr Gastroenterol Nutr. 2014;58:795–806. doi: 10.1097/MPG.0000000000000239. PubMed DOI
Hyams J, Markowitz J, Otley A, Rosh J, Mack D, Bousvaros A, Kugathasan S, Pfefferkorn M, Tolia V, Evans J, Treem W, Wyllie R, Rothbaum R, del Rosario J, Katz A, Mezoff A, Oliva-Hemker M, Lerer T, Griffiths A Pediatric Inflammatory Bowel Disease Collaborative Research Group. Evaluation of the pediatric crohn disease activity index: a prospective multicenter experience. J Pediatr Gastroenterol Nutr. 2005;41:416–421. doi: 10.1097/01.mpg.0000183350.46795.42. PubMed DOI
Turner D, Hyams J, Markowitz J, Lerer T, Mack DR, Evans J, Pfefferkorn M, Rosh J, Kay M, Crandall W, Keljo D, Otley AR, Kugathasan S, Carvalho R, Oliva-Hemker M, Langton C, Mamula P, Bousvaros A, LeLeiko N, Griffiths AM Pediatric IBD Collaborative Research Group. Appraisal of the pediatric ulcerative colitis activity index (PUCAI) Inflamm Bowel Dis. 2009;15:1218–1223. doi: 10.1002/ibd.20867. PubMed DOI
Zhang Q, Zhang C, Li X, Yu Y, Liang K, Shan X, Zhao K, Niu Q, Tian Z. WISP1 Is increased in intestinal mucosa and contributes to inflammatory cascades in inflammatory bowel disease. Dis Markers. 2016;2016:3547096. doi: 10.1155/2016/3547096. PubMed DOI PMC
Moparthi L, Koch S. Wnt signaling in intestinal inflammation. Differentiation. 2019;108:24–32. doi: 10.1016/j.diff.2019.01.002. PubMed DOI
Quiros M, Nishio H, Neumann PA, Siuda D, Brazil JC, Azcutia V, Hilgarth R, O’Leary MN, Garcia-Hernandez V, Leoni G, Feng M, Bernal G, Williams H, Dedhia PH, Gerner-Smidt C, Spence J, Parkos CA, Denning TL, Nusrat A. Macrophage-derived IL-10 mediates mucosal repair by epithelial WISP-1 signaling. J Clin Invest. 2017;127:3510–3520. doi: 10.1172/JCI90229. PubMed DOI PMC
Tacke C, Aleksandrova K, Rehfeldt M, Murahovschi V, Markova M, Kemper M, Hornemann S, Kaiser U, Honig C, Gerbracht C, Kabisch S, Hörbelt T, Ouwens DM, Weickert MO, Boeing H, Pfeiffer AFH, Pivovarova O, Rudovich N. Assessment of circulating Wnt1 inducible signalling pathway protein 1 (WISP-1)/CCN4 as a novel biomarker of obesity. J Cell Commun Signal. 2018;12:539–548. doi: 10.1007/s12079-017-0427-1. PubMed DOI PMC
Uko V, Vortia E, Achkar JP, Karakas P, Fiocchi C, Worley S, Kay MH. Impact of abdominal visceral adipose tissue on disease outcome in pediatric Crohn's disease. Inflamm Bowel Dis. 2014;20:2286–2291. doi: 10.1097/MIB.0000000000000200. PubMed DOI
Rodrigues VS, Milanski M, Fagundes JJ, Torsoni AS, Ayrizono ML, Nunez CE, Dias CB, Meirelles LR, Dalal S, Coy CS, Velloso LA, Leal RF. Serum levels and mesenteric fat tissue expression of adiponectin and leptin in patients with Crohn's disease. Clin Exp Immunol. 2012;170:358–364. doi: 10.1111/j.1365-2249.2012.04660.x. PubMed DOI PMC
Kahraman R, Calhan T, Sahin A, Ozdil K, Caliskan Z, Bireller ES, Cakmakoglu B. Are adipocytokines inflammatory or metabolic mediators in patients with inflammatory bowel disease? Ther Clin Risk Manag. 2017;13:1295–1301. doi: 10.2147/TCRM.S140618. PubMed DOI PMC
Karmiris K, Koutroubakis IE, Xidakis C, Polychronaki M, Voudouri T, Kouroumalis EA. Circulating levels of leptin, adiponectin, resistin, and ghrelin in inflammatory bowel disease. Inflamm Bowel Dis. 2006;12:100–105. doi: 10.1097/01.MIB.0000200345.38837.46. PubMed DOI
Weigert J, Obermeier F, Neumeier M, Wanninger J, Filarsky M, Bauer S, Aslanidis C, Rogler G, Ott C, Schäffler A, Schölmerich J, Buechler C. Circulating levels of chemerin and adiponectin are higher in ulcerative colitis and chemerin is elevated in Crohn's disease. Inflamm Bowel Dis. 2010;16:630–637. doi: 10.1002/ibd.21091. PubMed DOI
Waluga M, Hartleb M, Boryczka G, Kukla M, Zwirska-Korczala K. Serum adipokines in inflammatory bowel disease. World J Gastroenterol. 2014;20:6912–6917. doi: 10.3748/wjg.v20.i22.6912. PubMed DOI PMC
Chouliaras G, Panayotou I, Margoni D, Mantzou E, Pervanidou P, Manios Y, Chrousos GP, Roma E. Circulating leptin and adiponectin and their relation to glucose metabolism in children with Crohn's disease and ulcerative colitis. Pediatr Res. 2013;74:420–426. doi: 10.1038/pr.2013.114. PubMed DOI
Ortega Moreno L, Sanz-Garcia A, Fernández de la Fuente MJ, Arroyo Solera R, Fernández-Tomé S, Marin AC, Mora-Gutierrez I, Fernández P, Baldan-Martin M, Chaparro M, Gisbert JP, Bernardo D. Serum adipokines as non-invasive biomarkers in Crohn's disease. Sci Rep. 2020;10:18027. doi: 10.1038/s41598-020-74999-6. PubMed DOI PMC
Murray KA, Hoad CL, Garratt J, Kaviani M, Marciani L, Smith JK, Siegmund B, Gowland PA, Humes DJ, Spiller RC. A pilot study of visceral fat and its association with adipokines, stool calprotectin and symptoms in patients with diverticulosis. PLoS One. 2019;14:e0216528. doi: 10.1371/journal.pone.0216528. PubMed DOI PMC
Konrad A, Lehrke M, Schachinger V, Seibold F, Stark R, Ochsenkühn T, Parhofer KG, Göke B, Broedl UC. Resistin is an inflammatory marker of inflammatory bowel disease in humans. Eur J Gastroenterol Hepatol. 2007;19:1070–1074. doi: 10.1097/MEG.0b013e3282f16251. PubMed DOI
Chen CC, Li TC, Li CI, Liu CS, Wang HJ, Lin CC. Serum resistin level among healthy subjects: relationship to anthropometric and metabolic parameters. Metabolism. 2005;54:471–475. doi: 10.1016/j.metabol.2004.10.015. PubMed DOI
Norata GD, Ongari M, Garlaschelli K, Raselli S, Grigore L, Catapano AL. Plasma resistin levels correlate with determinants of the metabolic syndrome. Eur J Endocrinol. 2007;156:279–284. doi: 10.1530/eje.1.02338. PubMed DOI
Stejskal D, Adamovská S, Bartek J, Juráková R, Prosková J. Resistin - concentrations in persons with type 2 diabetes mellitus and in individuals with acute inflammatory disease. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2003;147:63–69. doi: 10.5507/bp.2003.009. PubMed DOI
Jové M, Planavila A, Cabrero A, Novell F, Ros E, Zambón D, Laguna JC, Carrera MV. Reductions in plasma cholesterol levels after fenofibrate treatment are negatively correlated with resistin expression in human adipose tissue. Metabolism. 2003;52:351–355. doi: 10.1053/meta.2003.50055. PubMed DOI
Wessel H, Saeed A, Heegsma J, Connelly MA, Faber KN, Dullaart RPF. Plasma Levels of Retinol Binding Protein 4 Relate to Large VLDL and Small LDL Particles in Subjects with and without Type 2 Diabetes. J Clin Med. 2019;8:1792. doi: 10.3390/jcm8111792. PubMed DOI PMC
Vergès B, Guiu B, Cercueil JP, Duvillard L, Robin I, Buffier P, Bouillet B, Aho S, Brindisi MC, Petit JM. Retinol-binding protein 4 is an independent factor associated with triglycerides and a determinant of very low-density lipoprotein-apolipoprotein B100 catabolism in type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol. 2012;32:3050–3057. doi: 10.1161/ATVBAHA.112.255190. PubMed DOI