Role of Adipose Tissue in Inflammatory Bowel Disease

. 2021 Apr 19 ; 22 (8) : . [epub] 20210419

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33921758

Grantová podpora
FNOL 00098892 Ministerstvo Zdravotnictví Ceské Republiky

Inflammatory bowel diseases (IBDs), chronic inflammatory disorders affecting the gastrointestinal tract, include Crohn's disease and ulcerative colitis. There are increasing clinical and experimental data showing that obesity, especially visceral adiposity, plays a substantial role in the pathogenesis of IBD. Obesity seems to be an important risk factor also for IBD disease severity and clinical outcomes. Visceral adipose tissue is an active multifunctional metabolic organ involved in lipid storage and immunological and endocrine activity. Bowel inflammation penetrates the surrounding adipose tissue along the mesentery. Mesenteric fat serves as a barrier to inflammation and controls immune responses to the translocation of gut bacteria. At the same time, mesenteric adipose tissue may be the principal source of cytokines and adipokines responsible for inflammatory processes associated with IBD. This review is particularly focusing on the potential role of adipokines in IBD pathogenesis and their possible use as promising therapeutic targets.

Zobrazit více v PubMed

Bousvaros A. Use of immunomodulators and biologic therapies in children with inflammatory bowel disease. Expert Rev. Clin. Immunol. 2010;6:659–666. doi: 10.1586/eci.10.46. PubMed DOI

Sýkora J., Pomahačová R., Kreslová M., Cvalínová D., Štych P., Schwarz J. Current global trends in the incidence of pediatric-onset inflammatory bowel disease. World J. Gastroenterol. 2018;24:2741–2763. doi: 10.3748/wjg.v24.i25.2741. PubMed DOI PMC

Gonçalves P., Magro F., Martel F. Metabolic inflammation in inflammatory bowel disease: Crosstalk between adipose tissue and bowel. Inflamm. Bowel Dis. 2015;21:453–467. doi: 10.1097/MIB.0000000000000209. PubMed DOI

Morshedzadeh N., Rahimlou M., Asadzadeh Aghdaei H., Shahrokh S., Reza Zali M., Mirmiran P. Association Between Adipokines Levels with Inflammatory Bowel Disease (IBD): Systematic Reviews. Dig. Dis. Sci. 2017;62:3280–3286. doi: 10.1007/s10620-017-4806-5. PubMed DOI

Jarmakiewicz-Czaja S., Sokal A., Filip R. What was First, Obesity or Inflammatory Bowel Disease? What Does the Gut Microbiota Have to Do with It? Nutrients. 2020;12:3073. doi: 10.3390/nu12103073. PubMed DOI PMC

Singh S., Dulai P.S., Zarrinpar A., Ramamoorthy S., Sandborn W.J. Obesity in IBD: Epidemiology, pathogenesis, disease course and treatment outcomes. Nat. Rev. Gastroenterol. Hepatol. 2017;14:110–121. doi: 10.1038/nrgastro.2016.181. PubMed DOI PMC

Jensen C.B., Ängquist L.H., Mendall M.A., Sørensen T.I.A., Baker J.L., Jess T. Childhood body mass index and risk of inflammatory bowel disease in adulthood: A population-based cohort study. Am. J. Gastroenterol. 2018;113:694–701. doi: 10.1038/s41395-018-0031-x. PubMed DOI

Bhagavathula A.S., Clark C.C.T., Rahmani J., Chattu V.K. Impact of Body Mass Index on the Development of Inflammatory Bowel Disease: A Systematic Review and Dose-Response Analysis of 15.6 Million Participants. Healthcare. 2021;9:35. doi: 10.3390/healthcare9010035. PubMed DOI PMC

Barroso T., Conway F., Emel S., McMillan D., Young D., Karteszi H., Gaya D.R., Gerasimidis K. Patients with inflammatory bowel disease have higher abdominal adiposity and less skeletal mass than healthy controls. Ann. Gastroenterol. 2018;31:566–571. doi: 10.20524/aog.2018.0280. PubMed DOI PMC

Bryant R.V., Schultz C.G., Ooi S., Goess C., Costello S.P., Vincent A.D., Schoeman S.N., Lim A., Bartholomeusz F.D., Travis S.P.L., et al. Obesity in Inflammatory Bowel Disease: Gains in Adiposity despite High Prevalence of Myopenia and Osteopenia. Nutrients. 2018;10:1192. doi: 10.3390/nu10091192. PubMed DOI PMC

Scaldaferri F., Pizzoferrato M., Lopetuso L.R., Musca T., Ingravalle F., Sicignano L.L., Mentella M., Miggiano G., Mele M.C., Gaetani E., et al. Nutrition and IBD: Malnutrition and/or Sarcopenia? A Practical Guide. Gastroenterol. Res. Pract. 2017;2017:8646495. doi: 10.1155/2017/8646495. PubMed DOI PMC

Holt D.Q., Moore G.T., Strauss B.J., Hamilton A.L., De Cruz P., Kamm M.A. Visceral adiposity predicts post-operative Crohn’s disease recurrence. Aliment Pharmacol. Ther. 2017;45:1255–1264. doi: 10.1111/apt.14018. PubMed DOI

Adams D.W., Gurwara S., Silver H.J., Horst S.N., Beaulieu D.B., Schwartz D.A., Seidner D.L. Sarcopenia Is Common in Overweight Patients with Inflammatory Bowel Disease and May Predict Need for Surgery. Inflamm. Bowel Dis. 2017;7:1182–1186. doi: 10.1097/MIB.0000000000001128. PubMed DOI

Ryan E., McNicholas D., Creavin B., Kelly M.E., Walsh T., Beddy D. Sarcopenia and Inflammatory Bowel Disease: A Systematic Review. Inflamm. Bowel Dis. 2019;25:67–73. doi: 10.1093/ibd/izy212. PubMed DOI

Zhang T., Ding C., Xie T., Yang J., Dai X., Lv T., Li Y., Gu L., Wei Y., Gong J., et al. Skeletal muscle depletion correlates with disease activity in ulcerative colitis and is reversed after colectomy. Clin. Nutr. 2017;36:1586–1592. doi: 10.1016/j.clnu.2016.10.004. PubMed DOI

Pavelock N., Masood U., Minchenberg S., Heisih D. Effects of obesity on the course of inflammatory bowel disease. Bayl. Univ. Med. Center Proc. 2019;32:14–17. doi: 10.1080/08998280.2018.1542887. PubMed DOI PMC

Yerushalmy-Feler A., Ben-Tov A., Weintraub Y., Amir A., Galai T., Moran-Lev H., Cohen S. High and low body mass index may predict severe disease course in children with inflammatory bowel disease. Scand. J. Gastroenterol. 2018;53:708–713. doi: 10.1080/00365521.2018.1464595. PubMed DOI

Malik T.A., Manne A., Oster R.A., Eckhoff A., Inusah S., Gutierrez A.M. Obesity is Associated With Poor Surgical Outcome in Crohn’s Disease. Gastroenterol. Res. 2013;6:85–90. doi: 10.4021/gr553w. PubMed DOI PMC

Hass D.J., Brensinger C.M., Lewis J.D., Lichtenstein G.R. The impact of increased body mass index on the clinical course of Crohn’s disease. Clin. Gastroenterol. Hepatol. 2006;4:482–488. doi: 10.1016/j.cgh.2005.12.015. PubMed DOI

Johnson A.M., Loftus E.V. Impact of obesity on the management of inflammatory bowel disease. Gastroenterol. Hepatol. 2020;16:350–359. PubMed PMC

Harper J.W., Zisman T.L. Interaction of obesity and inflammatory bowel disease. World J. Gastroenterol. 2016;22:7868–7881. doi: 10.3748/wjg.v22.i35.7868. PubMed DOI PMC

Long M.D., Crandall W.V., Leibowitz I.H., Duffy L., del Rosario F., Kim S.C., Integlia M.J., Berman J., Grunow J., Colletti R.B., et al. ImproveCareNow Collaborative for Pediatric IBD. Prevalence and epidemiology of overweight and obesity in children with inflammatory bowel disease. Inflamm. Bowel Dis. 2011;17:2162–2168. doi: 10.1002/ibd.21585. PubMed DOI PMC

Hu Q., Ren J., Li G., Wu X., Li J. The Impact of Obesity on the Clinical Course of Inflammatory Bowel Disease: A Meta-Analysis. Med. Sci. Monit. 2017;23:2599–2606. doi: 10.12659/MSM.901969. PubMed DOI PMC

Jain A., Nguyen N.H., Proudfoot J.A., Martin C.F., Sandborn W.J., Kappelman M.D., Long M.D., Singh S. Impact of Obesity on Disease Activity and Patient-Reported Outcomes Measurement Information System (PROMIS) in Inflammatory Bowel Diseases. Am. J. Gastroenterol. 2019;114:630–639. doi: 10.14309/ajg.0000000000000197. PubMed DOI PMC

Blain A., Cattan S., Beaugerie L., Carbonnel F., Gendre J.P., Cosnes J. Crohn’s disease clinical course and severity in obese patients. Clin. Nutr. 2002;21:51–57. doi: 10.1054/clnu.2001.0503. PubMed DOI

Flores A., Burstein E., Cipher D.J., Feagins L.A. Obesity in Inflammatory Bowel Disease: A Marker of Less Severe Disease. Dig. Dis. Sci. 2015;60:2436–2445. doi: 10.1007/s10620-015-3629-5. PubMed DOI

Eder P., Adler M., Dobrowolska A., Kamhieh-Milz J., Witowski J. The Role of Adipose Tissue in the Pathogenesis and Therapeutic Outcomes of Inflammatory Bowel Disease. Cells. 2019;8:628. doi: 10.3390/cells8060628. PubMed DOI PMC

Harper J.W., Sinanan M.N., Zisman T.L. Increased body mass index is associated with earlier time to loss of response to infliximab in patients with inflammatory bowel disease. Inflamm. Bowel Dis. 2013;19:2118–2224. doi: 10.1097/MIB.0b013e31829cf401. PubMed DOI

Bultman E., de Haar C., van Liere-Baron A., Verhoog H., West R.L., Kuipers E.J., Zelinkova Z., van der Woude C.J. Predictors of dose escalation of adalimumab in a prospective cohort of Crohn’s disease patients. Aliment Pharmacol. Ther. 2012;35:335–341. doi: 10.1111/j.1365-2036.2011.04946.x. PubMed DOI

Dreesen E., Verstockt B., Bian S., de Bruyn M., Compernolle G., Tops S., Noman M., Van Assche G., Ferrante M., Gils A., et al. Evidence to Support Monitoring of Vedolizumab Trough Concentrations in Patients With Inflammatory Bowel Diseases. Clin. Gastroenterol. Hepatol. 2018;16:1937–1946. doi: 10.1016/j.cgh.2018.04.040. PubMed DOI

Rodin I., Chan J., Meleady L., Hii C., Lawrence S., Jacobson K. High body mass index is not associated with increased treatment failure in infliximab treated pediatric patients with inflammatory bowel disease. JGH Open. 2019;23:446–453. doi: 10.1002/jgh3.12277. PubMed DOI PMC

Singh S., Proudfoot J., Xu R., Sandborn W.J. Obesity and Response to Infliximab in Patients with Inflammatory Bowel Diseases: Pooled Analysis of Individual Participant Data from Clinical Trials. Am. J. Gastroenterol. 2018;113:883–889. doi: 10.1038/s41395-018-0104-x. PubMed DOI PMC

Singh S., Facciorusso A., Singh A.G., Vande Casteele N., Zarrinpar A., Prokop L.J., Grunvald E.L., Curtis J.R., Sandborn W.J. Obesity and response to anti-tumor necrosis factor-α agents in patients with select immune-mediated inflammatory diseases: A systematic review and meta-analysis. PLoS ONE. 2018;13:e0195123. doi: 10.1371/journal.pone.0195123. PubMed DOI PMC

Bilski J., Mazur-Bialy A., Wojcik D., Surmiak M., Magierowski M., Sliwowski Z., Pajdo R., Kwiecien S., Danielak A., Ptak-Belowska A., et al. Role of Obesity, Mesenteric Adipose Tissue, and Adipokines in Inflammatory Bowel Diseases. Biomolecules. 2019;9:780. doi: 10.3390/biom9120780. PubMed DOI PMC

Klopfenstein B.J., Kim M.S., Krisky C.M., Szumowski J., Rooney W.D., Purnell J.Q. Comparison of 3 T MRI and CT for the measurement of visceral and subcutaneous adipose tissue in humans. Br. J. Radiol. 2012;85:e826–e830. doi: 10.1259/bjr/57987644. PubMed DOI PMC

Tsai Y.W., Fu S.H., Dong J.L., Chien M.W., Liu Y.W., Hsu C.Y., Sytwu H.K. Adipokine-Modulated Immunological Homeostasis Shapes the Pathophysiology of Inflammatory Bowel Disease. Int. J. Mol. Sci. 2020;21:9564. doi: 10.3390/ijms21249564. PubMed DOI PMC

Bryant R.V., Schultz C.G., Ooi S., Goess C., Costello S.P., Vincent A.D., Schoeman S., Lim A., Bartholomeusz F.D., Travis S.P.L., et al. Visceral Adipose Tissue Is Associated With Stricturing Crohn’s Disease Behavior, Fecal Calprotectin, and Quality of Life. Inflamm. Bowel Dis. 2019;25:592–600. doi: 10.1093/ibd/izy278. PubMed DOI

Uko V., Vortia E., Achkar J.P., Karakas P., Fiocchi C., Worley S., Kay M.H. Impact of abdominal visceral adipose tissue on disease outcome in pediatric Crohn’s disease. Inflamm. Bowel Dis. 2014;20:2286–2291. doi: 10.1097/MIB.0000000000000200. PubMed DOI

Van Der Sloot K.W., Joshi A.D., Bellavance D.R., Gilpin K.K., Stewart K.O., Lochhead P., Garber J.J., Giallourakis C., Yajnik V., Ananthakrishnan A.N., et al. Visceral Adiposity, Genetic Susceptibility, and Risk of Complications Among Individuals with Crohn’s Disease. Inflamm. Bowel Dis. 2017;23:82–88. doi: 10.1097/MIB.0000000000000978. PubMed DOI PMC

Drouet M., Dubuquoy L., Desreumaux P., Bertin B. Visceral fat and gut inflammation. Nutrition. 2012;28:113–117. doi: 10.1016/j.nut.2011.09.009. PubMed DOI

Peyrin-Biroulet L., Chamaillard M., Gonzalez F., Beclin E., Decourcelle C., Antunes L., Gay J., Neut C., Colombel J.F., Desreumaux P. Mesenteric fat in Crohn’s disease: A pathogenetic hallmark or an innocent bystander? Gut. 2007;56:577–583. doi: 10.1136/gut.2005.082925. PubMed DOI PMC

Das U.N. Is obesity an inflammatory condition? Nutrition. 2001;17:953–966. doi: 10.1016/S0899-9007(01)00672-4. PubMed DOI

Peyrin-Biroulet L., Gonzalez F., Dubuquoy L., Rousseaux C., Dubuquoy C., Decourcelle C., Saudemont A., Tachon M., Béclin E., Odou M.F., et al. Mesenteric fat as a source of C reactive protein and as a target for bacterial translocation in Crohn’s disease. Gut. 2012;61:78–85. doi: 10.1136/gutjnl-2011-300370. PubMed DOI PMC

Colombel J.F., Solem C.A., Sandborn W.J., Booya F., Loftus E.V., Jr., Harmsen W.S., Zinsmeister A.R., Bodily K.D., Fletcher J.G. Quantitative measurement and visual assessment of ileal Crohn’s disease activity by computed tomography enterography: Correlation with endoscopic severity and C reactive protein. Gut. 2006;55:1561–1567. doi: 10.1136/gut.2005.084301. PubMed DOI PMC

Crohn B.B., Ginzburg L., Oppenheimer G.D. Landmark article Oct 15, 1932. Regional ileitis. A pathological and clinical entity. By Burril B. Crohn, Leon Ginzburg, and Gordon D. Oppenheimer. JAMA. 1984;251:73–79. doi: 10.1001/jama.1984.03340250053024. PubMed DOI

Mao R., Kurada S., Gordon I.O., Baker M.E., Gandhi N., McDonald C., Coffey J.C., Rieder F. The Mesenteric Fat and Intestinal Muscle Interface: Creeping Fat Influencing Stricture Formation in Crohn’s Disease. Inflamm. Bowel Dis. 2019;25:421–426. doi: 10.1093/ibd/izy331. PubMed DOI

Mao R., Doyon G., Gordon I.O., Li J., Lin S., Wang J., Le T.H.N., Elias M., Kurada S., Southern B., et al. Activated intestinal muscle cells promote preadipocyte migration: A novel mechanism for creeping fat formation in Crohn’s disease. Gut. 2021 doi: 10.1136/gutjnl-2020-323719. PubMed DOI PMC

Sheehan A.L., Warren B.F., Gear M.W., Shepherd N.A. Fat-wrapping in Crohn’s disease: Pathological basis and relevance to surgical practice. Br. J. Surg. 1992;79:955–958. doi: 10.1002/bjs.1800790934. PubMed DOI

Kredel L.I., Jödicke L.J., Scheffold A., Gröne J., Glauben R., Erben U., Kühl A.A., Siegmund B. T-cell Composition in Ileal and Colonic Creeping Fat—Separating Ileal from Colonic Crohn’s Disease. J. Crohn’s Colitis. 2019;13:79–91. doi: 10.1093/ecco-jcc/jjy146. PubMed DOI

Mattacks C.A., Sadler D., Pond C.M. The effects of dietary lipids on dendritic cells in perinodal adipose tissue during chronic mild inflammation. Br. J. Nutr. 2004;91:883–892. doi: 10.1079/BJN20041147. PubMed DOI

Harvey N.L., Srinivasan R.S., Dillard M.E., Johnson N.C., Witte M.H., Boyd K., Sleeman M.W., Oliver G. Lymphatic vascular defects promoted by Prox1 haploinsufficiency cause adult-onset obesity. Nat. Genet. 2005;37:1072–1081. doi: 10.1038/ng1642. PubMed DOI

Heatley R.V., Bolton P.M., Hughes L.E., Owen E.W. Mesenteric lymphatic obstruction in Crohn’s disease. Digestion. 1980;20:307–313. doi: 10.1159/000198452. PubMed DOI

von der Weid P.Y., Rainey K.J. Review article: Lymphatic system and associated adipose tissue in the development of inflammatory bowel disease. Aliment Pharmacol. Ther. 2010;32:697–711. doi: 10.1111/j.1365-2036.2010.04407.x. PubMed DOI

Guedj K., Abitbol Y., Cazals-Hatem D., Morvan M., Maggiori L., Panis Y., Bouhnik Y., Caligiuri G., Corcos O., Nicoletti A. Adipocytes orchestrate the formation of tertiary lymphoid organs in the creeping fat of Crohn’s disease affected mesentery. J. Autoimmun. 2019;103:102281. doi: 10.1016/j.jaut.2019.05.009. PubMed DOI

da Silva F.A.R., Pascoal L.B., Dotti I., Setsuko Ayrizono M.L., Aguilar D., Rodrigues B.L., Arroyes M., Ferrer-Picon E., Milanski M., Velloso L.A., et al. Whole transcriptional analysis identifies markers of B, T and plasma cell signaling pathways in the mesenteric adipose tissue associated with Crohn’s disease. J. Transl. Med. 2020;18:44. doi: 10.1186/s12967-020-02220-3. PubMed DOI PMC

Szilagyi A. Relationship(s) between obesity and inflammatory bowel diseases: Possible intertwined pathogenic mechanisms. Clin. J. Gastroenterol. 2020;13:139–152. doi: 10.1007/s12328-019-01037-y. PubMed DOI PMC

Marchesi J.R., Adams D.H., Fava F., Hermes G.D., Hirschfield G.M., Hold G., Quraishi M.N., Kinross J., Smidt H., Tuohy K.M., et al. The gut microbiota and host health: A new clinical frontier. Gut. 2016;65:330–339. doi: 10.1136/gutjnl-2015-309990. PubMed DOI PMC

Huang X., Fan X., Ying J., Chen S. Emerging trends and research foci in gastrointestinal microbiome. J. Trans Med. 2019 doi: 10.1186/s12967-019-1810-x. PubMed DOI PMC

Zulian A., Cancello R., Ruocco C., Gentilini D., Di Blasio A.M., Danelli P., Micheletto G., Cesana E., Invitti C. Differences in visceral fat and fat bacterial colonization between ulcerative colitis and Crohn’s disease. An in vivo and in vitro study. PLoS ONE. 2013;8:e78495. doi: 10.1371/journal.pone.0078495. PubMed DOI PMC

Kiernan M.G., Coffey J.C., McDermott K., Cotter P.D., Cabrera-Rubio R., Kiely P.A., Dunne C.P. The Human Mesenteric Lymph Node Microbiome Differentiates between Crohn’s Disease and Ulcerative Colitis. J. Crohn’s Colitis. 2019;13:58–66. doi: 10.1093/ecco-jcc/jjy136. PubMed DOI PMC

Morrison D.J., Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7:189–200. doi: 10.1080/19490976.2015.1134082. PubMed DOI PMC

Kreuter R., Wankell M., Ahlenstiel G., Hebbard L. The role of obesity in inflammatory bowel disease. Biochim. Biophys. Acta Mol. Basis Dis. 2019;1865:63–72. doi: 10.1016/j.bbadis.2018.10.020. PubMed DOI

Fukuda S., Toh H., Hase K., Oshima K., Nakanishi Y., Yoshimura K., Tobe T., Clarke J.M., Topping D.L., Suzuki T., et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature. 2011;469:543–547. doi: 10.1038/nature09646. PubMed DOI

Serena C., Queipo-Ortuño M., Millan M., Sanchez-Alcoholado L., Caro A., Espina B., Menacho M., Bautista M., Monfort-Ferré D., Terrón-Puig M., et al. Microbial Signature in Adipose Tissue of Crohn’s Disease Patients. J. Clin. Med. 2020;9:2448. doi: 10.3390/jcm9082448. PubMed DOI PMC

Anty R., Bekri S., Luciani N., Saint-Paul M.C., Dahman M., Iannelli A., Amor I.B., Staccini-Myx A., Huet P.M., Gugenheim J., et al. The inflammatory C-reactive protein is increased in both liver and adipose tissue in severely obese patients independently from metabolic syndrome, Type 2 diabetes, and NASH. Am. J. Gastroenterol. 2006;101:1824–1833. doi: 10.1111/j.1572-0241.2006.00724.x. PubMed DOI

Schäffler A., Schölmerich J. Innate immunity and adipose tissue biology. Trends Immunol. 2010;31:228–235. doi: 10.1016/j.it.2010.03.001. PubMed DOI

Karrasch T., Schaeffler A. Adipokines and the role of visceral adipose tissue in inflammatory bowel disease. Ann. Gastroenterol. 2016;29:424–438. doi: 10.20524/aog.2016.0077. PubMed DOI PMC

Bertin B., Desreumaux P., Dubuquoy L. Obesity, visceral fat and Crohn’s disease. Curr. Opin. Clin. Nutr. Metab. Care. 2010;13:574–580. doi: 10.1097/MCO.0b013e32833cf0f4. PubMed DOI

Batra A., Heimesaat M.M., Bereswill S., Fischer A., Glauben R., Kunkel D., Scheffold A., Erben U., Kühl A., Loddenkemper C., et al. Mesenteric fat—control site for bacterial translocation in colitis? Mucosal. Immunol. 2012;5:580–591. doi: 10.1038/mi.2012.33. PubMed DOI

Goldmannova D., Spurna J., Krystynik O., Schovanek J., Cibickova L., Karasek D., Zadražil J. Adipocytokines and new onset diabetes mellitus after transplantation. J. Appl. Biomed. 2018;16:247–254. doi: 10.1016/j.jab.2018.05.005. DOI

Weidinger C., Ziegler J.F., Letizia M., Schmidt F., Siegmund B. Adipokines and Their Role in Intestinal Inflammation. Front. Immunol. 2018;9:1974. doi: 10.3389/fimmu.2018.01974. PubMed DOI PMC

Yamauchi T., Kamon J., Ito Y., Tsuchida A., Yokomizo T., Kita S., Sugiyama T., Miyagishi M., Hara K., Tsunoda M., et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003;423:762–769. doi: 10.1038/nature01705. PubMed DOI

Spurná J., Karásek D., Kubíčková V., Goldmannová D., Krystyník O., Schovánek J., Zadražil J. Relationship of Selected Adipokines with Markers of Vascular Damage in Patients with Type 2 Diabetes. Metab. Syndr. Relat. Disord. 2018;16:246–253. doi: 10.1089/met.2017.0179. PubMed DOI

Rodrigues V.S., Milanski M., Fagundes J.J., Torsoni A.S., Ayrizono M.L., Nunez C.E., Dias C.B., Meirelles L.R., Dalal S., Coy C.S., et al. Serum levels and mesenteric fat tissue expression of adiponectin and leptin in patients with Crohn’s disease. Clin. Exp. Immunol. 2012;170:358–364. doi: 10.1111/j.1365-2249.2012.04660.x. PubMed DOI PMC

Yamamoto K., Kiyohara T., Murayama Y., Kihara S., Okamoto Y., Funahashi T., Ito T., Nezu R., Tsutsui S., Miyagawa J.I., et al. Production of adiponectin, an anti-inflammatory protein, in mesenteric adipose tissue in Crohn’s disease. Gut. 2005;54:789–796. doi: 10.1136/gut.2004.046516. PubMed DOI PMC

Valentini L., Wirth E.K., Schweizer U., Hengstermann S., Schaper L., Koernicke T., Dietz E., Norman K., Buning C., Winklhofer-Roob B.M., et al. Circulating adipokines and the protective effects of hyperinsulinemia in inflammatory bowel disease. Nutrition. 2009;25:172–181. doi: 10.1016/j.nut.2008.07.020. PubMed DOI

Kahraman R., Calhan T., Sahin A., Ozdil K., Caliskan Z., Bireller E.S., Cakmakoglu B. Are adipocytokines inflammatory or metabolic mediators in patients with inflammatory bowel disease? Ther. Clin. Risk Manag. 2017;13:1295–1301. doi: 10.2147/TCRM.S140618. PubMed DOI PMC

Karmiris K., Koutroubakis I.E., Xidakis C., Polychronaki M., Voudouri T., Kouroumalis E.A. Circulating levels of leptin, adiponectin, resistin, and ghrelin in inflammatory bowel disease. Inflamm. Bowel Dis. 2006;12:100–105. doi: 10.1097/01.MIB.0000200345.38837.46. PubMed DOI

Weigert J., Obermeier F., Neumeier M., Wanninger J., Filarsky M., Bauer S., Aslanidis C., Rogler G., Ott C., Schäffler A., et al. Circulating levels of chemerin and adiponectin are higher in ulcerative colitis and chemerin is elevated in Crohn’s disease. Inflamm. Bowel Dis. 2010;16:630–637. doi: 10.1002/ibd.21091. PubMed DOI

Waluga M., Hartleb M., Boryczka G., Kukla M., Zwirska-Korczala K. Serum adipokines in inflammatory bowel disease. World J. Gastroenterol. 2014;20:6912–6917. doi: 10.3748/wjg.v20.i22.6912. PubMed DOI PMC

Chouliaras G., Panayotou I., Margoni D., Mantzou E., Pervanidou P., Manios Y., Chrousos G.P., Roma E. Circulating leptin and adiponectin and their relation to glucose metabolism in children with Crohn’s disease and ulcerative colitis. Pediatr. Res. 2013;74:420–426. doi: 10.1038/pr.2013.114. PubMed DOI

Ortega Moreno L., Sanz-Garcia A., Fernández de la Fuente M.J., Arroyo Solera R., Fernández-Tomé S., Marin A.C., Mora-Gutierrez I., Fernández P., Baldan-Martin M., Chaparro M., et al. Serum adipokines as non-invasive biomarkers in Crohn’s disease. Sci. Rep. 2020;10:18027. doi: 10.1038/s41598-020-74999-6. PubMed DOI PMC

Karmiris K., Koutroubakis I.E., Xidakis C., Polychronaki M., Kouroumalis E.A. The effect of infliximab on circulating levels of leptin, adiponectin and resistin in patients with inflammatory bowel disease. Eur. J. Gastroenterol. Hepatol. 2007;19:789–794. doi: 10.1097/MEG.0b013e3282202bca. PubMed DOI

Wulster-Radcliffe M.C., Ajuwon K.M., Wang J., Christian J.A., Spurlock M.E. Adiponectin differentially regulates cytokines in porcine macrophages. Biochem. Biophys. Res. Commun. 2004;316:924–929. doi: 10.1016/j.bbrc.2004.02.130. PubMed DOI

Ogunwobi O.O., Beales I.L. Adiponectin stimulates proliferation and cytokine secretion in colonic epithelial cells. Regul. Pept. 2006;134:105–113. doi: 10.1016/j.regpep.2006.02.001. PubMed DOI

Sitaraman S., Liu X., Charrier L., Gu L.H., Ziegler T.R., Gewirtz A., Merlin D. Colonic leptin: Source of a novel proinflammatory cytokine involved in IBD. FASEB J. 2004;18:696–698. doi: 10.1096/fj.03-0422fje. PubMed DOI

Singh U.P., Singh N.P., Guan H., Busbee B., Price R.L., Taub D.D., Mishra M.K., Fayad R., Nagarkatti M., Nagarkatti P.S. The emerging role of leptin antagonist as potential therapeutic option for inflammatory bowel disease. Int. Rev. Immunol. 2014;33:23–33. doi: 10.3109/08830185.2013.809071. PubMed DOI PMC

Barbier M., Vidal H., Desreumaux P., Dubuquoy L., Bourreille A., Colombel J.F., Cherbut C., Galmiche J.P. Overexpression of leptin mRNA in mesenteric adipose tissue in inflammatory bowel diseases. Gastroenterol. Clin. Biol. 2003;27:987–991. doi: 10.1016/S0016-5085(00)83460-5. PubMed DOI

Aurangzeb B., Leach S.T., Lemberg D.A., Day A.S. Assessment of nutritional status and serum leptin in children with inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 2011;52:536–541. doi: 10.1097/MPG.0b013e3181f87a95. PubMed DOI

Biesiada G., Czepiel J., Ptak-Belowska A., Targosz A., Krzysiek-Maczka G., Strzalka M., Konturek S.J., Brzozowski T., Mach T. Expression and release of leptin and proinflammatory cytokines in patients with ulcerative colitis and infectious diarrhea. J. Physiol. Pharmacol. 2012;63:471–481. PubMed

Tuzun A., Uygun A., Yesilova Z., Ozel A.M., Erdil A., Yaman H., Bagci S., Gulsen M., Karaeren N., Dagalp K. Leptin levels in the acute stage of ulcerative colitis. J. Gastroenterol. Hepatol. 2004;19:429–432. doi: 10.1111/j.1440-1746.2003.03300.x. PubMed DOI

Nishi Y., Isomoto H., Ueno H., Ohnita K., Wen C.Y., Takeshima F., Mishima R., Nakazato M., Kohno S. Plasma leptin and ghrelin concentrations in patients with Crohn’s disease. World J. Gastroenterol. 2005;11:7314–7317. doi: 10.3748/wjg.v11.i46.7314. PubMed DOI PMC

Hoppin A.G., Kaplan L.M., Zurakowski D., Leichtner A.M., Bousvaros A. Serum leptin in children and young adults with inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 1998;26:500–505. doi: 10.1097/00005176-199805000-00003. PubMed DOI

Trejo-Vazquez F., Garza-Veloz I., Villela-Ramirez G.A., Ortiz-Castro Y., Mauricio-Saucedo P., Cardenas-Vargas E., Diaz-Baez M., Cid-Baez M.A., Castañeda-Miranda R., Ortiz-Rodriguez J.M., et al. Positive association between leptin serum levels and disease activity on endoscopy in inflammatory bowel disease: A case-control study. Exp. Ther. Med. 2018;15:3336–3344. doi: 10.3892/etm.2018.5835. PubMed DOI PMC

Ziegler J.F., Böttcher C., Letizia M., Yerinde C., Wu H., Freise I., Rodriguez-Sillke Y., Stoyanova A.K., Kreis M.E., Asbach P., et al. Leptin induces TNFα-dependent inflammation in acquired generalized lipodystrophy and combined Crohn’s disease. Nat. Commun. 2019;10:5629. doi: 10.1038/s41467-019-13559-7. PubMed DOI PMC

Kaser S., Kaser A., Sandhofer A., Ebenbichler C.F., Tilg H., Patsch J.R. Resistin messenger-RNA expression is increased by proinflammatory cytokines in vitro. Biochem. Biophys. Res. Commun. 2003;309:286–290. doi: 10.1016/j.bbrc.2003.07.003. PubMed DOI

Konrad A., Lehrke M., Schachinger V., Seibold F., Stark R., Ochsenkühn T., Parhofer K.G., Göke B., Broedl U.C. Resistin is an inflammatory marker of inflammatory bowel disease in humans. Eur. J. Gastroenterol. Hepatol. 2007;19:1070–1074. doi: 10.1097/MEG.0b013e3282f16251. PubMed DOI

Bozaoglu K., Bolton K., McMillan J., Zimmet P., Jowett J., Collier G., Walder K., Segal D. Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology. 2007;148:4687–4694. doi: 10.1210/en.2007-0175. PubMed DOI

Lin Y., Yang X., Yue W., Xu X., Li B., Zou L., He R. Chemerin aggravates DSS-induced colitis by suppressing M2 macrophage polarization. Cell Mol. Immunol. 2014;11:355–366. doi: 10.1038/cmi.2014.15. PubMed DOI PMC

Terzoudis S., Malliaraki N., Damilakis J., Dimitriadou D.A., Zavos C., Koutroubakis I.E. Chemerin, visfatin, and vaspin serum levels in relation to bone mineral density in patients with inflammatory bowel disease. Eur. J. Gastroenterol. Hepatol. 2016;28:814–819. doi: 10.1097/MEG.0000000000000617. PubMed DOI

Fukuhara A., Matsuda M., Nishizawa M., Segawa K., Tanaka M., Kishimoto K., Matsuki Y., Murakami M., Ichisaka T., Murakami H., et al. Visfatin: A protein secreted by visceral fat that mimics the effects of insulin. Science. 2005;307:426–430. doi: 10.1126/science.1097243. PubMed DOI

Chang Y.C., Chang T.J., Lee W.J., Chuang L.M. The relationship of visfatin/pre-B-cell colony-enhancing factor/nicotinamide phosphoribosyltransferase in adipose tissue with inflammation, insulin resistance, and plasma lipids. Metabolism. 2010;59:93–99. doi: 10.1016/j.metabol.2009.07.011. PubMed DOI

Dogan S., Guven K., Celikbilek M., Deniz K., Saraymen B., Gursoy S. Serum Visfatin Levels in Ulcerative Colitis. J. Clin. Lab. Anal. 2016;30:552–556. doi: 10.1002/jcla.21901. PubMed DOI PMC

Starr A.E., Deeke S.A., Ning Z., Chiang C.K., Zhang X., Mottawea W., Singleton R., Benchimol E.I., Wen M., Mack D.R., et al. Proteomic analysis of ascending colon biopsies from a paediatric inflammatory bowel disease inception cohort identifies protein biomarkers that differentiate Crohn’s disease from UC. Gut. 2017;66:1573–1583. doi: 10.1136/gutjnl-2015-310705. PubMed DOI PMC

Moschen A.R., Kaser A., Enrich B., Mosheimer B., Theurl M., Niederegger H., Tilg H. Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. J. Immunol. 2007;178:1748–1758. doi: 10.4049/jimmunol.178.3.1748. PubMed DOI

Boucher J., Masri B., Daviaud D., Gesta S., Guigné C., Mazzucotelli A., Castan-Laurell I., Tack I., Knibiehler B., Carpéné C., et al. Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology. 2005;146:1764–1771. doi: 10.1210/en.2004-1427. PubMed DOI

Yu S., Zhang Y., Li M.Z., Xu H., Wang Q., Song J., Lin P., Zhang L., Liu Q., Huang Q.X., et al. Chemerin and apelin are positively correlated with inflammation in obese type 2 diabetic patients. Chin. Med. J. 2012;125:3440–3444. PubMed

Han S., Wang G., Qiu S., de la Motte C., Wang H.Q., Gomez G., Englander E.W., Greeley G.H., Jr. Increased colonic apelin production in rodents with experimental colitis and in humans with IBD. Regul. Pept. 2007;142:131–137. doi: 10.1016/j.regpep.2007.02.002. PubMed DOI

Masoud A.G., Lin J., Azad A.K., Farhan M.A., Fischer C., Zhu L.F., Zhang H., Sis B., Kassiri Z., Moore R.B., et al. Apelin directs endothelial cell differentiation and vascular repair following immune-mediated injury. J. Clin. Investig. 2020;130:94–107. doi: 10.1172/JCI128469. PubMed DOI PMC

Kwon H.B., Wang S., Helker C.S., Rasouli S.J., Maischein H.M., Offermanns S., Herzog W., Stainier D.Y. In vivo modulation of endothelial polarization by Apelin receptor signalling. Nat. Commun. 2016;7:11805. doi: 10.1038/ncomms11805. PubMed DOI PMC

Berta J., Hoda M.A., Laszlo V., Rozsas A., Garay T., Torok S., Grusch M., Berger W., Paku S., Renyi-Vamos F., et al. Apelin promotes lymphangiogenesis and lymph node metastasis. Oncotarget. 2014;5:4426–4437. doi: 10.18632/oncotarget.2032. PubMed DOI PMC

Sawane M., Kidoya H., Muramatsu F., Takakura N., Kajiya K. Apelin attenuates UVB-induced edema and inflammation by promoting vessel function. Am. J. Pathol. 2011;179:2691–2697. doi: 10.1016/j.ajpath.2011.08.024. PubMed DOI PMC

Tiaka E.K., Manolakis A.C., Kapsoritakis A.N., Potamianos S.P. Unraveling the link between leptin, ghrelin and different types of colitis. Ann. Gastroenterol. 2011;24:20–28. PubMed PMC

Peracchi M., Bardella M.T., Caprioli F., Massironi S., Conte D., Valenti L., Ronchi C., Beck-Peccoz P., Arosio M., Piodi L. Circulating ghrelin levels in patients with inflammatory bowel disease. Gut. 2006;55:432–433. doi: 10.1136/gut.2005.079483. PubMed DOI PMC

Ates Y., Degertekin B., Erdil A., Yaman H., Dagalp K. Serum ghrelin levels in inflammatory bowel disease with relation to disease activity and nutritional status. Dig. Dis. Sci. 2008;53:2215–2221. doi: 10.1007/s10620-007-0113-x. PubMed DOI

Ghomraoui F.A., Alotaibi S.T., Alharthi M.A., Asiri S.S., Almadi M.A., Alharbi O.R., Azzam N.A., Aljebreen A.M., Saeed M., Hajkhder B., et al. Plasma ghrelin and leptin in patients with inflammatory bowel disease and its association with nutritional status. Saudi J. Gastroenterol. 2017;23:199–205. doi: 10.1016/S0016-5085(17)32844-5. PubMed DOI PMC

Yamawaki H., Kuramoto J., Kameshima S., Usui T., Okada M., Hara Y. Omentin, a novel adipocytokine inhibits TNF-induced vascular inflammation in human endothelial cells. Biochem. Biophys. Res. Commun. 2011;408:339–343. doi: 10.1016/j.bbrc.2011.04.039. PubMed DOI

Lu Y., Zhou L., Liu L., Feng Y., Lu L., Ren X., Dong X., Sang W. Serum omentin-1 as a disease activity marker for Crohn’s disease. Dis. Markers. 2014;2014:162517. doi: 10.1155/2014/162517. PubMed DOI PMC

Tabesh M., Noroozi A., Amini M., Feizi A., Saraf-Bank S., Zare M. Association of retinol-binding protein 4 with metabolic syndrome in first-degree relatives of type 2 diabetic patients. J. Res. Med. Sci. 2017;22:28. PubMed PMC

Roma E., Krini M., Hantzi E., Sakka S., Panayiotou I., Margeli A., Papassotiriou I., Kanaka-Gantenbein C. Retinol Binding Protein 4 in children with Inflammatory Bowel Disease: A negative correlation with the disease activity. Hippokratia. 2012;16:360–365. PubMed PMC

Gholamrezayi A., Mohamadinarab M., Rahbarinejad P., Fallah S., Barez S.R., Setayesh L., Moradi N., Fadaei R., Chamani E., Tavakoli T. Characterization of the serum levels of Meteorin-like in patients with inflammatory bowel disease and its association with inflammatory cytokines. Lipids Health Dis. 2020;19:230. doi: 10.1186/s12944-020-01404-6. PubMed DOI PMC

Arsenescu V., Narasimhan M.L., Halide T., Bressan R.A., Barisione C., Cohen D.A., de Villiers W.J., Arsenescu R. Adiponectin and plant-derived mammalian adiponectin homolog exert a protective effect in murine colitis. Dig. Dis. Sci. 2011;56:2818–2832. doi: 10.1007/s10620-011-1692-0. PubMed DOI

Nishihara T., Matsuda M., Araki H., Oshima K., Kihara S., Funahashi T., Shimomura I. Effect of adiponectin on murine colitis induced by dextran sulfate sodium. Gastroenterology. 2006;131:853–861. doi: 10.1053/j.gastro.2006.06.015. PubMed DOI

Saxena A., Chumanevich A., Fletcher E., Larsen B., Lattwein K., Kaur K., Fayad R. Adiponectin deficiency: Role in chronic inflammation induced colon cancer. Biochim. Biophys. Acta. 2012;1822:527–536. doi: 10.1016/j.bbadis.2011.12.006. PubMed DOI PMC

Peng Y.J., Shen T.L., Chen Y.S., Mersmann H.J., Liu B.H., Ding S.T. Adiponectin and adiponectin receptor 1 overexpression enhance inflammatory bowel disease. J. Biomed. Sci. 2018;25:24. doi: 10.1186/s12929-018-0419-3. PubMed DOI PMC

Singh U.P., Singh N.P., Guan H., Busbee B., Price R.L., Taub D.D., Mishra M.K., Fayad R., Nagarkatti M., Nagarkatti P.S. Leptin antagonist ameliorates chronic colitis in IL-10−/− mice. Immunobiology. 2013;218:1439–1451. doi: 10.1016/j.imbio.2013.04.020. PubMed DOI PMC

Ge Y., Li Y., Chen Q., Zhu W., Zuo L., Guo Z., Gong J., Cao L., Gu L., Li J. Adipokine apelin ameliorates chronic colitis in Il-10-/- mice by promoting intestinal lymphatic functions. Biochem. Pharmacol. 2018;148:202–212. doi: 10.1016/j.bcp.2018.01.011. PubMed DOI

Gerner R.R., Klepsch V., Macheiner S., Arnhard K., Adolph T.E., Grander C., Wieser V., Pfister A., Moser P., Hermann-Kleiter N., et al. NAD metabolism fuels human and mouse intestinal inflammation. Gut. 2018;67:1813–1823. doi: 10.1136/gutjnl-2017-314241. PubMed DOI PMC

Franchimont D., Roland S., Gustot T., Quertinmont E., Toubouti Y., Gervy M.C., Deviere J., Van Gossum A. Impact of infliximab on serum leptin levels in patients with Crohn’s disease. J. Clin. Endocrinol. Metab. 2005;90:3510–3516. doi: 10.1210/jc.2004-1222. PubMed DOI

Frivolt K., Schwerd T., Schatz S.B., Freudenberg F., Prell C., Werkstetter K.J., Bufler P., Koletzko S. Hyperadiponectinemia During Infliximab Induction Therapy in Pediatric Crohn Disease. J. Pediatr. Gastroenterol. Nutr. 2018;66:915–919. doi: 10.1097/MPG.0000000000001876. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...