Role of Adipose Tissue in Inflammatory Bowel Disease
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
FNOL 00098892
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
33921758
PubMed Central
PMC8073530
DOI
10.3390/ijms22084226
PII: ijms22084226
Knihovny.cz E-zdroje
- Klíčová slova
- adipokines, inflammatory bowel disease, mesenteric fat, microbiome, visceral obesity,
- MeSH
- abdominální obezita imunologie metabolismus MeSH
- adipokiny metabolismus MeSH
- idiopatické střevní záněty imunologie metabolismus MeSH
- lidé MeSH
- nitrobřišní tuk imunologie metabolismus MeSH
- tuková tkáň imunologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- adipokiny MeSH
Inflammatory bowel diseases (IBDs), chronic inflammatory disorders affecting the gastrointestinal tract, include Crohn's disease and ulcerative colitis. There are increasing clinical and experimental data showing that obesity, especially visceral adiposity, plays a substantial role in the pathogenesis of IBD. Obesity seems to be an important risk factor also for IBD disease severity and clinical outcomes. Visceral adipose tissue is an active multifunctional metabolic organ involved in lipid storage and immunological and endocrine activity. Bowel inflammation penetrates the surrounding adipose tissue along the mesentery. Mesenteric fat serves as a barrier to inflammation and controls immune responses to the translocation of gut bacteria. At the same time, mesenteric adipose tissue may be the principal source of cytokines and adipokines responsible for inflammatory processes associated with IBD. This review is particularly focusing on the potential role of adipokines in IBD pathogenesis and their possible use as promising therapeutic targets.
Zobrazit více v PubMed
Bousvaros A. Use of immunomodulators and biologic therapies in children with inflammatory bowel disease. Expert Rev. Clin. Immunol. 2010;6:659–666. doi: 10.1586/eci.10.46. PubMed DOI
Sýkora J., Pomahačová R., Kreslová M., Cvalínová D., Štych P., Schwarz J. Current global trends in the incidence of pediatric-onset inflammatory bowel disease. World J. Gastroenterol. 2018;24:2741–2763. doi: 10.3748/wjg.v24.i25.2741. PubMed DOI PMC
Gonçalves P., Magro F., Martel F. Metabolic inflammation in inflammatory bowel disease: Crosstalk between adipose tissue and bowel. Inflamm. Bowel Dis. 2015;21:453–467. doi: 10.1097/MIB.0000000000000209. PubMed DOI
Morshedzadeh N., Rahimlou M., Asadzadeh Aghdaei H., Shahrokh S., Reza Zali M., Mirmiran P. Association Between Adipokines Levels with Inflammatory Bowel Disease (IBD): Systematic Reviews. Dig. Dis. Sci. 2017;62:3280–3286. doi: 10.1007/s10620-017-4806-5. PubMed DOI
Jarmakiewicz-Czaja S., Sokal A., Filip R. What was First, Obesity or Inflammatory Bowel Disease? What Does the Gut Microbiota Have to Do with It? Nutrients. 2020;12:3073. doi: 10.3390/nu12103073. PubMed DOI PMC
Singh S., Dulai P.S., Zarrinpar A., Ramamoorthy S., Sandborn W.J. Obesity in IBD: Epidemiology, pathogenesis, disease course and treatment outcomes. Nat. Rev. Gastroenterol. Hepatol. 2017;14:110–121. doi: 10.1038/nrgastro.2016.181. PubMed DOI PMC
Jensen C.B., Ängquist L.H., Mendall M.A., Sørensen T.I.A., Baker J.L., Jess T. Childhood body mass index and risk of inflammatory bowel disease in adulthood: A population-based cohort study. Am. J. Gastroenterol. 2018;113:694–701. doi: 10.1038/s41395-018-0031-x. PubMed DOI
Bhagavathula A.S., Clark C.C.T., Rahmani J., Chattu V.K. Impact of Body Mass Index on the Development of Inflammatory Bowel Disease: A Systematic Review and Dose-Response Analysis of 15.6 Million Participants. Healthcare. 2021;9:35. doi: 10.3390/healthcare9010035. PubMed DOI PMC
Barroso T., Conway F., Emel S., McMillan D., Young D., Karteszi H., Gaya D.R., Gerasimidis K. Patients with inflammatory bowel disease have higher abdominal adiposity and less skeletal mass than healthy controls. Ann. Gastroenterol. 2018;31:566–571. doi: 10.20524/aog.2018.0280. PubMed DOI PMC
Bryant R.V., Schultz C.G., Ooi S., Goess C., Costello S.P., Vincent A.D., Schoeman S.N., Lim A., Bartholomeusz F.D., Travis S.P.L., et al. Obesity in Inflammatory Bowel Disease: Gains in Adiposity despite High Prevalence of Myopenia and Osteopenia. Nutrients. 2018;10:1192. doi: 10.3390/nu10091192. PubMed DOI PMC
Scaldaferri F., Pizzoferrato M., Lopetuso L.R., Musca T., Ingravalle F., Sicignano L.L., Mentella M., Miggiano G., Mele M.C., Gaetani E., et al. Nutrition and IBD: Malnutrition and/or Sarcopenia? A Practical Guide. Gastroenterol. Res. Pract. 2017;2017:8646495. doi: 10.1155/2017/8646495. PubMed DOI PMC
Holt D.Q., Moore G.T., Strauss B.J., Hamilton A.L., De Cruz P., Kamm M.A. Visceral adiposity predicts post-operative Crohn’s disease recurrence. Aliment Pharmacol. Ther. 2017;45:1255–1264. doi: 10.1111/apt.14018. PubMed DOI
Adams D.W., Gurwara S., Silver H.J., Horst S.N., Beaulieu D.B., Schwartz D.A., Seidner D.L. Sarcopenia Is Common in Overweight Patients with Inflammatory Bowel Disease and May Predict Need for Surgery. Inflamm. Bowel Dis. 2017;7:1182–1186. doi: 10.1097/MIB.0000000000001128. PubMed DOI
Ryan E., McNicholas D., Creavin B., Kelly M.E., Walsh T., Beddy D. Sarcopenia and Inflammatory Bowel Disease: A Systematic Review. Inflamm. Bowel Dis. 2019;25:67–73. doi: 10.1093/ibd/izy212. PubMed DOI
Zhang T., Ding C., Xie T., Yang J., Dai X., Lv T., Li Y., Gu L., Wei Y., Gong J., et al. Skeletal muscle depletion correlates with disease activity in ulcerative colitis and is reversed after colectomy. Clin. Nutr. 2017;36:1586–1592. doi: 10.1016/j.clnu.2016.10.004. PubMed DOI
Pavelock N., Masood U., Minchenberg S., Heisih D. Effects of obesity on the course of inflammatory bowel disease. Bayl. Univ. Med. Center Proc. 2019;32:14–17. doi: 10.1080/08998280.2018.1542887. PubMed DOI PMC
Yerushalmy-Feler A., Ben-Tov A., Weintraub Y., Amir A., Galai T., Moran-Lev H., Cohen S. High and low body mass index may predict severe disease course in children with inflammatory bowel disease. Scand. J. Gastroenterol. 2018;53:708–713. doi: 10.1080/00365521.2018.1464595. PubMed DOI
Malik T.A., Manne A., Oster R.A., Eckhoff A., Inusah S., Gutierrez A.M. Obesity is Associated With Poor Surgical Outcome in Crohn’s Disease. Gastroenterol. Res. 2013;6:85–90. doi: 10.4021/gr553w. PubMed DOI PMC
Hass D.J., Brensinger C.M., Lewis J.D., Lichtenstein G.R. The impact of increased body mass index on the clinical course of Crohn’s disease. Clin. Gastroenterol. Hepatol. 2006;4:482–488. doi: 10.1016/j.cgh.2005.12.015. PubMed DOI
Johnson A.M., Loftus E.V. Impact of obesity on the management of inflammatory bowel disease. Gastroenterol. Hepatol. 2020;16:350–359. PubMed PMC
Harper J.W., Zisman T.L. Interaction of obesity and inflammatory bowel disease. World J. Gastroenterol. 2016;22:7868–7881. doi: 10.3748/wjg.v22.i35.7868. PubMed DOI PMC
Long M.D., Crandall W.V., Leibowitz I.H., Duffy L., del Rosario F., Kim S.C., Integlia M.J., Berman J., Grunow J., Colletti R.B., et al. ImproveCareNow Collaborative for Pediatric IBD. Prevalence and epidemiology of overweight and obesity in children with inflammatory bowel disease. Inflamm. Bowel Dis. 2011;17:2162–2168. doi: 10.1002/ibd.21585. PubMed DOI PMC
Hu Q., Ren J., Li G., Wu X., Li J. The Impact of Obesity on the Clinical Course of Inflammatory Bowel Disease: A Meta-Analysis. Med. Sci. Monit. 2017;23:2599–2606. doi: 10.12659/MSM.901969. PubMed DOI PMC
Jain A., Nguyen N.H., Proudfoot J.A., Martin C.F., Sandborn W.J., Kappelman M.D., Long M.D., Singh S. Impact of Obesity on Disease Activity and Patient-Reported Outcomes Measurement Information System (PROMIS) in Inflammatory Bowel Diseases. Am. J. Gastroenterol. 2019;114:630–639. doi: 10.14309/ajg.0000000000000197. PubMed DOI PMC
Blain A., Cattan S., Beaugerie L., Carbonnel F., Gendre J.P., Cosnes J. Crohn’s disease clinical course and severity in obese patients. Clin. Nutr. 2002;21:51–57. doi: 10.1054/clnu.2001.0503. PubMed DOI
Flores A., Burstein E., Cipher D.J., Feagins L.A. Obesity in Inflammatory Bowel Disease: A Marker of Less Severe Disease. Dig. Dis. Sci. 2015;60:2436–2445. doi: 10.1007/s10620-015-3629-5. PubMed DOI
Eder P., Adler M., Dobrowolska A., Kamhieh-Milz J., Witowski J. The Role of Adipose Tissue in the Pathogenesis and Therapeutic Outcomes of Inflammatory Bowel Disease. Cells. 2019;8:628. doi: 10.3390/cells8060628. PubMed DOI PMC
Harper J.W., Sinanan M.N., Zisman T.L. Increased body mass index is associated with earlier time to loss of response to infliximab in patients with inflammatory bowel disease. Inflamm. Bowel Dis. 2013;19:2118–2224. doi: 10.1097/MIB.0b013e31829cf401. PubMed DOI
Bultman E., de Haar C., van Liere-Baron A., Verhoog H., West R.L., Kuipers E.J., Zelinkova Z., van der Woude C.J. Predictors of dose escalation of adalimumab in a prospective cohort of Crohn’s disease patients. Aliment Pharmacol. Ther. 2012;35:335–341. doi: 10.1111/j.1365-2036.2011.04946.x. PubMed DOI
Dreesen E., Verstockt B., Bian S., de Bruyn M., Compernolle G., Tops S., Noman M., Van Assche G., Ferrante M., Gils A., et al. Evidence to Support Monitoring of Vedolizumab Trough Concentrations in Patients With Inflammatory Bowel Diseases. Clin. Gastroenterol. Hepatol. 2018;16:1937–1946. doi: 10.1016/j.cgh.2018.04.040. PubMed DOI
Rodin I., Chan J., Meleady L., Hii C., Lawrence S., Jacobson K. High body mass index is not associated with increased treatment failure in infliximab treated pediatric patients with inflammatory bowel disease. JGH Open. 2019;23:446–453. doi: 10.1002/jgh3.12277. PubMed DOI PMC
Singh S., Proudfoot J., Xu R., Sandborn W.J. Obesity and Response to Infliximab in Patients with Inflammatory Bowel Diseases: Pooled Analysis of Individual Participant Data from Clinical Trials. Am. J. Gastroenterol. 2018;113:883–889. doi: 10.1038/s41395-018-0104-x. PubMed DOI PMC
Singh S., Facciorusso A., Singh A.G., Vande Casteele N., Zarrinpar A., Prokop L.J., Grunvald E.L., Curtis J.R., Sandborn W.J. Obesity and response to anti-tumor necrosis factor-α agents in patients with select immune-mediated inflammatory diseases: A systematic review and meta-analysis. PLoS ONE. 2018;13:e0195123. doi: 10.1371/journal.pone.0195123. PubMed DOI PMC
Bilski J., Mazur-Bialy A., Wojcik D., Surmiak M., Magierowski M., Sliwowski Z., Pajdo R., Kwiecien S., Danielak A., Ptak-Belowska A., et al. Role of Obesity, Mesenteric Adipose Tissue, and Adipokines in Inflammatory Bowel Diseases. Biomolecules. 2019;9:780. doi: 10.3390/biom9120780. PubMed DOI PMC
Klopfenstein B.J., Kim M.S., Krisky C.M., Szumowski J., Rooney W.D., Purnell J.Q. Comparison of 3 T MRI and CT for the measurement of visceral and subcutaneous adipose tissue in humans. Br. J. Radiol. 2012;85:e826–e830. doi: 10.1259/bjr/57987644. PubMed DOI PMC
Tsai Y.W., Fu S.H., Dong J.L., Chien M.W., Liu Y.W., Hsu C.Y., Sytwu H.K. Adipokine-Modulated Immunological Homeostasis Shapes the Pathophysiology of Inflammatory Bowel Disease. Int. J. Mol. Sci. 2020;21:9564. doi: 10.3390/ijms21249564. PubMed DOI PMC
Bryant R.V., Schultz C.G., Ooi S., Goess C., Costello S.P., Vincent A.D., Schoeman S., Lim A., Bartholomeusz F.D., Travis S.P.L., et al. Visceral Adipose Tissue Is Associated With Stricturing Crohn’s Disease Behavior, Fecal Calprotectin, and Quality of Life. Inflamm. Bowel Dis. 2019;25:592–600. doi: 10.1093/ibd/izy278. PubMed DOI
Uko V., Vortia E., Achkar J.P., Karakas P., Fiocchi C., Worley S., Kay M.H. Impact of abdominal visceral adipose tissue on disease outcome in pediatric Crohn’s disease. Inflamm. Bowel Dis. 2014;20:2286–2291. doi: 10.1097/MIB.0000000000000200. PubMed DOI
Van Der Sloot K.W., Joshi A.D., Bellavance D.R., Gilpin K.K., Stewart K.O., Lochhead P., Garber J.J., Giallourakis C., Yajnik V., Ananthakrishnan A.N., et al. Visceral Adiposity, Genetic Susceptibility, and Risk of Complications Among Individuals with Crohn’s Disease. Inflamm. Bowel Dis. 2017;23:82–88. doi: 10.1097/MIB.0000000000000978. PubMed DOI PMC
Drouet M., Dubuquoy L., Desreumaux P., Bertin B. Visceral fat and gut inflammation. Nutrition. 2012;28:113–117. doi: 10.1016/j.nut.2011.09.009. PubMed DOI
Peyrin-Biroulet L., Chamaillard M., Gonzalez F., Beclin E., Decourcelle C., Antunes L., Gay J., Neut C., Colombel J.F., Desreumaux P. Mesenteric fat in Crohn’s disease: A pathogenetic hallmark or an innocent bystander? Gut. 2007;56:577–583. doi: 10.1136/gut.2005.082925. PubMed DOI PMC
Das U.N. Is obesity an inflammatory condition? Nutrition. 2001;17:953–966. doi: 10.1016/S0899-9007(01)00672-4. PubMed DOI
Peyrin-Biroulet L., Gonzalez F., Dubuquoy L., Rousseaux C., Dubuquoy C., Decourcelle C., Saudemont A., Tachon M., Béclin E., Odou M.F., et al. Mesenteric fat as a source of C reactive protein and as a target for bacterial translocation in Crohn’s disease. Gut. 2012;61:78–85. doi: 10.1136/gutjnl-2011-300370. PubMed DOI PMC
Colombel J.F., Solem C.A., Sandborn W.J., Booya F., Loftus E.V., Jr., Harmsen W.S., Zinsmeister A.R., Bodily K.D., Fletcher J.G. Quantitative measurement and visual assessment of ileal Crohn’s disease activity by computed tomography enterography: Correlation with endoscopic severity and C reactive protein. Gut. 2006;55:1561–1567. doi: 10.1136/gut.2005.084301. PubMed DOI PMC
Crohn B.B., Ginzburg L., Oppenheimer G.D. Landmark article Oct 15, 1932. Regional ileitis. A pathological and clinical entity. By Burril B. Crohn, Leon Ginzburg, and Gordon D. Oppenheimer. JAMA. 1984;251:73–79. doi: 10.1001/jama.1984.03340250053024. PubMed DOI
Mao R., Kurada S., Gordon I.O., Baker M.E., Gandhi N., McDonald C., Coffey J.C., Rieder F. The Mesenteric Fat and Intestinal Muscle Interface: Creeping Fat Influencing Stricture Formation in Crohn’s Disease. Inflamm. Bowel Dis. 2019;25:421–426. doi: 10.1093/ibd/izy331. PubMed DOI
Mao R., Doyon G., Gordon I.O., Li J., Lin S., Wang J., Le T.H.N., Elias M., Kurada S., Southern B., et al. Activated intestinal muscle cells promote preadipocyte migration: A novel mechanism for creeping fat formation in Crohn’s disease. Gut. 2021 doi: 10.1136/gutjnl-2020-323719. PubMed DOI PMC
Sheehan A.L., Warren B.F., Gear M.W., Shepherd N.A. Fat-wrapping in Crohn’s disease: Pathological basis and relevance to surgical practice. Br. J. Surg. 1992;79:955–958. doi: 10.1002/bjs.1800790934. PubMed DOI
Kredel L.I., Jödicke L.J., Scheffold A., Gröne J., Glauben R., Erben U., Kühl A.A., Siegmund B. T-cell Composition in Ileal and Colonic Creeping Fat—Separating Ileal from Colonic Crohn’s Disease. J. Crohn’s Colitis. 2019;13:79–91. doi: 10.1093/ecco-jcc/jjy146. PubMed DOI
Mattacks C.A., Sadler D., Pond C.M. The effects of dietary lipids on dendritic cells in perinodal adipose tissue during chronic mild inflammation. Br. J. Nutr. 2004;91:883–892. doi: 10.1079/BJN20041147. PubMed DOI
Harvey N.L., Srinivasan R.S., Dillard M.E., Johnson N.C., Witte M.H., Boyd K., Sleeman M.W., Oliver G. Lymphatic vascular defects promoted by Prox1 haploinsufficiency cause adult-onset obesity. Nat. Genet. 2005;37:1072–1081. doi: 10.1038/ng1642. PubMed DOI
Heatley R.V., Bolton P.M., Hughes L.E., Owen E.W. Mesenteric lymphatic obstruction in Crohn’s disease. Digestion. 1980;20:307–313. doi: 10.1159/000198452. PubMed DOI
von der Weid P.Y., Rainey K.J. Review article: Lymphatic system and associated adipose tissue in the development of inflammatory bowel disease. Aliment Pharmacol. Ther. 2010;32:697–711. doi: 10.1111/j.1365-2036.2010.04407.x. PubMed DOI
Guedj K., Abitbol Y., Cazals-Hatem D., Morvan M., Maggiori L., Panis Y., Bouhnik Y., Caligiuri G., Corcos O., Nicoletti A. Adipocytes orchestrate the formation of tertiary lymphoid organs in the creeping fat of Crohn’s disease affected mesentery. J. Autoimmun. 2019;103:102281. doi: 10.1016/j.jaut.2019.05.009. PubMed DOI
da Silva F.A.R., Pascoal L.B., Dotti I., Setsuko Ayrizono M.L., Aguilar D., Rodrigues B.L., Arroyes M., Ferrer-Picon E., Milanski M., Velloso L.A., et al. Whole transcriptional analysis identifies markers of B, T and plasma cell signaling pathways in the mesenteric adipose tissue associated with Crohn’s disease. J. Transl. Med. 2020;18:44. doi: 10.1186/s12967-020-02220-3. PubMed DOI PMC
Szilagyi A. Relationship(s) between obesity and inflammatory bowel diseases: Possible intertwined pathogenic mechanisms. Clin. J. Gastroenterol. 2020;13:139–152. doi: 10.1007/s12328-019-01037-y. PubMed DOI PMC
Marchesi J.R., Adams D.H., Fava F., Hermes G.D., Hirschfield G.M., Hold G., Quraishi M.N., Kinross J., Smidt H., Tuohy K.M., et al. The gut microbiota and host health: A new clinical frontier. Gut. 2016;65:330–339. doi: 10.1136/gutjnl-2015-309990. PubMed DOI PMC
Huang X., Fan X., Ying J., Chen S. Emerging trends and research foci in gastrointestinal microbiome. J. Trans Med. 2019 doi: 10.1186/s12967-019-1810-x. PubMed DOI PMC
Zulian A., Cancello R., Ruocco C., Gentilini D., Di Blasio A.M., Danelli P., Micheletto G., Cesana E., Invitti C. Differences in visceral fat and fat bacterial colonization between ulcerative colitis and Crohn’s disease. An in vivo and in vitro study. PLoS ONE. 2013;8:e78495. doi: 10.1371/journal.pone.0078495. PubMed DOI PMC
Kiernan M.G., Coffey J.C., McDermott K., Cotter P.D., Cabrera-Rubio R., Kiely P.A., Dunne C.P. The Human Mesenteric Lymph Node Microbiome Differentiates between Crohn’s Disease and Ulcerative Colitis. J. Crohn’s Colitis. 2019;13:58–66. doi: 10.1093/ecco-jcc/jjy136. PubMed DOI PMC
Morrison D.J., Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7:189–200. doi: 10.1080/19490976.2015.1134082. PubMed DOI PMC
Kreuter R., Wankell M., Ahlenstiel G., Hebbard L. The role of obesity in inflammatory bowel disease. Biochim. Biophys. Acta Mol. Basis Dis. 2019;1865:63–72. doi: 10.1016/j.bbadis.2018.10.020. PubMed DOI
Fukuda S., Toh H., Hase K., Oshima K., Nakanishi Y., Yoshimura K., Tobe T., Clarke J.M., Topping D.L., Suzuki T., et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature. 2011;469:543–547. doi: 10.1038/nature09646. PubMed DOI
Serena C., Queipo-Ortuño M., Millan M., Sanchez-Alcoholado L., Caro A., Espina B., Menacho M., Bautista M., Monfort-Ferré D., Terrón-Puig M., et al. Microbial Signature in Adipose Tissue of Crohn’s Disease Patients. J. Clin. Med. 2020;9:2448. doi: 10.3390/jcm9082448. PubMed DOI PMC
Anty R., Bekri S., Luciani N., Saint-Paul M.C., Dahman M., Iannelli A., Amor I.B., Staccini-Myx A., Huet P.M., Gugenheim J., et al. The inflammatory C-reactive protein is increased in both liver and adipose tissue in severely obese patients independently from metabolic syndrome, Type 2 diabetes, and NASH. Am. J. Gastroenterol. 2006;101:1824–1833. doi: 10.1111/j.1572-0241.2006.00724.x. PubMed DOI
Schäffler A., Schölmerich J. Innate immunity and adipose tissue biology. Trends Immunol. 2010;31:228–235. doi: 10.1016/j.it.2010.03.001. PubMed DOI
Karrasch T., Schaeffler A. Adipokines and the role of visceral adipose tissue in inflammatory bowel disease. Ann. Gastroenterol. 2016;29:424–438. doi: 10.20524/aog.2016.0077. PubMed DOI PMC
Bertin B., Desreumaux P., Dubuquoy L. Obesity, visceral fat and Crohn’s disease. Curr. Opin. Clin. Nutr. Metab. Care. 2010;13:574–580. doi: 10.1097/MCO.0b013e32833cf0f4. PubMed DOI
Batra A., Heimesaat M.M., Bereswill S., Fischer A., Glauben R., Kunkel D., Scheffold A., Erben U., Kühl A., Loddenkemper C., et al. Mesenteric fat—control site for bacterial translocation in colitis? Mucosal. Immunol. 2012;5:580–591. doi: 10.1038/mi.2012.33. PubMed DOI
Goldmannova D., Spurna J., Krystynik O., Schovanek J., Cibickova L., Karasek D., Zadražil J. Adipocytokines and new onset diabetes mellitus after transplantation. J. Appl. Biomed. 2018;16:247–254. doi: 10.1016/j.jab.2018.05.005. DOI
Weidinger C., Ziegler J.F., Letizia M., Schmidt F., Siegmund B. Adipokines and Their Role in Intestinal Inflammation. Front. Immunol. 2018;9:1974. doi: 10.3389/fimmu.2018.01974. PubMed DOI PMC
Yamauchi T., Kamon J., Ito Y., Tsuchida A., Yokomizo T., Kita S., Sugiyama T., Miyagishi M., Hara K., Tsunoda M., et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003;423:762–769. doi: 10.1038/nature01705. PubMed DOI
Spurná J., Karásek D., Kubíčková V., Goldmannová D., Krystyník O., Schovánek J., Zadražil J. Relationship of Selected Adipokines with Markers of Vascular Damage in Patients with Type 2 Diabetes. Metab. Syndr. Relat. Disord. 2018;16:246–253. doi: 10.1089/met.2017.0179. PubMed DOI
Rodrigues V.S., Milanski M., Fagundes J.J., Torsoni A.S., Ayrizono M.L., Nunez C.E., Dias C.B., Meirelles L.R., Dalal S., Coy C.S., et al. Serum levels and mesenteric fat tissue expression of adiponectin and leptin in patients with Crohn’s disease. Clin. Exp. Immunol. 2012;170:358–364. doi: 10.1111/j.1365-2249.2012.04660.x. PubMed DOI PMC
Yamamoto K., Kiyohara T., Murayama Y., Kihara S., Okamoto Y., Funahashi T., Ito T., Nezu R., Tsutsui S., Miyagawa J.I., et al. Production of adiponectin, an anti-inflammatory protein, in mesenteric adipose tissue in Crohn’s disease. Gut. 2005;54:789–796. doi: 10.1136/gut.2004.046516. PubMed DOI PMC
Valentini L., Wirth E.K., Schweizer U., Hengstermann S., Schaper L., Koernicke T., Dietz E., Norman K., Buning C., Winklhofer-Roob B.M., et al. Circulating adipokines and the protective effects of hyperinsulinemia in inflammatory bowel disease. Nutrition. 2009;25:172–181. doi: 10.1016/j.nut.2008.07.020. PubMed DOI
Kahraman R., Calhan T., Sahin A., Ozdil K., Caliskan Z., Bireller E.S., Cakmakoglu B. Are adipocytokines inflammatory or metabolic mediators in patients with inflammatory bowel disease? Ther. Clin. Risk Manag. 2017;13:1295–1301. doi: 10.2147/TCRM.S140618. PubMed DOI PMC
Karmiris K., Koutroubakis I.E., Xidakis C., Polychronaki M., Voudouri T., Kouroumalis E.A. Circulating levels of leptin, adiponectin, resistin, and ghrelin in inflammatory bowel disease. Inflamm. Bowel Dis. 2006;12:100–105. doi: 10.1097/01.MIB.0000200345.38837.46. PubMed DOI
Weigert J., Obermeier F., Neumeier M., Wanninger J., Filarsky M., Bauer S., Aslanidis C., Rogler G., Ott C., Schäffler A., et al. Circulating levels of chemerin and adiponectin are higher in ulcerative colitis and chemerin is elevated in Crohn’s disease. Inflamm. Bowel Dis. 2010;16:630–637. doi: 10.1002/ibd.21091. PubMed DOI
Waluga M., Hartleb M., Boryczka G., Kukla M., Zwirska-Korczala K. Serum adipokines in inflammatory bowel disease. World J. Gastroenterol. 2014;20:6912–6917. doi: 10.3748/wjg.v20.i22.6912. PubMed DOI PMC
Chouliaras G., Panayotou I., Margoni D., Mantzou E., Pervanidou P., Manios Y., Chrousos G.P., Roma E. Circulating leptin and adiponectin and their relation to glucose metabolism in children with Crohn’s disease and ulcerative colitis. Pediatr. Res. 2013;74:420–426. doi: 10.1038/pr.2013.114. PubMed DOI
Ortega Moreno L., Sanz-Garcia A., Fernández de la Fuente M.J., Arroyo Solera R., Fernández-Tomé S., Marin A.C., Mora-Gutierrez I., Fernández P., Baldan-Martin M., Chaparro M., et al. Serum adipokines as non-invasive biomarkers in Crohn’s disease. Sci. Rep. 2020;10:18027. doi: 10.1038/s41598-020-74999-6. PubMed DOI PMC
Karmiris K., Koutroubakis I.E., Xidakis C., Polychronaki M., Kouroumalis E.A. The effect of infliximab on circulating levels of leptin, adiponectin and resistin in patients with inflammatory bowel disease. Eur. J. Gastroenterol. Hepatol. 2007;19:789–794. doi: 10.1097/MEG.0b013e3282202bca. PubMed DOI
Wulster-Radcliffe M.C., Ajuwon K.M., Wang J., Christian J.A., Spurlock M.E. Adiponectin differentially regulates cytokines in porcine macrophages. Biochem. Biophys. Res. Commun. 2004;316:924–929. doi: 10.1016/j.bbrc.2004.02.130. PubMed DOI
Ogunwobi O.O., Beales I.L. Adiponectin stimulates proliferation and cytokine secretion in colonic epithelial cells. Regul. Pept. 2006;134:105–113. doi: 10.1016/j.regpep.2006.02.001. PubMed DOI
Sitaraman S., Liu X., Charrier L., Gu L.H., Ziegler T.R., Gewirtz A., Merlin D. Colonic leptin: Source of a novel proinflammatory cytokine involved in IBD. FASEB J. 2004;18:696–698. doi: 10.1096/fj.03-0422fje. PubMed DOI
Singh U.P., Singh N.P., Guan H., Busbee B., Price R.L., Taub D.D., Mishra M.K., Fayad R., Nagarkatti M., Nagarkatti P.S. The emerging role of leptin antagonist as potential therapeutic option for inflammatory bowel disease. Int. Rev. Immunol. 2014;33:23–33. doi: 10.3109/08830185.2013.809071. PubMed DOI PMC
Barbier M., Vidal H., Desreumaux P., Dubuquoy L., Bourreille A., Colombel J.F., Cherbut C., Galmiche J.P. Overexpression of leptin mRNA in mesenteric adipose tissue in inflammatory bowel diseases. Gastroenterol. Clin. Biol. 2003;27:987–991. doi: 10.1016/S0016-5085(00)83460-5. PubMed DOI
Aurangzeb B., Leach S.T., Lemberg D.A., Day A.S. Assessment of nutritional status and serum leptin in children with inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 2011;52:536–541. doi: 10.1097/MPG.0b013e3181f87a95. PubMed DOI
Biesiada G., Czepiel J., Ptak-Belowska A., Targosz A., Krzysiek-Maczka G., Strzalka M., Konturek S.J., Brzozowski T., Mach T. Expression and release of leptin and proinflammatory cytokines in patients with ulcerative colitis and infectious diarrhea. J. Physiol. Pharmacol. 2012;63:471–481. PubMed
Tuzun A., Uygun A., Yesilova Z., Ozel A.M., Erdil A., Yaman H., Bagci S., Gulsen M., Karaeren N., Dagalp K. Leptin levels in the acute stage of ulcerative colitis. J. Gastroenterol. Hepatol. 2004;19:429–432. doi: 10.1111/j.1440-1746.2003.03300.x. PubMed DOI
Nishi Y., Isomoto H., Ueno H., Ohnita K., Wen C.Y., Takeshima F., Mishima R., Nakazato M., Kohno S. Plasma leptin and ghrelin concentrations in patients with Crohn’s disease. World J. Gastroenterol. 2005;11:7314–7317. doi: 10.3748/wjg.v11.i46.7314. PubMed DOI PMC
Hoppin A.G., Kaplan L.M., Zurakowski D., Leichtner A.M., Bousvaros A. Serum leptin in children and young adults with inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 1998;26:500–505. doi: 10.1097/00005176-199805000-00003. PubMed DOI
Trejo-Vazquez F., Garza-Veloz I., Villela-Ramirez G.A., Ortiz-Castro Y., Mauricio-Saucedo P., Cardenas-Vargas E., Diaz-Baez M., Cid-Baez M.A., Castañeda-Miranda R., Ortiz-Rodriguez J.M., et al. Positive association between leptin serum levels and disease activity on endoscopy in inflammatory bowel disease: A case-control study. Exp. Ther. Med. 2018;15:3336–3344. doi: 10.3892/etm.2018.5835. PubMed DOI PMC
Ziegler J.F., Böttcher C., Letizia M., Yerinde C., Wu H., Freise I., Rodriguez-Sillke Y., Stoyanova A.K., Kreis M.E., Asbach P., et al. Leptin induces TNFα-dependent inflammation in acquired generalized lipodystrophy and combined Crohn’s disease. Nat. Commun. 2019;10:5629. doi: 10.1038/s41467-019-13559-7. PubMed DOI PMC
Kaser S., Kaser A., Sandhofer A., Ebenbichler C.F., Tilg H., Patsch J.R. Resistin messenger-RNA expression is increased by proinflammatory cytokines in vitro. Biochem. Biophys. Res. Commun. 2003;309:286–290. doi: 10.1016/j.bbrc.2003.07.003. PubMed DOI
Konrad A., Lehrke M., Schachinger V., Seibold F., Stark R., Ochsenkühn T., Parhofer K.G., Göke B., Broedl U.C. Resistin is an inflammatory marker of inflammatory bowel disease in humans. Eur. J. Gastroenterol. Hepatol. 2007;19:1070–1074. doi: 10.1097/MEG.0b013e3282f16251. PubMed DOI
Bozaoglu K., Bolton K., McMillan J., Zimmet P., Jowett J., Collier G., Walder K., Segal D. Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology. 2007;148:4687–4694. doi: 10.1210/en.2007-0175. PubMed DOI
Lin Y., Yang X., Yue W., Xu X., Li B., Zou L., He R. Chemerin aggravates DSS-induced colitis by suppressing M2 macrophage polarization. Cell Mol. Immunol. 2014;11:355–366. doi: 10.1038/cmi.2014.15. PubMed DOI PMC
Terzoudis S., Malliaraki N., Damilakis J., Dimitriadou D.A., Zavos C., Koutroubakis I.E. Chemerin, visfatin, and vaspin serum levels in relation to bone mineral density in patients with inflammatory bowel disease. Eur. J. Gastroenterol. Hepatol. 2016;28:814–819. doi: 10.1097/MEG.0000000000000617. PubMed DOI
Fukuhara A., Matsuda M., Nishizawa M., Segawa K., Tanaka M., Kishimoto K., Matsuki Y., Murakami M., Ichisaka T., Murakami H., et al. Visfatin: A protein secreted by visceral fat that mimics the effects of insulin. Science. 2005;307:426–430. doi: 10.1126/science.1097243. PubMed DOI
Chang Y.C., Chang T.J., Lee W.J., Chuang L.M. The relationship of visfatin/pre-B-cell colony-enhancing factor/nicotinamide phosphoribosyltransferase in adipose tissue with inflammation, insulin resistance, and plasma lipids. Metabolism. 2010;59:93–99. doi: 10.1016/j.metabol.2009.07.011. PubMed DOI
Dogan S., Guven K., Celikbilek M., Deniz K., Saraymen B., Gursoy S. Serum Visfatin Levels in Ulcerative Colitis. J. Clin. Lab. Anal. 2016;30:552–556. doi: 10.1002/jcla.21901. PubMed DOI PMC
Starr A.E., Deeke S.A., Ning Z., Chiang C.K., Zhang X., Mottawea W., Singleton R., Benchimol E.I., Wen M., Mack D.R., et al. Proteomic analysis of ascending colon biopsies from a paediatric inflammatory bowel disease inception cohort identifies protein biomarkers that differentiate Crohn’s disease from UC. Gut. 2017;66:1573–1583. doi: 10.1136/gutjnl-2015-310705. PubMed DOI PMC
Moschen A.R., Kaser A., Enrich B., Mosheimer B., Theurl M., Niederegger H., Tilg H. Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. J. Immunol. 2007;178:1748–1758. doi: 10.4049/jimmunol.178.3.1748. PubMed DOI
Boucher J., Masri B., Daviaud D., Gesta S., Guigné C., Mazzucotelli A., Castan-Laurell I., Tack I., Knibiehler B., Carpéné C., et al. Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology. 2005;146:1764–1771. doi: 10.1210/en.2004-1427. PubMed DOI
Yu S., Zhang Y., Li M.Z., Xu H., Wang Q., Song J., Lin P., Zhang L., Liu Q., Huang Q.X., et al. Chemerin and apelin are positively correlated with inflammation in obese type 2 diabetic patients. Chin. Med. J. 2012;125:3440–3444. PubMed
Han S., Wang G., Qiu S., de la Motte C., Wang H.Q., Gomez G., Englander E.W., Greeley G.H., Jr. Increased colonic apelin production in rodents with experimental colitis and in humans with IBD. Regul. Pept. 2007;142:131–137. doi: 10.1016/j.regpep.2007.02.002. PubMed DOI
Masoud A.G., Lin J., Azad A.K., Farhan M.A., Fischer C., Zhu L.F., Zhang H., Sis B., Kassiri Z., Moore R.B., et al. Apelin directs endothelial cell differentiation and vascular repair following immune-mediated injury. J. Clin. Investig. 2020;130:94–107. doi: 10.1172/JCI128469. PubMed DOI PMC
Kwon H.B., Wang S., Helker C.S., Rasouli S.J., Maischein H.M., Offermanns S., Herzog W., Stainier D.Y. In vivo modulation of endothelial polarization by Apelin receptor signalling. Nat. Commun. 2016;7:11805. doi: 10.1038/ncomms11805. PubMed DOI PMC
Berta J., Hoda M.A., Laszlo V., Rozsas A., Garay T., Torok S., Grusch M., Berger W., Paku S., Renyi-Vamos F., et al. Apelin promotes lymphangiogenesis and lymph node metastasis. Oncotarget. 2014;5:4426–4437. doi: 10.18632/oncotarget.2032. PubMed DOI PMC
Sawane M., Kidoya H., Muramatsu F., Takakura N., Kajiya K. Apelin attenuates UVB-induced edema and inflammation by promoting vessel function. Am. J. Pathol. 2011;179:2691–2697. doi: 10.1016/j.ajpath.2011.08.024. PubMed DOI PMC
Tiaka E.K., Manolakis A.C., Kapsoritakis A.N., Potamianos S.P. Unraveling the link between leptin, ghrelin and different types of colitis. Ann. Gastroenterol. 2011;24:20–28. PubMed PMC
Peracchi M., Bardella M.T., Caprioli F., Massironi S., Conte D., Valenti L., Ronchi C., Beck-Peccoz P., Arosio M., Piodi L. Circulating ghrelin levels in patients with inflammatory bowel disease. Gut. 2006;55:432–433. doi: 10.1136/gut.2005.079483. PubMed DOI PMC
Ates Y., Degertekin B., Erdil A., Yaman H., Dagalp K. Serum ghrelin levels in inflammatory bowel disease with relation to disease activity and nutritional status. Dig. Dis. Sci. 2008;53:2215–2221. doi: 10.1007/s10620-007-0113-x. PubMed DOI
Ghomraoui F.A., Alotaibi S.T., Alharthi M.A., Asiri S.S., Almadi M.A., Alharbi O.R., Azzam N.A., Aljebreen A.M., Saeed M., Hajkhder B., et al. Plasma ghrelin and leptin in patients with inflammatory bowel disease and its association with nutritional status. Saudi J. Gastroenterol. 2017;23:199–205. doi: 10.1016/S0016-5085(17)32844-5. PubMed DOI PMC
Yamawaki H., Kuramoto J., Kameshima S., Usui T., Okada M., Hara Y. Omentin, a novel adipocytokine inhibits TNF-induced vascular inflammation in human endothelial cells. Biochem. Biophys. Res. Commun. 2011;408:339–343. doi: 10.1016/j.bbrc.2011.04.039. PubMed DOI
Lu Y., Zhou L., Liu L., Feng Y., Lu L., Ren X., Dong X., Sang W. Serum omentin-1 as a disease activity marker for Crohn’s disease. Dis. Markers. 2014;2014:162517. doi: 10.1155/2014/162517. PubMed DOI PMC
Tabesh M., Noroozi A., Amini M., Feizi A., Saraf-Bank S., Zare M. Association of retinol-binding protein 4 with metabolic syndrome in first-degree relatives of type 2 diabetic patients. J. Res. Med. Sci. 2017;22:28. PubMed PMC
Roma E., Krini M., Hantzi E., Sakka S., Panayiotou I., Margeli A., Papassotiriou I., Kanaka-Gantenbein C. Retinol Binding Protein 4 in children with Inflammatory Bowel Disease: A negative correlation with the disease activity. Hippokratia. 2012;16:360–365. PubMed PMC
Gholamrezayi A., Mohamadinarab M., Rahbarinejad P., Fallah S., Barez S.R., Setayesh L., Moradi N., Fadaei R., Chamani E., Tavakoli T. Characterization of the serum levels of Meteorin-like in patients with inflammatory bowel disease and its association with inflammatory cytokines. Lipids Health Dis. 2020;19:230. doi: 10.1186/s12944-020-01404-6. PubMed DOI PMC
Arsenescu V., Narasimhan M.L., Halide T., Bressan R.A., Barisione C., Cohen D.A., de Villiers W.J., Arsenescu R. Adiponectin and plant-derived mammalian adiponectin homolog exert a protective effect in murine colitis. Dig. Dis. Sci. 2011;56:2818–2832. doi: 10.1007/s10620-011-1692-0. PubMed DOI
Nishihara T., Matsuda M., Araki H., Oshima K., Kihara S., Funahashi T., Shimomura I. Effect of adiponectin on murine colitis induced by dextran sulfate sodium. Gastroenterology. 2006;131:853–861. doi: 10.1053/j.gastro.2006.06.015. PubMed DOI
Saxena A., Chumanevich A., Fletcher E., Larsen B., Lattwein K., Kaur K., Fayad R. Adiponectin deficiency: Role in chronic inflammation induced colon cancer. Biochim. Biophys. Acta. 2012;1822:527–536. doi: 10.1016/j.bbadis.2011.12.006. PubMed DOI PMC
Peng Y.J., Shen T.L., Chen Y.S., Mersmann H.J., Liu B.H., Ding S.T. Adiponectin and adiponectin receptor 1 overexpression enhance inflammatory bowel disease. J. Biomed. Sci. 2018;25:24. doi: 10.1186/s12929-018-0419-3. PubMed DOI PMC
Singh U.P., Singh N.P., Guan H., Busbee B., Price R.L., Taub D.D., Mishra M.K., Fayad R., Nagarkatti M., Nagarkatti P.S. Leptin antagonist ameliorates chronic colitis in IL-10−/− mice. Immunobiology. 2013;218:1439–1451. doi: 10.1016/j.imbio.2013.04.020. PubMed DOI PMC
Ge Y., Li Y., Chen Q., Zhu W., Zuo L., Guo Z., Gong J., Cao L., Gu L., Li J. Adipokine apelin ameliorates chronic colitis in Il-10-/- mice by promoting intestinal lymphatic functions. Biochem. Pharmacol. 2018;148:202–212. doi: 10.1016/j.bcp.2018.01.011. PubMed DOI
Gerner R.R., Klepsch V., Macheiner S., Arnhard K., Adolph T.E., Grander C., Wieser V., Pfister A., Moser P., Hermann-Kleiter N., et al. NAD metabolism fuels human and mouse intestinal inflammation. Gut. 2018;67:1813–1823. doi: 10.1136/gutjnl-2017-314241. PubMed DOI PMC
Franchimont D., Roland S., Gustot T., Quertinmont E., Toubouti Y., Gervy M.C., Deviere J., Van Gossum A. Impact of infliximab on serum leptin levels in patients with Crohn’s disease. J. Clin. Endocrinol. Metab. 2005;90:3510–3516. doi: 10.1210/jc.2004-1222. PubMed DOI
Frivolt K., Schwerd T., Schatz S.B., Freudenberg F., Prell C., Werkstetter K.J., Bufler P., Koletzko S. Hyperadiponectinemia During Infliximab Induction Therapy in Pediatric Crohn Disease. J. Pediatr. Gastroenterol. Nutr. 2018;66:915–919. doi: 10.1097/MPG.0000000000001876. PubMed DOI