Lung function from school age to adulthood in primary ciliary dyskinesia

. 2022 Oct ; 60 (4) : . [epub] 20221020

Jazyk angličtina Země Velká Británie, Anglie Médium electronic-print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35301251
Odkazy

PubMed 35301251
PubMed Central PMC9582507
DOI 10.1183/13993003.01918-2021
PII: 13993003.01918-2021
Knihovny.cz E-zdroje

Primary ciliary dyskinesia (PCD) presents with symptoms early in life and the disease course may be progressive, but longitudinal data on lung function are scarce. This multinational cohort study describes lung function trajectories in children, adolescents and young adults with PCD. We analysed data from 486 patients with repeated lung function measurements obtained between the age of 6 and 24 years from the International PCD Cohort and calculated z-scores for forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC ratio using the Global Lung Function Initiative 2012 references. We described baseline lung function and change of lung function over time and described their associations with possible determinants in mixed-effects linear regression models. Overall, FEV1, FVC and FEV1/FVC z-scores declined over time (average crude annual FEV1 decline was -0.07 z-scores), but not at the same rate for all patients. FEV1 z-scores improved over time in 21% of patients, remained stable in 40% and declined in 39%. Low body mass index was associated with poor baseline lung function and with further decline. Results differed by country and ultrastructural defect, but we found no evidence of differences by sex, calendar year of diagnosis, age at diagnosis, diagnostic certainty or laterality defect. Our study shows that on average lung function in PCD declines throughout the entire period of lung growth, from childhood to young adult age, even among patients treated in specialised centres. It is essential to develop strategies to reverse this tendency and improve prognosis.

Basel Institute for Clinical Epidemiology and Biostatistics Dept of Clinical Research University Hospital Basel University of Basel Basel Switzerland

Clinic for Paediatric Pneumology Allergology and Neonatology Hannover Medical School Hannover Germany

Danish PCD Centre Copenhagen Paediatric Pulmonary Service Copenhagen University Hospital Copenhagen Denmark

Dept of Clinical Medicine University of Copenhagen Copenhagen Denmark

Dept of Paediatric Pneumology University Children's Hospital of Ruhr University Bochum Bochum Germany

Dept of Paediatrics University Hospital Gasthuisberg Leuven Belgium

Dept of Pediatric Pulmonology Emma Children's Hospital Vrije Universiteit Amsterdam Amsterdam The Netherlands

Dept of Pediatric Pulmonology Hacettepe University Faculty of Medicine Ankara Turkey

Dept of Pediatric Pulmonology Marmara University School of Medicine Istanbul Turkey

Dept of Pediatrics Faculty of Medicine Tel Aviv University Tel Aviv Israel

Dept of Pediatrics University of Alberta Edmonton AB Canada

Dept of Pneumonology and Cystic Fibrosis Institute of Tuberculosis and Lung Disorders Rabka ‌ Zdrój Poland

Dept of Respiratory Medicine Concord Hospital Clinical School University of Sydney Sydney Australia

Dept of Translational Medical Sciences Federico 2 University Napoli Italy

Division of Paediatric Respiratory Medicine and Allergology Dept of Paediatrics Inselspital Bern University Hospital University of Bern Bern Switzerland

Host Defence Unit Royal Brompton and Harefield NHS Foundation Trust and Imperial College London London UK

Institute of Social and Preventive Medicine University of Bern Bern Switzerland

Medical School University of Cyprus Nicosia Cyprus

On behalf of the French Reference Centre for Rare Lung Diseases RespiRare

On behalf of the Swiss PCD Group

Paediatric Dept 2nd Faculty of Medicine Charles University Prague and University Hospital Motol Prague Czech Republic

Paediatric Dept of Allergy and Lung Diseases Oslo University Hospital Oslo Norway

Pediatric Pulmonology Dept APHP Hôpital Trousseau Sorbonne Université Centre de Recherche Saint Antoine Inserm UMR_S938 Paris France

Pediatric Pulmonology Unit and Cystic fibrosis Center Hadassah Medical Center and Faculty of Medicine Hebrew University of Jerusalem Jerusalem Israel

Primary Ciliary Dyskinesia Centre NIHR Respiratory Biomedical Research Centre University of Southampton and University Hospital Southampton UK

The PCD Israeli Consortium

These authors contributed equally to the manuscript

Zobrazit více v PubMed

Kouis P, Goutaki M, Halbeisen FS, et al. . Prevalence and course of disease after lung resection in primary ciliary dyskinesia: a cohort & nested case-control study. Respir Res 2019; 20: 212. doi:10.1186/s12931-019-1183-y PubMed DOI PMC

Wallmeier J, Nielsen KG, Kuehni CE, et al. . Motile ciliopathies. Nat Rev Dis Primers 2020; 6: 77. doi:10.1038/s41572-020-0209-6 PubMed DOI

Goutaki M, Halbeisen FS, Barbato A, et al. . Late diagnosis of infants with PCD and neonatal respiratory distress. J Clin Med 2020; 9: 2871. doi:10.3390/jcm9092871 PubMed DOI PMC

Behan L, Dimitrov BD, Kuehni CE, et al. . PICADAR: a diagnostic predictive tool for primary ciliary dyskinesia. Eur Respir J 2016; 47: 1103–1112. doi:10.1183/13993003.01551-2015 PubMed DOI PMC

Noone PG, Leigh MW, Sannuti A, et al. . Primary ciliary dyskinesia: diagnostic and phenotypic features. Am J Respir Crit Care Med 2004; 169: 459–467. doi:10.1164/rccm.200303-365OC PubMed DOI

Shah A, Shoemark A, MacNeill SJ, et al. . A longitudinal study characterising a large adult primary ciliary dyskinesia population. Eur Respir J 2016; 48: 441–450. doi:10.1183/13993003.00209-2016 PubMed DOI

Halbeisen FS, Jose A, de Jong C, et al. . Spirometric indices in primary ciliary dyskinesia: systematic review and meta-analysis. ERJ Open Res 2019; 5: 00231-2018. doi:10.1183/23120541.00231-2018 PubMed DOI PMC

Marthin JK, Petersen N, Skovgaard LT, et al. . Lung function in patients with primary ciliary dyskinesia: a cross-sectional and 3-decade longitudinal study. Am J Respir Crit Care Med 2010; 181: 1262–1268. doi:10.1164/rccm.200811-1731OC PubMed DOI

Speizer FE, Tager IB. Epidemiology of chronic mucus hypersecretion and obstructive airways disease. Epidemiol Rev 1979; 1: 124–142. doi:10.1093/oxfordjournals.epirev.a036206 PubMed DOI

Bui DS, Lodge CJ, Burgess JA, et al. . Childhood predictors of lung function trajectories and future COPD risk: a prospective cohort study from the first to the sixth decade of life. Lancet Respir Med 2018; 6: 535–544. doi:10.1016/S2213-2600(18)30100-0 PubMed DOI

Miller MR, Pedersen OF, Lange P, et al. . Improved survival prediction from lung function data in a large population sample. Respir Med 2009; 103: 442–448. doi:10.1016/j.rmed.2008.09.016 PubMed DOI

Marott JL, Ingebrigtsen TS, Çolak Y, et al. . Lung function trajectories leading to chronic obstructive pulmonary disease as predictors of exacerbations and mortality. Am J Respir Crit Care Med 2020; 202: 210–218. doi:10.1164/rccm.201911-2115OC PubMed DOI PMC

Davis SD, Rosenfeld M, Lee HS, et al. . Primary ciliary dyskinesia: longitudinal study of lung disease by ultrastructure defect and genotype. Am J Respir Crit Care Med 2019; 199: 190–198. doi:10.1164/rccm.201803-0548OC PubMed DOI PMC

Maglione M, Bush A, Nielsen KG, et al. . Multicenter analysis of body mass index, lung function, and sputum microbiology in primary ciliary dyskinesia. Pediatr Pulmonol 2014; 49: 1243–1250. doi:10.1002/ppul.22984 PubMed DOI

Halbeisen FS, Goutaki M, Spycher BD, et al. . Lung function in patients with primary ciliary dyskinesia: an iPCD Cohort study. Eur Respir J 2018; 52: 1801040. doi:10.1183/13993003.01040-2018 PubMed DOI

Ardura-Garcia C, Goutaki M, Carr SB, et al. . Registries and collaborative studies for primary ciliary dyskinesia in Europe. ERJ Open Res 2020; 6: 00005-2020. doi:10.1183/23120541.00005-2020 PubMed DOI PMC

Goutaki M, Maurer E, Halbeisen FS, et al. . The international primary ciliary dyskinesia cohort (iPCD Cohort): methods and first results. Eur Respir J 2017; 49: 1601181. doi:10.1183/13993003.01181-2016 PubMed DOI PMC

Lucas JS, Paff T, Goggin P, et al. . Diagnostic methods in primary ciliary dyskinesia. Paediatr Respir Rev 2016; 18: 8–17. doi:10.1016/j.prrv.2015.07.017 PubMed DOI

Lucas JS, Barbato A, Collins SA, et al. . European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia. Eur Respir J 2017; 49: 1601090. doi:10.1183/13993003.01090-2016 PubMed DOI PMC

Strippoli MP, Frischer T, Barbato A, et al. . Management of primary ciliary dyskinesia in European children: recommendations and clinical practice. Eur Respir J 2012; 39: 1482–1491. doi:10.1183/09031936.00073911 PubMed DOI

Halbeisen FS, Shoemark A, Barbato A, et al. . Time trends in diagnostic testing for primary ciliary dyskinesia in Europe. Eur Respir J 2019; 54: 1900528. doi:10.1183/13993003.00528-2019 PubMed DOI

Quanjer PH, Stanojevic S, Cole TJ, et al. . Multi-ethnic reference values for spirometry for the 3–95-yr age range: the global lung function 2012 equations. Eur Respir J 2012; 40: 1324–1343. doi:10.1183/09031936.00080312 PubMed DOI PMC

World Health Organization (WHO) . WHO Child Growth Standards: Length/Height-for-Age, Weight-for-Age, Weight-for-Length, Weight-for-Height and Body Mass Index-for-Age: Methods and Development. Geneva, WHO, 2006. Available from: https://www.who.int/tools/child-growth-standards/standards/weight-for-age

Pifferi M, Bush A, Mariani F, et al. . Lung function longitudinal study by phenotype and genotype in primary ciliary dyskinesia. Chest 2020; 158: 117–120. doi:10.1016/j.chest.2020.02.001 PubMed DOI

Kirkby J, Bountziouka V, Lum S, et al. . Natural variability of lung function in young healthy school children. Eur Respir J 2016; 48: 411–419. doi:10.1183/13993003.01795-2015 PubMed DOI PMC

Nakagawa S, Johnson PCD, Schielzeth H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J R Soc Interface 2017; 14: 20170213. doi:10.1098/rsif.2017.0213 PubMed DOI PMC

Yiallouros PK, Kouis P, Middleton N, et al. . Clinical features of primary ciliary dyskinesia in Cyprus with emphasis on lobectomized patients. Respir Med 2015; 109: 347–356. doi:10.1016/j.rmed.2015.01.015 PubMed DOI

Maglione M, Montella S, Mollica C, et al. . Lung structure and function similarities between primary ciliary dyskinesia and mild cystic fibrosis: a pilot study. Ital J Pediatr 2017; 43: 34. doi:10.1186/s13052-017-0351-2 PubMed DOI PMC

Walker W, Harris A, Rubbo B, et al. . Lung function and nutritional status in children with cystic fibrosis and primary ciliary dyskinesia. Eur Respir J 2016; 48: Suppl. 60, PA3128. doi:10.1183/13993003.congress-2016.PA3128 DOI

Kuehni CE, Goutaki M, Kobbernagel HE. Hypertonic saline in patients with primary ciliary dyskinesia: on the road to evidence-based treatment for a rare lung disease. Eur Respir J 2017; 49: 1602514. doi:10.1183/13993003.02514-2016 PubMed DOI

Kobbernagel HE, Buchvald FF, Haarman EG, et al. . Efficacy and safety of azithromycin maintenance therapy in primary ciliary dyskinesia (BESTCILIA): a multicentre, double-blind, randomised, placebo-controlled phase 3 trial. Lancet Respir Med 2020; 8: 493–505. doi:10.1016/S2213-2600(20)30058-8 PubMed DOI

Paff T, Omran H, Nielsen KG, et al. . Current and future treatments in primary ciliary dyskinesia. Int J Mol Sci 2021; 22: 9834. doi:10.3390/ijms22189834 PubMed DOI PMC

Kuehni CE, Goutaki M, Rubbo B, et al. . Management of primary ciliary dyskinesia: current practice and future perspectives. In: Chalmers JD, Polverino E, Aliberti S, eds. Bronchiectasis (ERS Monograph). Sheffield, European Respiratory Society, 2018; pp. 282–289.

Turner SW, Palmer LJ, Rye PJ, et al. . Infants with flow limitation at 4 weeks: outcome at 6 and 11 years. Am J Respir Crit Care Med 2002; 165: 1294–1298. doi:10.1164/rccm.200110-018OC PubMed DOI

Martinez FD, Morgan WJ, Wright AL, et al. . Initial airway function is a risk factor for recurrent wheezing respiratory illnesses during the first three years of life. Group Health Medical Associates. Am Rev Respir Dis 1991; 143: 312–316. doi:10.1164/ajrccm/143.2.312 PubMed DOI

Stocks J, Sonnappa S. Early life influences on the development of chronic obstructive pulmonary disease. Ther Adv Respir Dis 2013; 7: 161–173. doi:10.1177/1753465813479428 PubMed DOI PMC

Caley L, Smith L, White H, et al. . Average rate of lung function decline in adults with cystic fibrosis in the United Kingdom: data from the UK CF registry. J Cyst Fibros 2021; 20: 86–90. doi:10.1016/j.jcf.2020.04.008 PubMed DOI

Kuehni CE, Frischer T, Strippoli MP, et al. . Factors influencing age at diagnosis of primary ciliary dyskinesia in European children. Eur Respir J 2010; 36: 1248–1258. doi:10.1183/09031936.00001010 PubMed DOI

Mahut B, Bokov P, Beydon N, et al. . Longitudinal assessment of loss and gain of lung function in childhood asthma. J Asthma 2022; in press [10.1080/02770903.2021.2023176]. PubMed DOI

McGeachie MJ, Yates KP, Zhou X, et al. . Patterns of growth and decline in lung function in persistent childhood asthma. N Engl J Med 2016; 374: 1842–1852. doi:10.1056/NEJMoa1513737 PubMed DOI PMC

Ellerman A, Bisgaard H. Longitudinal study of lung function in a cohort of primary ciliary dyskinesia. Eur Respir J 1997; 10: 2376–2379. doi:10.1183/09031936.97.10102376 PubMed DOI

Davis SD, Ferkol TW, Rosenfeld M, et al. . Clinical features of childhood primary ciliary dyskinesia by genotype and ultrastructural phenotype. Am J Respir Crit Care Med 2015; 191: 316–324. doi:10.1164/rccm.201409-1672OC PubMed DOI PMC

Goutaki M, Halbeisen FS, Spycher BD, et al. . Growth and nutritional status, and their association with lung function: a study from the international Primary Ciliary Dyskinesia Cohort. Eur Respir J 2017; 50: 1701659. doi:10.1183/13993003.01659-2017 PubMed DOI

Earnest A, Salimi F, Wainwright CE, et al. . Lung function over the life course of paediatric and adult patients with cystic fibrosis from a large multi-centre registry. Sci Rep 2020; 10: 17421. doi:10.1038/s41598-020-74502-1 PubMed DOI PMC

Bott L, Béghin L, Devos P, et al. . Nutritional status at 2 years in former infants with bronchopulmonary dysplasia influences nutrition and pulmonary outcomes during childhood. Pediatr Res 2006; 60: 340–344. doi:10.1203/01.pdr.0000232793.90186.ca PubMed DOI

Konstan MW, Butler SM, Wohl ME, et al. . Growth and nutritional indexes in early life predict pulmonary function in cystic fibrosis. J Pediatr 2003; 142: 624–630. doi:10.1067/mpd.2003.152 PubMed DOI

Liou TG, Adler FR, Fitzsimmons SC, et al. . Predictive 5-year survivorship model of cystic fibrosis. Am J Epidemiol 2001; 153: 345–352. doi:10.1093/aje/153.4.345 PubMed DOI PMC

Schaedel C, de Monestrol I, Hjelte L, et al. . Predictors of deterioration of lung function in cystic fibrosis. Pediatr Pulmonol 2002; 33: 483–491. doi:10.1002/ppul.10100 PubMed DOI

Cohen-Cymberknoh M, Weigert N, Gileles-Hillel A, et al. . Clinical impact of Pseudomonas aeruginosa colonization in patients with primary ciliary dyskinesia. Respir Med 2017; 131: 241–246. doi:10.1016/j.rmed.2017.08.028 PubMed DOI

Mésinèle J, Ruffin M, Kemgang A, et al. . Risk factors for Pseudomonas aeruginosa airway infection and lung function decline in children with cystic fibrosis. J Cyst Fibros 2022; 21: 45–51. doi:10.1016/j.jcf.2021.09.017 PubMed DOI

Turkovic L, Caudri D, Rosenow T, et al. . Structural determinants of long-term functional outcomes in young children with cystic fibrosis. Eur Respir J 2020; 55: 1900748. doi:10.1183/13993003.00748-2019 PubMed DOI

Goutaki M, Papon JF, Boon M, et al. . Standardised clinical data from patients with primary ciliary dyskinesia: FOLLOW-PCD. ERJ Open Res 2020; 6: 00237-2019. doi:10.1183/23120541.00237-2019 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...