Immunoengineering strategies to enhance vascularization and tissue regeneration

. 2022 May ; 184 () : 114233. [epub] 20220315

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, přehledy, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35304171

Grantová podpora
R01 CA234343 NCI NIH HHS - United States
R01 HL148714 NHLBI NIH HHS - United States
R01 DK112939 NIDDK NIH HHS - United States
R01 HL149940 NHLBI NIH HHS - United States
R56 DE029157 NIDCR NIH HHS - United States

Odkazy

PubMed 35304171
PubMed Central PMC10726003
DOI 10.1016/j.addr.2022.114233
PII: S0169-409X(22)00123-5
Knihovny.cz E-zdroje

Immune cells have emerged as powerful regulators of regenerative as well as pathological processes. The vast majority of regenerative immunoengineering efforts have focused on macrophages; however, growing evidence suggests that other cells of both the innate and adaptive immune system are as important for successful revascularization and tissue repair. Moreover, spatiotemporal regulation of immune cells and their signaling have a significant impact on the regeneration speed and the extent of functional recovery. In this review, we summarize the contribution of different types of immune cells to the healing process and discuss ways to manipulate and control immune cells in favor of vascularization and tissue regeneration. In addition to cell delivery and cell-free therapies using extracellular vesicles, we discuss in situ strategies and engineering approaches to attract specific types of immune cells and modulate their phenotypes. This field is making advances to uncover the extraordinary potential of immune cells and their secretome in the regulation of vascularization and tissue remodeling. Understanding the principles of immunoregulation will help us design advanced immunoengineering platforms to harness their power for tissue regeneration.

Zobrazit více v PubMed

Faber JE, Chilian WM, Deindl E, van Royen N, Simons M, A brief etymology of the collateral circulation, Arterioscler. Thromb. Vasc. Biol 34 (2014) 1854–1859. PubMed PMC

Carmeliet P, Jain RK, Molecular mechanisms and clinical applications of angiogenesis, Nature 473 (2011) 298–307. PubMed PMC

Stratman AN, Schwindt AE, Malotte KM, Davis GE, Endothelial-derived PDGF-BB and HB-EGF coordinately regulate pericyte recruitment during vasculogenic tube assembly and stabilization, Blood 116 (2010) 4720–4730. PubMed PMC

Stratman AN, Saunders WB, Sacharidou A, Koh W, Fisher KE, Zawieja DC, Davis MJ, Davis GE, Endothelial cell lumen and vascular guidance tunnel formation requires MT1-MMP-dependent proteolysis in 3-dimensional collagen matrices, Blood 114 (2009) 237–247. PubMed PMC

Davis GE, Stratman AN, Sacharidou A, Koh W, Molecular basis for endothelial lumen formation and tubulogenesis during vasculogenesis and angiogenic sprouting, Int Rev Cell Mol Biol 288 (2011) 101–165. PubMed PMC

Benedito R, Roca C, Sorensen I, Adams S, Gossler A, Fruttiger M, Adams RH, The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis, Cell 137 (2009) 1124–1135. PubMed

Aveleira CA, Lin C-M, Abcouwer SF, Ambrósio AF, Antonetti DA, TNF-α Signals Through PKCζ/NF-κB to Alter the Tight Junction Complex and Increase Retinal Endothelial Cell Permeability, Diabetes 59 (2010) 2872–2882. PubMed PMC

Kang T-Y, Bocci F, Jolly MK, Levine H,Onuchic JN, Levchenko A, Pericytes enable effective angiogenesis in the presence of proinflammatory signals, Proc. Natl. Acad. Sci 116 (2019) 23551–23561. PubMed PMC

Ito WD, Arras M, Winkler B, Scholz D, Schaper J, Schaper W, Monocyte Chemotactic Protein-1 Increases Collateral and Peripheral Conductance After Femoral Artery Occlusion, Circ. Res 80 (1997) 829–837. PubMed

Stabile E, Burnett MS, Watkins C, Kinnaird T, Bachis A, la Sala A, Miller JM, Shou M, Epstein SE, Fuchs S, Impaired arteriogenic response to acute hindlimb ischemia in CD4-knockout mice, Circulation 108 (2003) 205–210. PubMed

Henry TD, Annex BH, McKendall GR, Azrin MA, Lopez JJ, Giordano FJ, Shah PK,Willerson JT, Benza RL, Berman DS, Gibson CM, Bajamonde A, C Rundle A, Fine J, McCluskey ER, The VIVA Trial, Circulation 107 (2003) 1359–1365. PubMed

Rust R, Gantner C, Schwab ME, Pro- and antiangiogenic therapies: current status and clinical implications, FASEB J. 33 (2019) 34–48. PubMed

Stewart DJ, Kutryk MJB, Fitchett D, Freeman M, Camack N, Su Y, Siega AD, Bilodeau L, Burton JR, Proulx G, Radhakrishnan S, VEGF Gene Therapy Fails to Improve Perfusion of Ischemic Myocardium in Patients With Advanced Coronary Disease: Results of the NORTHERN Trial, Mol. Ther 17 (2009) 1109–1115. PubMed PMC

Levenberg S, Rouwkema J, Macdonald M, Garfein ES, Kohane DS, Darland DC, Marini R, van Blitterswijk CA, Mulligan RC, D’Amore PA, Langer R, Engineering vascularized skeletal muscle tissue, Nat. Biotechnol 23 (2005) 879–884. PubMed

Walsh TG, Metharom P, Berndt MC, The functional role of platelets in the regulation of angiogenesis, Platelets 26 (2015) 199–211. PubMed

Brill A, Elinav H, Varon D, Differential role of platelet granular mediators in angiogenesis, Cardiovasc. Res 63 (2004) 226–235. PubMed

Kisucka J, Butterfield CE, Duda DG, Eichenberger SC, Saffaripour S,Ware J, Ruggeri ZM, Jain RK, Folkman J, Wagner DD, Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage, PNAS 103 (2006) 855–860. PubMed PMC

Kim HK, Song KS, Chung J-H, Lee KR, Lee S-N, Platelet microparticles induce angiogenesis in vitro, Br. J. Haematol 124 (2004) 376–384. PubMed

Ribeiro LS, Migliari Branco L, Franklin BS, Regulation of Innate Immune Responses by Platelets, Front. Immunol 10 (2019). PubMed PMC

Aloui C, Prigent A, Sut C, Tariket S, Hamzeh-Cognasse H, Pozzetto B, Richard Y, Cognasse F, Laradi S, Garraud O, The signaling role of CD40 ligand in platelet biology and in platelet component transfusion, Int. J. Mol. Sci 15 (2014) 22342–22364. PubMed PMC

Ali RA, Wuescher LM, Worth RG, Platelets: essential components of the immune system, Curr, Trends Immunol. 16 (2015) 65–78. PubMed PMC

Chakrabarti S, Rizvi M, Morin K, Garg R, Freedman JE, The role of CD40L and VEGF in the modulation of angiogenesis and inflammation, Vasc. Pharmacol 53 (2010) 130–137. PubMed

Leroyer AS, Rautou P-E, Silvestre J-S, Castier Y, Lesèche G, Devue C, Duriez M, Brandes RP, Lutgens E, Tedgui A, Boulanger CM, CD40 Ligand+ Microparticles From Human Atherosclerotic Plaques Stimulate Endothelial Proliferation and Angiogenesis: A Potential Mechanism for Intraplaque Neovascularization, J. Am. Coll. Cardiol 52 (16) (2008) 1302–1311. PubMed

Summers C, Rankin SM, Condliffe AM, Singh N, Peters AM, Chilvers ER, Neutrophil kinetics in health and disease, Trends Immunol. 31 (2010) 318–324. PubMed PMC

Mortaz E, Alipoor SD, Adcock IM, Mumby S, Koenderman L, Update on Neutrophil Function in Severe Inflammation, Front. Immunol 9 (2018). PubMed PMC

Phillipson M, Kubes P, The Healing Power of Neutrophils, Trends Immunol. 40 (7) (2019) 635–647. PubMed

Lin RZ, Lee CN, Moreno-Luna R, Neumeyer J, Piekarski B, Zhou P, Moses MA, Sachdev M, Pu WT, Emani S, Melero-Martin JM, Host non-inflammatory neutrophils mediate the engraftment of bioengineered vascular networks, Nat. Biomed. Eng 1 (2017). PubMed PMC

Selders GS, Fetz AE, Radic MZ, Bowlin GL, An overview of the role of neutrophils in innate immunity, inflammation and host-biomaterial integration, Regen Biomater 4 (1) (2017) 55–68. PubMed PMC

Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM, Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN, Cancer Cell 16 (2009) 183–194. PubMed PMC

Christoffersson G, Vågesjö E,Vandooren J, Lidén M, Massena S, Reinert RB, Brissova M, Powers AC, Opdenakker G, Phillipson M, VEGF-A recruits a proangiogenic MMP-9-delivering neutrophil subset that induces angiogenesis in transplanted hypoxic tissue, Blood 120 (2012) 4653–4662. PubMed PMC

Krishnamurthy P, Thal M, Verma S, Hoxha E, Lambers E, Ramirez V, Qin G, D Losordo R Kishore, Interleukin-10 deficiency impairs bone marrow-derived endothelial progenitor cell survival and function in ischemic myocardium, Circ. Res 109 (2011) 1280–1289. PubMed PMC

Shao R, YKL-40 acts as an angiogenic factor to promote tumor angiogenesis, Front. Physiol 4 (2013). PubMed PMC

Kawada M, Seno H, Kanda K, Nakanishi Y, Akitake R, Komekado H, Kawada K, Sakai Y, Mizoguchi E, Chiba T, Chitinase 3-like 1 promotes macrophage recruitment and angiogenesis in colorectal cancer, Oncogene 31 (2012) 3111–3123. PubMed PMC

Cuartero MI, Ballesteros I, Moraga A, Nombela F, Vivancos J, Hamilton JA, Corbi AL, Lizasoain I, Moro MA, N2 neutrophils, novel players in brain inflammation after stroke: modulation by the PPARgamma agonist rosiglitazone, Stroke 44 (2013) 3498–3508. PubMed

Ma Y, Yabluchanskiy A, Iyer RP, Cannon PL, Flynn ER, Jung M,Henry J, Cates CA, Deleon-Pennell KY, Lindsey ML, Temporal neutrophil polarization following myocardial infarction, Cardiovasc. Res 110 (2016) 51–61. PubMed PMC

Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo J-L, Libby P, Weissleder R, Pittet M.j The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions, J. Exp. Med 204 (2007) 3037–3047. PubMed PMC

Elliott MR, Koster KM, Murphy PS, Efferocytosis Signaling in the Regulation of Macrophage Inflammatory Responses, J. Immunol 198 (4) (2017) 1387–1394. PubMed PMC

Krzyszczyk P, Schloss R, Palmer A, Berthiaume F, The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Prowound Healing Phenotypes, Front. Physiol 9 (2018), 419–419. PubMed PMC

Troidl C, Möllmann H, Nef H, Masseli F, Voss S, Szardien S, Willmer M, Rolf A, Rixe J, Troidl K, Kostin S, Hamm C, Elsässer A, Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction, J. Cell Mol. Med 13 (2009) 3485–3496. PubMed PMC

Yang Z, Ming X-F, Functions of arginase isoforms in macrophage inflammatory responses: impact on cardiovascular diseases and metabolic disorders, Front. Immunol 5 (2014), 533–533. PubMed PMC

Murray PJ, Wynn TA, Protective and pathogenic functions of macrophage subsets, Nat. Rev. Immunol 11 (2011) 723–737. PubMed PMC

Spiller KL, Nassiri S, Witherel CE, Anfang RR,Ng J, Nakazawa KR, Yu T, Vunjak-Novakovic G, Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds, Biomaterials 37 (2015) 194–207. PubMed PMC

Ebrahem Q, Chaurasia SS, Vasanji A, Qi JH, Klenotic PA, Cutler A, Asosingh K, Erzurum S, Anand-Apte B, Cross-Talk between Vascular Endothelial Growth Factor and Matrix Metalloproteinases in the Induction of Neovascularization in Vivo, Am. J. Pathol 176 (2010) 496–503. PubMed PMC

Kwee BJ, Mooney DJ, Manipulating the intersection of angiogenesis and inflammation, Ann. Biomed. Eng 43 (2015) 628–640. PubMed PMC

Aurora AB, Porrello ER, Tan W, Mahmoud AI, Hill JA, Bassel-Duby R, Sadek HA, Olson EN, Macrophages are required for neonatal heart regeneration, J. Clin. Invest 124 (2014) 1382–1392. PubMed PMC

Spiller KL, Anfang RR, Spiller KJ, Ng J, Nakazawa KR, Daulton JW, Vunjak-Novakovic G, The role of macrophage phenotype in vascularization of tissue engineering scaffolds, Biomaterials 35 (2014) 4477–4488. PubMed PMC

Gurevich DB, Severn CE, Twomey C, Greenhough A, Cash J, Toye AM, Mellor H, Martin P, Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression, EMBO J. 37 (13) (2018). PubMed PMC

Graney PL, Ben-Shaul S, Landau S, Bajpai A, Singh B, Eager J, Cohen A, Levenberg S, Spiller KL, Macrophages of diverse phenotypes drive vascularization of engineered tissues, Sci. Adv 6 (2020) eaay6391. PubMed PMC

Corliss BA, Azimi MS, Munson JM, Peirce SM, Murfee WL, Macrophages: An Inflammatory Link Between Angiogenesis and Lymphangiogenesis, Microcirculation (New York, N.Y. 1994) 23 (2016) 95–121. PubMed PMC

Sozzani S, Rusnati M, Riboldi E, Mitola S, Presta M, Dendritic cell–endothelial cell cross-talk in angiogenesis, Trends Immunol. 28 (2007) 385–392. PubMed

Bosisio D, Ronca R, Salvi V, Presta M, Sozzani S, Dendritic cells in inflammatory angiogenesis and lymphangiogenesis, Curr. Opin. Immunol 53 (2018) 180–186. PubMed

Rodriguez-Manzaneque JC, Lane TF, Ortega MA, Hynes RO, Lawler J, Iruela-Arispe ML, Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor, PNAS 98 (2001) 12485–12490. PubMed PMC

Yang M, Ma C, Liu S, Shao Q, Gao W, Song B, Sun J, Xie Q, Zhang Y, Feng A, Liu Y, Hu W, Qu X, HIF-dependent induction of adenosine receptor A2b skews human dendritic cells to a Th2-stimulating phenotype under hypoxia, Immunol. Cell Biol 88 (2010) 165–171. PubMed

Sirbulescu RF, Boehm CK, Soon E, Wilks MQ, Ilies I, Yuan H, Maxner B, Chronos N, Kaittanis C, Normandin MD, El Fakhri G, Orgill DP, Sluder AE, C Poznansky M, Mature B cells accelerate wound healing after acute and chronic diabetic skin lesions, Wound Repair Regen 25 (2017) 774–791. PubMed PMC

Reinke S, Geissler S, Taylor WR, Schmidt-Bleek K, Juelke K, Schwachmeyer V, Dahne M, Hartwig T, Akyüz L, Meisel C, Unterwalder N, Singh NB, Reinke P, Haas NP, Volk H-D, Duda GN, Terminally Differentiated CD8+ T Cells Negatively Affect Bone Regeneration in Humans, Sci. Transl. Med 5 (2013), 177ra136–177ra136. PubMed

Ilatovskaya DV, Pitts C, Clayton J, Domondon M, Troncoso M, Pippin S, DeLeon-Pennell KY, CD8+ T-cells negatively regulate inflammation post-myocardial infarction, American Journal of Physiology-Heart and Circulatory, Physiology 317 (3) (2019) H581–H596. PubMed PMC

Kwee BJ, Budina E, Najibi AJ, Mooney DJ, CD4 T-cells regulate angiogenesis and myogenesis, Biomaterials 178 (2018) 109–121. PubMed PMC

Hata T, Takahashi M, Hida S, Kawaguchi M, Kashima Y, Usui F, Morimoto H, Nishiyama A, Izawa A, Koyama J, Iwakura Y, Taki S, Ikeda U, Critical role of Th17 cells in inflammation and neovascularization after ischaemia, Cardiovasc. Res 90 (2010) 364–372. PubMed

De Palma M, Biziato D, Petrova TV, Microenvironmental regulation of tumour angiogenesis, Nat. Rev. Cancer 17 (2017) 457–474. PubMed

Lewkowicz N, Klink M, Mycko MP, Lewkowicz P, Neutrophil – CD4+CD25+ T regulatory cell interactions: A possible new mechanism of infectious tolerance, Immunobiology 218 (2013) 455–464. PubMed

Weirather J, Hofmann UD, Beyersdorf N, Ramos GC, Vogel B, Frey A, Ertl G, Kerkau T, Frantz S, Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation, Circ. Res 115 (2014) 55–67. PubMed

Tiemessen MM, Jagger AL, Evans HG, van Herwijnen MJ, John S, Taams LS, CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages, Proc. Natl. Acad. Sci. U S A 104 (2007) 19446–19451. PubMed PMC

Leung OM, Li J, Li X, Chan VW, Yang KY, Ku M, Ji L, Sun H, Waldmann H, Tian XY, Huang Y, Lau J, Zhou B, Lui KO, Regulatory T Cells Promote Apelin-Mediated Sprouting Angiogenesis in Type 2 Diabetes, Cell Reports 24 (2018)1610–1626. PubMed

D’Alessio FR, Kurzhagen JT, Rabb H, Reparative T lymphocytes in organ injury, J. Clin. Invest 129 (2019) 2608–2618. PubMed PMC

Wang C-Q, Huang Y-W, Wang S-W, Huang Y-L, Tsai C-H, Zhao Y-M, Huang BF, Xu G-H, Fong Y-C, Tang C-H, Amphiregulin enhances VEGF-A production in human chondrosarcoma cells and promotes angiogenesis by inhibiting miR-206 via FAK/c-Src/PKCδ pathway, Cancer Lett. 385 (2017) 261–270. PubMed

Castiglioni A, Corna G, Rigamonti E, Basso V, Vezzoli M, Monno A, Almada AE, Mondino A, Wagers AJ, Manfredi AA, Rovere-Querini P, Kumar A, FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration, PLoS ONE 10(6) (2015) e0128094. PubMed PMC

Ali N, Zirak B, Rodriguez RS, Pauli ML, Truong HA, Lai K, Ahn R, Corbin K, Lowe MM, Scharschmidt TC, Taravati K, Tan MR, Ricardo-Gonzalez RR, Nosbaum A, Bertolini M, Liao W, Nestle FO, Paus R, Cotsarelis G, Abbas AK, Rosenblum MD, Regulatory T Cells in Skin Facilitate Epithelial Stem Cell Differentiation, Cell 169 (2017) 1119–1129.e1111. PubMed PMC

Nishio N, Ito S, Suzuki H, Isobe K-I, Antibodies to wounded tissue enhance cutaneous wound healing, Immunology 128 (2009) 369–380. PubMed PMC

Andreu P, Johansson M, Affara NI, Pucci F, Tan T, Junankar S, Korets L, Lam J, Tawfik D, DeNardo DG, Naldini L, de Visser KE, De Palma M, Coussens LM, FcRγ Activation Regulates Inflammation-Associated Squamous Carcinogenesis, Cancer Cell 17 (2010) 121–134. PubMed PMC

Yang C, Lee H, Pal S, Jove V, Deng J, Zhang W, Hoon DS, Wakabayashi M, Forman S, Yu H, B cells promote tumor progression via STAT3 regulated-angiogenesis, PLoS One 8 (2013) e64159. PubMed PMC

Iwata Y, Yoshizaki A, Komura K, Shimizu K, Ogawa F, Hara T, Muroi E, Bae S, Takenaka M, Yukami T, Hasegawa M, Fujimoto M, Tomita Y, Tedder TF, Sato S, CD19, a Response Regulator of B Lymphocytes, Regulates Wound Healing through Hyaluronan-Induced TLR4 Signaling, Am. J. Pathol 175 (2) (2009) 649–660. PubMed PMC

Sgonc R, Gruber J, Age-Related Aspects of Cutaneous Wound Healing: A Mini-Review, Gerontology 59 (2) (2013) 159–164. PubMed

Mogilenko DA, Shchukina I, Artyomov MN, Immune ageing at single-cell resolution, Nat. Rev. Immunol (2021). PubMed PMC

Ferrucci L, Fabbri E, Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty, Nature reviews, Cardiology 15 (9) (2018) 505–522. PubMed PMC

Sayed N, Huang Y, Nguyen K, Krejciova-Rajaniemi Z, Grawe AP, Gao T, Tibshirani R, Hastie T, Alpert A, Cui L.u., Kuznetsova T, Rosenberg-Hasson Y, Ostan R, Monti D, Lehallier B, Shen-Orr SS, Maecker HT, Dekker CL, Wyss-Coray T, Franceschi C, Jojic V, Haddad F, Montoya JG, Wu JC, Davis MM, Furman D, An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging, Nature, Aging 1 (7) (2021) 598–615. PubMed PMC

Romagnani P, Lasagni L, Annunziato F, Serio M, Romagnani S, CXC chemokines: the regulatory link between inflammation and angiogenesis, Trends Immunol. 25 (4) (2004) 201–209. PubMed

Huang B, Wang W, Li Q, Wang Z, Yan B, Zhang Z, Wang L, Huang M, Jia C, Lu J, Liu S, Chen H, Li M, Cai D, Jiang Y, Jin D, Bai X, Osteoblasts secrete Cxcl9 to regulate angiogenesis in bone, Nat. Commun 7 (2016), 13885–13885. PubMed PMC

Okonkwo U, DiPietro L, Diabetes and Wound Angiogenesis, Int. J. Mol. Sci 18 (7) (2017) 1419. PubMed PMC

Zhang J, Chu M, Differential roles of VEGF: Relevance to tissue fibrosis,J. Cell. Biochem 120 (7) (2019) 10945–10951. PubMed

Braga TT, Agudelo JSH, Camara NOS, Macrophages During the Fibrotic Process: M2 as Friend and Foe, Front. Immunol 6 (2015), 602–602. PubMed PMC

Nowak-Sliwinska P, Alitalo K, Allen E, Anisimov A, Aplin AC, Auerbach R, Augustin HG, Bates DO, van Beijnum JR, Bender RHF, Bergers G, Bikfalvi A, Bischoff J, Böck BC, Brooks PC, Bussolino F, Cakir B, Carmeliet P, Castranova, Cimpean AM, Cleaver O, Coukos G, Davis GE, De Palma M, Dimberg A, Dings RPM, Djonov V, Dudley AC, Dufton NP, Fendt S-M, Ferrara N, Fruttiger M, Fukumura D, Ghesquière B, Gong Y, Griffin RJ, Harris AL, Hughes CCW, Hultgren NW, Iruela-Arispe ML, Irving M, Jain RK, Kalluri R, Kalucka J, Kerbel RS, Kitajewski J, Klaassen I, Kleinmann HK, Koolwijk P, Kuczynski E, Kwak BR, Marien K, Melero-Martin JM, Munn LL, Nicosia RF, Noel A, Nurro J, Olsson A-K, Petrova TV, Pietras K, Pili R, Pollard JW, Post MJ, Quax PHA, Rabinovich GA, Raica M, Randi AM, Ribatti D, Ruegg C, Schlingemann RO, Schulte-Merker S, Smith LEH, Song JW, Stacker SA, Stalin J, Stratman AN, Van de Velde M, van Hinsbergh VWM, Vermeulen PB, Waltenberger J, Weinstein BM, Xin H, Yetkin-Arik B, Yla-Herttuala S, Yoder MC, Griffioen AW, Consensus guidelines for the use and interpretation of angiogenesis assays, Angiogenesis 21 (3) (2018) 425–532. PubMed PMC

Boyden S, The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes, J. Exp. Med 115 (1962) 453–466. PubMed PMC

Simons M, Alitalo K, Annex BH, Augustin HG, Beam C, Berk BC, Byzova T, Carmeliet P, Chilian W, Cooke JP, Davis GE, Eichmann A, Iruela-Arispe ML, Keshet E, Sinusas AJ, Ruhrberg C, Woo YJ, Dimmeler S, State-of-the-Art Methods for Evaluation of Angiogenesis and Tissue Vascularization, Circ. Res 116 (2015) e99–e132. PubMed PMC

Zhang N, Fang Z, Contag PR, Purchio AF, West DB, Tracking angiogenesis induced by skin wounding and contact hypersensitivity using a Vegfr2-luciferase transgenic mouse, Blood 103 (2004) 617–626. PubMed

Li Q, Xu Y, Lv K, Wang Y, Zhong Z, Xiao C, Zhu K, Ni C, Wang K, Kong M, Li X, Fan Y, Zhang F, Chen Q.i., Li Y.i., Li Q, Liu C, Zhu J, Zhong S, Wang J, Chen Y, Zhao J, Zhu D, Wu R, Chen J, Zhu W, Yu H, Ardehali R, Zhang J, Wang J, Hu X, Small extracellular vesicles containing miR-486-5p promote angiogenesis after myocardial infarction in mice and nonhuman primates, Sci. Transl. Med 13 (584) (2021). PubMed

Helisch A, Wagner S, Khan N, Drinane M, Wolfram S, Heil M, Ziegelhoeffer T, Brandt U, Pearlman JD, Swartz HM, Schaper W, Impact of mouse strain differences in innate hindlimb collateral vasculature, Arterioscler. Thromb. Vasc. Biol 26 (3) (2006) 520–526. PubMed

Hu MS, Walmsley GG, Barnes LA, Weiskopf K, Rennert RC, Duscher D, Januszyk M, Maan ZN, Hong WX, Cheung ATM, Leavitt T, Marshall CD, Ransom RC, Malhotra S, Moore AL, Rajadas J, Lorenz HP, Weissman IL, Gurtner GC, Longaker MT, Delivery of monocyte lineage cells in a biomimetic scaffold enhances tissue repair, JCI Insight 2 (2017). PubMed PMC

Hirose N, Maeda H, Yamamoto M, Hayashi Y, Lee G-H, Chen L, Radhakrishnan G, Rao P, Sasaguri S, The local injection of peritoneal macrophages induces neovascularization in rat ischemic hind limb muscles, Cell Transplant. 17 (1-2) (2008) 211–222. PubMed

Patel AN, Henry TD, Quyyumi AA, Schaer GL, Anderson RD, Toma C, East C, Remmers AE, Goodrich J, Desai AS, Recker D, DeMaria A, Ixmyelocel-T for patients with ischaemic heart failure: a prospective randomised double-blind trial, Lancet 387 (10036) (2016) 2412–2421. PubMed

Juhas M, Abutaleb N, Wang JT, Ye J, Shaikh Z, Sriworarat C, Qian Y, Bursac N, Incorporation of macrophages into engineered skeletal muscle enables enhanced muscle regeneration, Nature, Biomed. Eng 2 (12) (2018) 942–954. PubMed PMC

Bencze M, Negroni E, Vallese D, Yacoub-Youssef H, Chaouch S, Wolff A, Aamiri A, Di Santo JP, Chazaud B, Butler-Browne G, Savino W, Mouly V, Riederer I, Proinflammatory Macrophages Enhance the Regenerative Capacity of Human Myoblasts by Modifying Their Kinetics of Proliferation and Differentiation, Mol. Ther 20 (2012) 2168–2179. PubMed PMC

Visser JG, Van Staden ADP, Smith C, Harnessing macrophages for controlled-release drug delivery: lessons from microbes, Front. Pharmacol 10 (2019) 22. PubMed PMC

Champion JA, Mitragotri S, Role of target geometry in phagocytosis, Proc. Natl. Acad. Sci. U. S. A 103 (2006) 4930–4934. PubMed PMC

Huang B, Abraham WD, Zheng Y, Bustamante López SC, Luo SS, Irvine DJ, Active targeting of chemotherapy to disseminated tumors using nanoparticle-carrying T cells, Sci. Transl. Med 7 (2015), 291ra294–291ra294. PubMed PMC

Tang L, Zheng Y, Melo MB, Mabardi L, Castaño AP, Xie Y-Q, Li N, Kudchodkar SB, Wong HC, Jeng EK, Maus MV, Irvine DJ, Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery, Nat. Biotechnol 36 (2018) 707–716. PubMed PMC

Hou D, Youssef EA-S, Brinton TJ, Zhang P, Rogers P, Price ET, Yeung AC, Johnstone BH, Yock PG, March KL, Radiolabeled Cell Distribution After Intramyocardial, Intracoronary, and Interstitial Retrograde Coronary Venous Delivery, Circulation 112 (2005), I-150–I-156. PubMed

Stephan SB, Taber AM, Jileaeva I, Pegues EP, Sentman CL, Stephan MT, Biopolymer implants enhance the efficacy of adoptive T-cell therapy, Nat. Biotechnol 33 (1) (2015) 97–101. PubMed PMC

Eggermont LJ, Rogers ZJ, Colombani T, Memic A, Bencherif SA, Injectable Cryogels for Biomedical Applications, Trends Biotechnol. 38 (4) (2020) 418–431. PubMed

Nicodemus GD, Bryant SJ, Cell encapsulation in biodegradable hydrogels for tissue engineering applications, Tissue engineering, Part B, Reviews 14 (2) (2008) 149–165. PubMed PMC

Guvendiren M, Lu HD, Burdick JA, Shear-thinning hydrogels for biomedical applications, Soft Matter 8 (2) (2012) 260–272.

Dellacherie MO, Seo BR, Mooney DJ, Macroscale biomaterials strategies for local immunomodulation, Nat. Rev. Mater 4 (6) (2019) 379–397.

Wang C, Adrianus GN, Sheng N, Toh S, Gong Y, Wang D-A, In vitro performance of an injectable hydrogel/microsphere based immunocyte delivery system for localised anti-tumour activity, Biomaterials 30 (36) (2009) 6986–6995. PubMed

Mause SF, Ritzel E, Liehn EA, Hristov M, Bidzhekov K, Muller-Newen G, Soehnlein O, Weber C, Platelet Microparticles Enhance the Vasoregenerative Potential of Angiogenic Early Outgrowth Cells After Vascular Injury, Circulation 122 (5) (2010) 495–506. PubMed

Guo S-C, Tao S-C, Yin W-J, Qi X, Yuan T, Zhang C-Q, Exosomes derived from platelet-rich plasma promote the re-epithelization of chronic cutaneous wounds via activation of YAP in a diabetic rat model, Theranostics 7 (1) (2017) 81–96. PubMed PMC

Sadallah S, Amicarella F, Eken C, Iezzi G, Schifferli J, Ectosomes released by platelets induce differentiation of CD4+T cells into T regulatory cells, Thromb. Haemost 112 (12) (2014) 1219–1229. PubMed

Gangadaran P, Rajendran RL, Oh JM, Hong CM, Jeong SY, Lee S-W,Lee J, Ahn B-C, Extracellular vesicles derived from macrophage promote angiogenesis In vitro and accelerate new vasculature formation In vivo, Exp. Cell Res 394 (2020) 112146. PubMed

Kim H, Wang SY, Kwak G, Yang Y, Kwon IC, Kim SH, Exosome-Guided Phenotypic Switch of M1 to M2 Macrophages for Cutaneous Wound Healing, Adv. Sci. (Weinheim, Baden-Wurttemberg, Germany) 6 (2019) 1900513. PubMed PMC

Headland SE, Jones HR, Norling LV, Kim A, Souza PR, Corsiero E, Gil CD, Nerviani A, Dell’Accio F, Pitzalis C, Oliani SM, Jan LY, Perretti M, Neutrophil-derived microvesicles enter cartilage and protect the joint in inflammatory arthritis, Sci. Transl. Med 7 (2015), 315ra190–315ra190. PubMed PMC

Kaur S, Singh SP, Elkahloun AG, Wu W, Abu-Asab MS, Roberts DD, CD47-dependent immunomodulatory and angiogenic activities of extracellular vesicles produced by T cells, Matrix Biol. 37 (2014) 49–59. PubMed PMC

Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, Singh S, Williams C, Soplop N, Uryu K, Pharmer L, King T, Bojmar L, Davies AE, Ararso Y, Zhang T, Zhang H, Hernandez J, Weiss JM, Dumont-Cole VD, Kramer K, Wexler LH, Narendran A, Schwartz GK, Healey JH, Sandstrom P, Labori KJ, Kure EH, Grandgenett PM, Hollingsworth MA, de Sousa M, Kaur S, Jain M, Mallya K, Batra SK, Jarnagin WR, Brady MS, Fodstad O, Muller V, Pantel K, Minn AJ, Bissell MJ, Garcia BA, Kang Y, Rajasekhar VK, Ghajar CM, Matei I, Peinado H, Bromberg J, Lyden D, Tumour exosome integrins determine organotropic metastasis, Nature 527 (2015) 329–335. PubMed PMC

Delcayre A, Estelles A, Sperinde J, Roulon T, Paz P, Aguilar B, Villanueva J, SuSu Khine J-B Le Pecq, Exosome Display technology: Applications to the development of new diagnostics and therapeutics, Blood Cells Mol. Dis. 35 (2) (2005) 158–168. PubMed

Antes TJ, Middleton RC, Luther KM, Ijichi T, Peck KA, Liu WJ,Valle J, Echavez AK, Marbán E, Targeting extracellular vesicles to injured tissue using membrane cloaking and surface display, J. Nanobiotechnol 16 (2018) 61. PubMed PMC

Gao X, Ran N, Dong X, Zuo B, Yang R, Zhou Q, Moulton HM, Seow Y, Yin H, Anchor peptide captures, targets, and loads exosomes of diverse origins for diagnostics and therapy, Sci. Transl. Med 10 (2018) eaat0195. PubMed

Jang SC, Kim OY, Yoon CM, Choi D-S, Roh T-Y, Park J, Nilsson J, Lötvall J, Kim Y-K, Gho YS, Bioinspired Exosome-Mimetic Nanovesicles for Targeted Delivery of Chemotherapeutics to Malignant Tumors, ACS Nano 7 (9) (2013) 7698–7710. PubMed

Hu C-M, Fang RH, Wang K-C, Luk BT, Thamphiwatana S, Dehaini D, Nguyen P, Angsantikul P, Wen CH, Kroll AV, Carpenter C, Ramesh M, Qu V, Patel SH, Zhu J, Shi W, Hofman FM, Chen TC, Gao W, Zhang K, Chien S, Zhang L, Nanoparticle biointerfacing by platelet membrane cloaking, Nature 526 (7571) (2015) 118–121. PubMed PMC

Molinaro R, Corbo C, Martinez JO, Taraballi F, Evangelopoulos M, Minardi S, Yazdi IK, Zhao P, De Rosa E, Sherman MB, De Vita A, Toledano Furman NE, Wang X, Parodi A, Tasciotti E, Biomimetic proteolipid vesicles for targeting inflamed tissues, Nat. Mater 15 (2016) 1037–1046. PubMed PMC

Fuhrmann G, Serio A, Mazo M, Nair R, Stevens MM, Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins, J. Control. Release 205 (2015) 35–44. PubMed

Silva AK, Luciani N, Gazeau F, Aubertin K, Bonneau S, Chauvierre C, Letourneur D, Wilhelm C, Combining magnetic nanoparticles with cell derived microvesicles for drug loading and targeting, Nanomedicine 11 (2015) 645–655. PubMed

He C, Zheng S, Luo Y, Wang B, Exosome theranostics: biology and translational medicine, Theranostics 8 (2018) 237. PubMed PMC

Phinney DG, Pittenger MF, Concise review: MSC-derived exosomes for cell-free therapy, Stem cells 35 (2017) 851–858. PubMed

Liu B, Lee BW, Nakanishi K, Villasante A, Williamson R, Metz J, Kim J, Kanai M, Bi L, Brown K, Di Paolo G, Homma S, Sims PA, Topkara VK, Vunjak-Novakovic G, Cardiac recovery via extended cell-free delivery of extracellular vesicles secreted by cardiomyocytes derived from induced pluripotent stem cells, Nat. Biomed. Eng 2 (5) (2018) 293–303. PubMed PMC

Lai CP, Mardini O, Ericsson M, Prabhakar S, Maguire CA, Chen JW, Tannous BA, Breakefield XO, Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter, ACS Nano 8 (1) (2014) 483–494. PubMed PMC

Morishita M, Takahashi Y, Nishikawa M, Sano K, Kato K, Yamashita T, Imai T, Saji H, Takakura Y, Quantitative analysis of tissue distribution of the B16BL6-derived exosomes using a streptavidin-lactadherin fusion protein and iodine-125-labeled biotin derivative after intravenous injection in mice, J. Pharm. Sci 104 (2) (2015) 705–713. PubMed

Kamerkar S, LeBleu VS, Sugimoto H, Yang S, Ruivo CF, Melo SA, Lee JJ, Kalluri R, Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer, Nature 546 (7659) (2017) 498–503. PubMed PMC

Brennan MÁ, Layrolle P, Mooney DJ, Biomaterials Functionalized with MSC Secreted Extracellular Vesicles and Soluble Factors for Tissue Regeneration, Adv. Funct. Mater 30 (37) (2020) 1909125. PubMed PMC

Mardpour S, Ghanian MH, Sadeghi-abandansari H, Mardpour S, Nazari A, Shekari F, Baharvand H, Hydrogel-Mediated Sustained Systemic Delivery of Mesenchymal Stem Cell-Derived Extracellular Vesicles Improves Hepatic Regeneration in Chronic Liver Failure, ACS Appl. Mater. Interfaces 11 (2019) 37421–37433. PubMed

Vanden Berg-Foels WS, In situ tissue regeneration: chemoattractants for endogenous stem cell recruitment, Tissue Eng. Part B: Rev 20 (1) (2014) 28–39. PubMed PMC

Boehler RM, Graham JG, Shea LD, Tissue engineering tools for modulation of the immune response, Biotechniques 51 (2011) 239–254. PubMed PMC

Dumont NA, Frenette J, Macrophage Colony-Stimulating Factor-Induced Macrophage Differentiation Promotes Regrowth in Atrophied Skeletal Muscles and C2C12 Myotubes, Am. J. Pathol 182 (2013) 505–515. PubMed

Alikhan MA, Jones CV, Williams TM, Beckhouse AG, Fletcher AL, Kett MM, Sakkal S, Samuel CS, Ramsay RG, Deane JA, Wells CA, Little MH, A Hume D, Ricardo SD, Colony-Stimulating Factor-1 Promotes Kidney Growth and Repair via Alteration of Macrophage Responses, Am. J. Pathol 179 (2011) 1243–1256. PubMed PMC

Hsu CW, Poche RA, Saik JE, Ali S, Wang S, Yosef N, Calderon GA, Scott L Jr., Vadakkan TJ, Larina IV, West JL, Dickinson ME, Improved Angiogenesis in Response to Localized Delivery of Macrophage-Recruiting Molecules, PLoS One 10 (2015). PubMed PMC

Wood S, Jayaraman V, Huelsmann EJ, Bonish B, Burgad D, Sivaramakrishnan G, Qin S, DiPietro LA, Zloza A, Zhang C, Shafikhani SH, Pro-inflammatory chemokine CCL2 (MCP-1) promotes healing in diabetic wounds by restoring the macrophage response, PLoS One 9 (2014). PubMed PMC

Weigert A, Olesch C, Brune B, Sphingosine-1-Phosphate and Macrophage Biology-How the Sphinx Tames the Big Eater, Front. Immunol 10 (2019), 1706–1706. PubMed PMC

Murakami M, Saito T, Tabata Y, Controlled release of sphingosine-1-phosphate agonist with gelatin hydrogels for macrophage recruitment, Acta Biomater. 10 (2014) 4723–4729. PubMed

Kim YH, Tabata Y, Recruitment of mesenchymal stem cells and macrophages by dual release of stromal cell-derived factor-1 and a macrophage recruitment agent enhances wound closure, J Biomed Mater Res A 104 (2016) 942–956. PubMed

Zarubova J, zhang X, Hoffman T, Hasani-Sadrabadi MM, Li S, Biomaterial-based immunoengineering to fight COVID-19 and infectious diseases, Matter 4 (5) (2021) 1528–1554. PubMed PMC

Sato T, Yamamoto M, Shimosato T, Klinman DM, Accelerated wound healing mediated by activation of Toll-like receptor 9, Wound repair and regeneration : official publication of the Wound Healing Society [and] theEuropean Tissue Repair Society 18 (2010) 586–593. PubMed PMC

Singh A, Peppas NA, Hydrogels and scaffolds for immunomodulation, Adv. Mater 26 (38) (2014) 6530–6541. PubMed PMC

Tanaka R, Saito Y, Fujiwara Y, Jo J-I, Tabata Y, Preparation of fibrin hydrogels to promote the recruitment of anti-inflammatory macrophages, Acta Biomater. 89 (2019) 152–165. PubMed

Jain N, Vogel V, Spatial confinement downsizes the inflammatory response of macrophages, Nat. Mater 17 (12) (2018) 1134–1144. PubMed PMC

Griffin DR, Archang MM, Kuan C-H, Weaver WM, Weinstein JS, Feng AC, Ruccia A, Sideris E, Ragkousis V, Koh J, Plikus MV, Di Carlo D, Segura T, Scumpia PO, Activating an adaptive immune response from a hydrogel scaffold imparts regenerative wound healing, Nat. Mater 20 (2021) 560–569. PubMed PMC

Sadtler K, Estrellas K, Allen BW, Wolf MT, Fan H, Tam AJ, Patel CH, Luber BS, Wang H, Wagner KR, Powell JD, Housseau F, Pardoll DM, Elisseeff JH, Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells, Science 352 (2016) 366–370. PubMed PMC

Kwee BJ, Seo BR, Najibi AJ, Li AW, Shih T-Y, White D, Mooney DJ, Treating ischemia via recruitment of antigen-specific T cells, Sci. Adv 5 (2019) eaav6313. PubMed PMC

Park J, Zhang Y, Saito E, Gurczynski SJ, Moore BB, Cummings BJ, Anderson AJ, Shea LD, Intravascular innate immune cells reprogrammed via intravenous nanoparticles to promote functional recovery after spinal cord injury, Proc. Natl. Acad. Sci 116 (2019) 14947–14954. PubMed PMC

Raimondo TM, Mooney DJ, Functional muscle recovery with nanoparticle-directed M2 macrophage polarization in mice, Proc. Natl. Acad. Sci 115 (2018) 10648–10653. PubMed PMC

Shahbazi M-A, Sedighi M, Bauleth-Ramos T, Kant K, Correia A, Poursina N, Sarmento A, Hirvonen J, Santos HA, Targeted Reinforcement of Macrophage Reprogramming Toward M2 Polarization by IL-4-Loaded Hyaluronic Acid Particles, ACS Omega 3 (12) (2018) 18444–18455. PubMed PMC

King A, Balaji S, Le LD, Crombleholme TM, Keswani SG, Regenerative Wound Healing: The Role of Interleukin-10, Adv Wound Care (New Rochelle) 3 (4) (2014) 315–323. PubMed PMC

Boehler RM, Kuo R, Shin S, Goodman AG, Pilecki MA, Leonard JN, Shea LD, Lentivirus delivery of IL-10 to promote and sustain macrophage polarization towards an anti-inflammatory phenotype, Biotechnol. Bioeng 111 (6) (2014) 1210–1221. PubMed PMC

Singh Y, Garden OA, Lang F, Cobb BS, MicroRNA-15b/16 Enhances the Induction of Regulatory T Cells by Regulating the Expression of Rictor and mTOR, J. Immunol 195 (12) (2015) 5667–5677. PubMed PMC

Castaño IM, Raftery RM, Chen G, Cavanagh B, Quinn B, Duffy GP, O’Brien FJ, Curtin CM, Rapid Bone Repair with the Recruitment of CD206+ M2-like Macrophages Using Non-Viral Scaffold-Mediated miR-133a Inhibition of Host Cells, Acta Biomater. 109 (2020) 267–279. PubMed

Gan J, Dou Y, Li Y, Wang Z, Wang L, Liu S, Li Q, Yu H, Liu C, Han C, Huang Z, Zhang J, Wang C, Dong L, Producing anti-inflammatory macrophages by nanoparticle-triggered clustering of mannose receptors, Biomaterials 178 (2018) 95–108. PubMed

Yang D, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J, Oppenheim JJ, Chertov O, Ll-37, the Neutrophil Granule-And Epithelial Cell-Derived Cathelicidin, Utilizes Formyl Peptide Receptor-Like 1 (Fprl1) as a Receptor to Chemoattract Human Peripheral Blood Neutrophils, Monocytes, and T Cells, J. Exp. Med 192 (2000) 1069–1074. PubMed PMC

van der Does AM, Beekhuizen H, Ravensbergen B, Vos T, Ottenhoff THM, van Dissel JT, Drijfhout JW, Hiemstra PS, Nibbering PH, LL-37 Directs Macrophage Differentiation toward Macrophages with a Proinflammatory Signature, J. Immunol 185 (3) (2010) 1442–1449. PubMed

Wu J, Parungo C, Wu G, Kang PM, Laham RJ, Sellke FW, Simons M, Li J, PR39 Inhibits Apoptosis in Hypoxic Endothelial Cells, Circulation 109 (13) (2004) 1660–1667. PubMed

Li J, Post M, Volk R, Gao Y, Li M, Metais C, Sato K, Tsai J.o., Aird W, Rosenberg RD, Hampton TG, Li J, Sellke F, Carmeliet P, Simons M, PR39, a peptide regulator of angiogenesis, Nat. Med 6 (1) (2000) 49–55. PubMed

Chereddy KK, Her C-H, Comune M, Moia C, Lopes A, Porporato PE, Vanacker J, Lam MC, Steinstraesser L, Sonveaux P, Zhu H, Ferreira LS, Vandermeulen G, Práat V, PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing, J. Control. Release 194 (2014) 138–147. PubMed

Grönberg A, Mahlapuu M, Ståhle M, Whately-Smith C, Rollman O, Treatment with LL-37 is safe and effective in enhancing healing of hard-to-heal venous leg ulcers: a randomized, placebo-controlled clinical trial, Wound Repair Regenerat. 22 (2014) 613–621. PubMed

Mahlapuu M, Sidorowicz A, Mikosinski J, Krzyżanowski M, Orleanski J, Twardowska-Saucha K, Nykaza A, Dyaczynski M, Belz-Lagoda B, Dziwiszek G, Kujawiak M, Karczewski M, Sjöberg F, Grzela T, Wegrzynowski A, Thunarf F, Björk J, Ekblom J, Jawien A, Apelqvist J, Evaluation of LL-37 in healing of hard-to-heal venous leg ulcers: A multicentric prospective randomized placebo-controlled clinical trial, Wound Repair Regenerat. 29 (2021) 938–950. PubMed PMC

Galván-Peña S, O’Neill LAJ, Metabolic Reprograming in Macrophage Polarization, Front. Immunol 5 (2014). PubMed PMC

Van den Bossche J, Baardman J, Otto NA, van der Velden S, Neele AE, van den Susan M, Berg R, Luque-Martin H-J, Boshuizen MCS, Ahmed M, Hoeksema MA, de Vos AF, de Winther MPJ, Mitochondrial Dysfunction Prevents Repolarization of Inflammatory Macrophages, Cell Reports 17 (2016) 684–696. PubMed

Jha AK, Huang SC, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E, Chmielewski K, Stewart KM, Ashall J, Everts B, Pearce EJ, Driggers EM, Artyomov MN, Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization, Immunity 42 (2015) 419–430. PubMed

Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, Frezza C, Bernard NJ, Kelly B, Foley NH, Zheng L, Gardet A, Tong Z, Jany SS, Corr SC, Haneklaus M, Caffrey BE, Pierce K, Walmsley S, Beasley FC, Cummins E, Nizet V, Whyte M, Taylor CT, Lin H, Masters SL, Gottlieb E, Kelly VP, Clish C, Auron PE, Xavier RJ, O’Neill LAJ, Succinate is an inflammatory signal that induces IL-1β through HIF-1α, Nature 496 (2013) 238–242. PubMed PMC

Juban G, Chazaud B, Metabolic regulation of macrophages during tissue repair: insights from skeletal muscle regeneration, FEBS Lett. 591 (2017) 3007–3021. PubMed

De Santa F, Vitiello L, Torcinaro A, Ferraro E, The Role of Metabolic Remodeling in Macrophage Polarization and Its Effect on Skeletal Muscle Regeneration, Antioxid. Redox Signal 30 (12) (2019) 1553–1598. PubMed

Zhang J,Muri J, Fitzgerald G, Gorski T, Gianni-Barrera R, Masschelein E, D’Hulst G, Gilardoni P, Turiel G, Fan Z, Wang T, Planque M, Carmeliet P, Pellerin L, Wolfrum C, Fendt S-M, Banfi A, Stockmann C, Soro-Arnáiz I, Kopf M, De Bock K, Endothelial Lactate Controls Muscle Regeneration from Ischemia by Inducing M2-like Macrophage Polarization, Cell Metab. 31 (2020) 1136–1153.e1137. PubMed PMC

Houtkooper RH, Pirinen E, Auwerx J, Sirtuins as regulators of metabolism and healthspan, Nat. Rev. Mol. Cell Biol 13 (2012) 225–238. PubMed PMC

Chen H, Ji H, Zhang M, Liu Z, Lao L, Deng C,Chen J, Zhong G, An Agonist of the Protective Factor SIRT1 Improves Functional Recovery and Promotes Neuronal Survival by Attenuating Inflammation after Spinal Cord Injury, J. Neurosci 37 (2017) 2916–2930. PubMed PMC

Reis MB, Pereira PAT, Caetano GF, Leite MN, Galvão AF, Paula-Silva FWG, Frade MAC, Faccioli LH, Diaz BL, Lipoxin A4 encapsulated in PLGA microparticles accelerates wound healing of skin ulcers, PLoS ONE 12 (7) (2017) e0182381. PubMed PMC

Tang C-Y, Mauro C, Similarities in the Metabolic Reprogramming of Immune System and Endothelium, Front. Immunol 8 (2017). PubMed PMC

Ghesquière B, Wong BW, Kuchnio A, Carmeliet P, Metabolism of stromal and immune cells in health and disease, Nature 511 (2014) 167–176. PubMed

Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, Sullivan SA, Nichols AG, Rathmell JC, Cutting Edge: Distinct Glycolytic and Lipid Oxidative Metabolic Programs Are Essential for Effector and Regulatory CD4+ T Cell Subsets, J. Immunol 186 (2011) 3299–3303. PubMed PMC

Strauss L, Czystowska M, Szajnik M, Mandapathil M, Whiteside TL, Differential responses of human regulatory T cells (Treg) and effector T cells to rapamycin, PLoS One 4 (2009). PubMed PMC

Zhang X, Kim T-H, Thauland TJ, Li H, Majedi FS, Ly C, Gu Z, Butte MJ, Rowat AC, Li S, Unraveling the mechanobiology of immune cells, Curr. Opin. Biotechnol 66 (2020) 236–245. PubMed PMC

Qiu Y, Brown AC, Myers DR, Sakurai Y, Mannino RG, Tran R, Ahn B, Hardy ET, Kee MF, Kumar S, Bao G, Barker TH, Lam WA, Platelet mechanosensing of substrate stiffness during clot formation mediates adhesion, spreading, and activation, Proc. Natl. Acad. Sci 111 (2014) 14430–14435. PubMed PMC

Oakes PW, Patel DC, Morin NA, Zitterbart DP, Fabry B, Reichner JS, Tang JX, Neutrophil morphology and migration are affected by substrate elasticity, Blood 114 (2009) 1387–1395. PubMed PMC

He X-T, Wu R-X, Xu X-Y, Wang J, Yin Y, Chen F-M, Macrophage involvement affects matrix stiffness-related influences on cell osteogenesis under three-dimensional culture conditions, Acta Biomater. 71 (2018) 132–147. PubMed

Zhuang Z, Zhang Y, Sun S, Li Q, Chen K, An C, Wang L, van den Beucken JJJP, Wang H, Control of Matrix Stiffness Using Methacrylate-Gelatin Hydrogels for a Macrophage-Mediated Inflammatory Response, ACS Biomater. Sci. Eng 6 (2020) 3091–3102. PubMed

Atcha H, Jairaman A,Holt JR, Meli VS, Nagalla RR, Veerasubramanian PK, Brumm KT, Lim HE, Othy S, Cahalan MD, Pathak MM, Liu WF, Mechanically activated ion channel Piezo1 modulates macrophage polarization and stiffness sensing, Nat. Commun 12 (2021) 3256. PubMed PMC

Meli VS, Atcha H, Veerasubramanian PK, Nagalla RR, Luu TU, Chen EY, Guerrero-Juarez CF, Yamaga K, Pandori W, Hsieh JY, Downing TL, Fruman DA, Lodoen MB, Plikus MV, Wang W, Liu WF, YAP-mediated mechanotransduction tunes the macrophage inflammatory response, Sci. Adv 6 (2020) eabb8471. PubMed PMC

Cui K, Ardell CL, Podolnikova NP, Yakubenko VP, Distinct Migratory Properties of M1, M2, and Resident Macrophages Are Regulated by alphaDbeta2 and alphaMbeta2 Integrin-Mediated Adhesion, Front. Immunol 9 (2018) 2650. PubMed PMC

Judokusumo E, Tabdanov E, Kumari S, Dustin M, Kam L, Mechanosensing in T Lymphocyte Activation, Biophys. J 102 (2) (2012) L5–L7. PubMed PMC

Saitakis M, Dogniaux S, Goudot C, Bufi N, Asnacios S, Maurin M, Randriamampita C, Asnacios A, Hivroz C, Different TCR-induced T lymphocyte responses are potentiated by stiffness with variable sensitivity, eLife 6 (2017) e23190. PubMed PMC

Wahl A, Dinet C, Dillard P, Nassereddine A, Puech P-H, Limozin L, Sengupta K, Biphasic mechanosensitivity of T cell receptor-mediated spreading of lymphocytes, Proc. Natl. Acad. Sci 116 (13) (2019) 5908–5913. PubMed PMC

Tabdanov E, Gondarenko S, Kumari S, Liapis A, Dustin ML, Sheetz MP, Kam LC, Iskratsch T, Micropatterning of TCR and LFA-1 ligands reveals complementary effects on cytoskeleton mechanics in T cells, Integr. Biol 7 (10) (2015) 1272–1284. PubMed PMC

Hickey JW, Vicente FP, Howard GP, Mao H-Q, Schneck JP, Biologically Inspired Design of Nanoparticle Artificial Antigen-Presenting Cells for Immunomodulation, Nano Lett. 17 (11) (2017) 7045–7054. PubMed PMC

Nataraj NM, Dang AP, Kam LC, Lee JH, Ex vivo induction of regulatory T cells from conventional CD4(+) T cells is sensitive to substrate rigidity, J. Biomed. Mater. Res. Part A 106 (2018) 3001–3008. PubMed PMC

Overstreet MG, Gaylo A, Angermann BR, Hughson A, Hyun Y-M, Lambert K, Acharya M, Billroth-MacLurg AC, Rosenberg AF, Topham DJ, Yagita H, Kim M, Lacy-Hulbert A, Meier-Schellersheim M, Fowell DJ, Inflammation-induced interstitial migration of effector CD4+ T cells is dependent on integrin αV, Nat. Immunol 14 (2013) 949–958. PubMed PMC

Majedi FS, Hasani-Sadrabadi MM, Thauland TJ, Li S, Bouchard LS, Butte MJ, T-cell activation is modulated by the 3D mechanical microenvironment, Biomaterials 252 (2020) 120058. PubMed PMC

Meng KP, Majedi FS, Thauland TJ, Butte MJ, Tissue mechanics controls T-cell activation and metabolism, bioRxiv (2019) 581322.

Trappmann B, Baker BM, Polacheck WJ, Choi CK, Burdick JA, Chen CS, Matrix degradability controls multicellularity of 3D cell migration, Nat. Commun 8 (2017) 371. PubMed PMC

Wang WY, Lin D, Jarman EH, Polacheck WJ, Baker BM, Functional angiogenesis requires microenvironmental cues balancing endothelial cell migration and proliferation, Lab Chip 20 (2020) 1153–1166. PubMed PMC

Ballotta V, Driessen-Mol A, Bouten CVC, Baaijens FPT, Strain-dependent modulation of macrophage polarization within scaffolds, Biomaterials 35 (2014) 4919–4928. PubMed

Ruehle MA, Eastburn EA, LaBelle SA, Krishnan L, Weiss JA, Boerckel JD, Wood LB, Guldberg RE, Willett NJ, Extracellular matrix compression temporally regulates microvascular angiogenesis, Sci. Adv 6 (2020) eabb6351. PubMed PMC

Galie PA, Nguyen D-HT, Choi CK, Cohen DM, Janmey PA, Chen CS, Fluid shear stress threshold regulates angiogenic sprouting, Proc. Natl. Acad. Sci. U.S.A 111 (2014) 7968–7973. PubMed PMC

McWhorter FY, Wang T, Nguyen P, Chung T, Liu WF, Modulation of macrophage phenotype by cell shape, Proc. Natl. Acad. Sci 110 (2013) 17253–17258. PubMed PMC

Delcassian D, Sattler S, Dunlop IE, T cell immunoengineering with advanced biomaterials, Integr Biol (Camb) 9 (2017) 211–222. PubMed PMC

Luu TU, Gott SC, Woo BWK, Rao MP, Liu WF, Micro- and Nanopatterned Topographical Cues for Regulating Macrophage Cell Shape and Phenotype, ACS Appl. Mater. Interfaces 7 (51) (2015) 28665–28672. PubMed PMC

Liang J, Gu S, Mao X, Tan Y, Wang H, Li S, Zhou Y, Endothelial Cell Morphology Regulates Inflammatory Cells Through MicroRNA Transferred by Extracellular Vesicles, Front. Bioeng. Biotechnol 8 (2020). PubMed PMC

Yang C, Zhao C, Wang X, Shi M, Zhu Y, Jing L, Wu C, Chang J, Stimulation of osteogenesis and angiogenesis by micro/nano hierarchical hydroxyapatite via macrophage immunomodulation, Nanoscale 11 (38) (2019) 17699–17708. PubMed

Hu J, Gondarenko AA, Dang AP, Bashour KT, O’Connor RS, Lee S, Liapis A, Ghassemi S, Milone MC, Sheetz MP, Dustin ML, Kam LC, Hone JC, High-Throughput Mechanobiology Screening Platform Using Micro- and Nanotopography, Nano Lett. 16 (4) (2016) 2198–2204. PubMed PMC

Chen R, Ma H, Zhang L, Bryers JD, Precision-porous templated scaffolds of varying pore size drive dendritic cell activation, Biotechnol. Bioeng 115 (4) (2018) 1086–1095. PubMed PMC

Kim J, Li WA, Sands W, Mooney DJ, Effect of pore structure of macroporous poly(lactide-co-glycolide) scaffolds on the in vivo enrichment of dendritic cells, ACS Appl. Mater. Interfaces 6 (11) (2014) 8505–8512. PubMed PMC

Timnak A, Gerstenhaber JA, Dong K, Har-el Y.-e., Lelkes PI, Gradient porous fibrous scaffolds: a novel approach to improving cell penetration in electrospun scaffolds, Biomed. Mater 13 (2018) 065010. PubMed

Kurpinski KT, Stephenson JT, Janairo RRR, Lee H, Li S, The effect of fiber alignment and heparin coating on cell infiltration into nanofibrous PLLA scaffolds, Biomaterials 31 (13) (2010) 3536–3542. PubMed PMC

Lee B-P, Jeon H, Wang A, Yan Z, Yu J, Grigoropoulos C, Li S, Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds, Acta Biomater. 8 (7) (2012) 2648–2658. PubMed PMC

Garg K, Pullen NA, Oskeritzian CA, Ryan JJ, Bowlin GL, Macrophage functional polarization (M1/M2) in response to varying fiber and pore dimensions of electrospun scaffolds, Biomaterials 34 (2013) 4439–4451. PubMed PMC

Jiang S, Lyu C, Zhao P, Li W, Kong W, Huang C, Genin GM, Du Y, Cryoprotectant enables structural control of porous scaffolds for exploration of cellular mechano-responsiveness in 3D, Nat. Commun 10 (2019) 3491. PubMed PMC

Yin Y, He X-T, Wang J, Wu R-X, Xu X-Y, Hong Y-L, Tian B-M, Chen F-M, Pore size-mediated macrophage M1-to-M2 transition influences new vessel formation within the compartment of a scaffold, Appl. Mater. Today 18 (2020) 100466.

Hady TF, Hwang B, Pusic AD, Waworuntu RL, Mulligan M, Ratner B, Bryers JD, Uniform 40-μm-pore diameter precision templated scaffolds promote a pro-healing host response by extracellular vesicle immune communication, J Tissue Eng Regen Med 15 (2021) 24–36. PubMed PMC

Albanese A, Tang PS, Chan WCW, The Effect of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems, Annu. Rev. Biomed. Eng 14 (2012) 1–16. PubMed

Lv L, Xie Y, Li K, Hu T, Lu X, Cao Y, Zheng X, Unveiling the Mechanism of Surface Hydrophilicity-Modulated Macrophage Polarization, Adv. Healthcare Mater 7 (19) (2018) 1800675. PubMed

Hotchkiss KM, Clark NM, Olivares-Navarrete R, Macrophage response to hydrophilic biomaterials regulates MSC recruitment and T-helper cell populations, Biomaterials 182 (2018) 202–215. PubMed

Whitelock JM, Iozzo RV, Heparan Sulfate: A Complex Polymer Charged with Biological Activity, Chem. Rev 105 (2005) 2745–2764. PubMed

Zamboni F, Vieira S, Reis RL, Miguel Oliveira J, Collins MN, The potential of hyaluronic acid in immunoprotection and immunomodulation: Chemistry, processing and function, Prog. Mater Sci 97 (2018) 97–122.

Rayahin JE, Buhrman JS, Zhang Y.u., Koh TJ, Gemeinhart RA, High and Low Molecular Weight Hyaluronic Acid Differentially Influence Macrophage Activation, ACS Biomater. Sci. Eng. 1 (7) (2015) 481–493. PubMed PMC

Ruppert SM, Hawn TR, Arrigoni A, Wight TN, Bollyky PL, Tissue integrity signals communicated by high-molecular weight hyaluronan and the resolution of inflammation, Immunol. Res 58 (2-3) (2014) 186–192. PubMed PMC

Sommerfeld SD, Cherry C, Schwab RM, Chung L, Maestas DR, Laffont P, Stein JE, Tam A, Ganguly S, Housseau F, Taube JM, Pardoll DM, Cahan P, Elisseeff JH, Interleukin-36γ–producing macrophages drive IL-17–mediated fibrosis, Sci. Immunol 4 (40) (2019). PubMed PMC

Huleihel L, Hussey GS, Naranjo JD, Zhang L, Dziki JL, Turner NJ, Stolz DB, Badylak SF, Matrix-bound nanovesicles within ECM bioscaffolds, Sci. Adv 2 (2016) e1600502. PubMed PMC

Brown BN, Valentin JE, Stewart-Akers AM, McCabe GP, Badylak SF, Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component, Biomaterials 30 (8) (2009) 1482–1491. PubMed PMC

Brown BN, Londono R, Tottey S, Zhang L.i., Kukla KA, Wolf MT, Daly KA, Reing JD, Badylak SF, Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials, Acta Biomater. 8 (3) (2012) 978–987. PubMed PMC

Sipka T, Peroceschi R, Hassan-Abdi R, Groß M, Ellett F, Begon-Pescia C, Gonzalez C, Lutfalla G, Nguyen-Chi M, Damage-Induced Calcium Signaling and Reactive Oxygen Species Mediate Macrophage Activation in Zebrafish, Front. Immunol 12 (2021). PubMed PMC

Kang H, Zhang K, Wong DSH, Han F, Li B, Bian L, Near-infrared light-controlled regulation of intracellular calcium to modulate macrophage polarization, Biomaterials 178 (2018) 681–696. PubMed

Xu P, Xing M, Huang H, Xue K, Chang J, Liu K, Calcium silicate-human serum albumin composite hydrogel decreases random pattern skin flap necrosis by attenuating vascular endothelial cell apoptosis and inflammation, Chem. Eng. J. 423 (2021) 130285.

Zhou Y, Han S, Xiao L, Han P, Wang S, He J, Chang J, Wu C, Xiao Y, Accelerated host angiogenesis and immune responses by ion release from mesoporous bioactive glass, J. Mater. Chem. B 6 (20) (2018) 3274–3284. PubMed

Shen P, Chen Y, Luo S, Fan Z, Wang J, Chang J, Deng J, Applications of biomaterials for immunosuppression in tissue repair and regeneration, Acta Biomater. 126 (2021) 31–44. PubMed

Li J, Jiang X, Li H, Gelinsky M, Gu Z, Tailoring Materials for Modulation of Macrophage Fate, Adv. Mater 33 (12) (2021) 2004172. PubMed PMC

Wu H, Yin Y, Hu X, Peng C, Liu Y, Li Q, Huang W, Huang Q, Effects of Environmental pH on Macrophage Polarization and Osteoimmunomodulation, ACS Biomater. Sci. Eng 5 (2019) 5548–5557. PubMed

Powell RJ, Comerota AJ, Berceli SA, Guzman R, Henry TD, Tzeng E, Velazquez O, Marston WA, Bartel RL, Longcore A, Stern T, Watling S, Interim analysis results from the RESTORE-CLI, a randomized, double-blind multicenter phase II trial comparing expanded autologous bone marrow-derived tissue repair cells and placebo in patients with critical limb ischemia, J. Vasc. Surg 54 (4) (2011) 1032–1041. PubMed

Powell RJ, Marston WA, Berceli SA, Guzman R, Henry TD, Longcore AT, Stern TP, Watling S, Bartel RL, Cellular Therapy With Ixmyelocel-T to Treat Critical Limb Ischemia: The Randomized, Double-blind, Placebo-controlled RESTORE-CLI Trial, Mol. Ther 20 (6) (2012) 1280–1286. PubMed PMC

Ledford KJ, Zeigler F, Bartel RL, Ixmyelocel-T, an expanded multicellular therapy, contains a unique population of M2-like macrophages, Stem Cell Res. Ther 4 (2013) 134. PubMed PMC

Griffin DR, Weaver WM, Scumpia PO, Di Carlo D, Segura T, Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks, Nat. Mater 14 (2015) 737–744. PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...