Expression and 7-day time course of circulating microRNAs in septic patients treated with nephrotoxic antibiotic agents
Language English Country Great Britain, England Media electronic
Document type Clinical Study, Journal Article, Research Support, Non-U.S. Gov't
PubMed
35305556
PubMed Central
PMC8933949
DOI
10.1186/s12882-022-02726-6
PII: 10.1186/s12882-022-02726-6
Knihovny.cz E-resources
- Keywords
- Acute kidney injury, Gentamicin, Nephrotoxicity, Sepsis, Vancomycin, microRNA,
- MeSH
- Acute Kidney Injury * complications MeSH
- Anti-Bacterial Agents therapeutic use MeSH
- Circulating MicroRNA * MeSH
- Adult MeSH
- Gentamicins MeSH
- Interleukin-6 metabolism MeSH
- Creatinine MeSH
- Humans MeSH
- Lipocalin-2 MeSH
- MicroRNAs * genetics MeSH
- Procalcitonin MeSH
- Sepsis * complications MeSH
- Vancomycin therapeutic use MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Clinical Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Circulating MicroRNA * MeSH
- Gentamicins MeSH
- Interleukin-6 MeSH
- Creatinine MeSH
- Lipocalin-2 MeSH
- MicroRNAs * MeSH
- Procalcitonin MeSH
- Vancomycin MeSH
BACKGROUND: Through regulation of signaling pathways, microRNAs (miRNAs) can be involved in sepsis and associated organ dysfunction. The aims of this study were to track the 7-day time course of blood miRNAs in patients with sepsis treated with vancomycin, gentamicin, or a non-nephrotoxic antibiotic and miRNA associations with neutrophil gelatinase-associated lipokalin (NGAL), creatinine, procalcitonin, interleukin-6, and acute kidney injury (AKI) stage. METHODS: Of 46 adult patients, 7 were on vancomycin, 20 on gentamicin, and 19 on another antibiotic. Blood samples were collected on days 1, 4, and 7 of treatment, and miRNAs were identified using quantitative reverse transcription PCR. RESULTS: The results showed no relationship between miRNA levels and biochemical variables on day 1. By day 7 of gentamicin treatment miR-15a-5p provided good discrimination between AKI and non-AKI (area under curve, 0.828). In patients taking vancomycin, miR-155-5p and miR-192-5p positively correlated with creatinine and NGAL values, and miR-192-5p and miR-423-5p positively correlated with procalcitonin and interleukin-6 in patients treated with a non-nephrotoxic antibiotic. In patients together we found positive correlation between miR-155-5p and miR-423-5p and all biochemical markers. CONCLUSION: The results suggest that these four miRNAs may serve as diagnostic or therapeutic tool in sepsis, renal injury and nephrotoxic treatment. TRIAL REGISTRATION: ClinicalTrials.gov , ID: NCT04991376 . Registered on 27 July 2021.
See more in PubMed
Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for Sepsis and septic shock (Sepsis-3) JAMA. 2016;315:801–810. doi: 10.1001/jama.2016.0287. PubMed DOI PMC
Bagshaw SM, George C, Bellomo R. ANZICS database management committee. Early acute kidney injury and sepsis: a multicentre evaluation. Crit Care. 2008;12:R47. doi: 10.1186/cc6863. PubMed DOI PMC
Ronco C, Bellomo R, Kellum JA. Acute kidney injury. Lancet. 2019;394:1949–1964. doi: 10.1016/S0140-6736(19)32563-2. PubMed DOI
O'Connor ME, Prowle JR. Fluid Overload. Crit Care Clin. 2015;31:803–821. doi: 10.1016/j.ccc.2015.06.013. PubMed DOI
Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group KDIGO clinical practice guideline for acute kidney injury. Kidney Inter. 2012;2(Suppl):1–138.
Ma S, Evans RG, Iguchi N, Tare M, Parkington HC, Bellomo R, et al. Sepsis-induced acute kidney injury: a disease of the microcirculation. Microcirculation. 2019;26:e12483. doi: 10.1111/micc.12483. PubMed DOI
Hoste EA, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015;41:1411–1423. doi: 10.1007/s00134-015-3934-7. PubMed DOI
Pannu N, Nadim MK. An overview of drug-induced acute kidney injury. Crit Care Med. 2008;36:S216–S223. doi: 10.1097/CCM.0b013e318168e375. PubMed DOI
Rybak MJ, Lomaestro BM, Rotschafer JC, Moellering RC, Jr, Craig WA, Billeter M, et al. Therapeutic monitoring of vancomycin in adults summary of consensus recommendations from the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Pharmacotherapy. 2009;29:1275–1279. doi: 10.1592/phco.29.11.1275. PubMed DOI
Zamoner W, Prado IRS, Balbi AL, Ponce D. Vancomycin dosing, monitoring and toxicity: critical review of the clinical practice. Clin Exp Pharmacol Physiol. 2019;46:292–301. doi: 10.1111/1440-1681.13066. PubMed DOI
Hanrahan TP, Kotapati C, Roberts MJ, Rowland J, Lipman J, Roberts JA, et al. Factors associated with vancomycin nephrotoxicity in the critically ill. Anaesth Intensive Care. 2015;43:594–599. doi: 10.1177/0310057X1504300507. PubMed DOI
Wargo KA, Edwards JD. Aminoglycoside-induced nephrotoxicity. J Pharm Pract. 2014;27:573–577. doi: 10.1177/0897190014546836. PubMed DOI
Caserta S, Kern F, Cohen J, Drage S, Newbury SF, Llewelyn MJ. Circulating plasma microRNAs can differentiate human Sepsis and systemic inflammatory response syndrome (SIRS) Sci Rep. 2016;6:28006. doi: 10.1038/srep28006. PubMed DOI PMC
Giza DE, Fuentes-Mattei E, Bullock MD, Tudor S, Goblirsch MJ, Fabbri M, et al. Cellular and viral microRNAs in sepsis: mechanisms of action and clinical applications. Cell Death Differ. 2016;23:1906–1918. doi: 10.1038/cdd.2016.94. PubMed DOI PMC
Benz F, Roy S, Trautwein C, Roderburg C, Luedde T. Circulating MicroRNAs as biomarkers for Sepsis. Int J Mol Sci. 2016;17:78. doi: 10.3390/ijms17010078. PubMed DOI PMC
Chen J, Wang J, Li H, Wang S, Xiang X, Zhang D. p53 activates miR-192-5p to mediate vancomycin induced AKI. Sci Rep. 2016;6:38868. doi: 10.1038/srep38868. PubMed DOI PMC
Wang J, Li H, Qiu S, Dong Z, Xiang X, Zhang D. MBD2 upregulates miR-301a-5p to induce kidney cell apoptosis during vancomycin-induced AKI. Cell Death Dis. 2017;8:e3120. doi: 10.1038/cddis.2017.509. PubMed DOI PMC
Zhou X, Qu Z, Zhu C, Lin Z, Huo Y, Wang X, et al. Identification of urinary microRNA biomarkers for detection of gentamicin-induced acute kidney injury in rats. Regul Toxicol Pharmacol. 2016;78:78–84. doi: 10.1016/j.yrtph.2016.04.001. PubMed DOI
Nassirpour R, Mathur S, Gosink MM, Li Y, Shoieb AM, Wood J, et al. Identification of tubular injury microRNA biomarkers in urine: comparison of next-generation sequencing and qPCR-based profiling platforms. BMC Genomics. 2014;15:485. doi: 10.1186/1471-2164-15-485. PubMed DOI PMC
Ge QM, Huang CM, Zhu XY, Bian F, Pan SM. Differentially expressed miRNAs in sepsis-induced acute kidney injury target oxidative stress and mitochondrial dysfunction pathways. PLoS One. 2017;12(3):e0173292. doi: 10.1371/journal.pone.0173292. PubMed DOI PMC
Schlosser K, McIntyre LA, White RJ, Stewart DJ. Customized internal reference controls for improved assessment of circulating MicroRNAs in disease. PLoS One. 2015;10:e0127443. doi: 10.1371/journal.pone.0127443. PubMed DOI PMC
Saikumar J, Hoffmann D, Kim TM, Gonzalez VR, Zhang Q, Goering PL, et al. Expression, circulation, and excretion profile of microRNA-21, −155, and -18a following acute kidney injury. Toxicol Sci. 2012;129:256–267. doi: 10.1093/toxsci/kfs210. PubMed DOI PMC
Tacke F, Roderburg C, Benz F, Cardenas DV, Luedde M, Hippe HJ, et al. Levels of circulating miR-133a are elevated in sepsis and predict mortality in critically ill patients. Crit Care Med. 2014;42:1096–1104. doi: 10.1097/CCM.0000000000000131. PubMed DOI
Shang W, Wang Z. The update of NGAL in acute kidney injury. Curr Protein Pept Sci. 2017;18(12):1211–1217. doi: 10.2174/1389203717666160909125004. PubMed DOI
Ríos-Toro JJ, Márquez-Coello M, García-Álvarez JM, Martín-Aspas A, Rivera-Fernández R, Sáez de Benito A, Girón-González JA. Soluble membrane receptors, interleukin 6, procalcitonin and C reactive protein as prognostic markers in patients with severe sepsis and septic shock. PLoS One. 2017;12(4):e0175254. doi: 10.1371/journal.pone.0175254. PubMed DOI PMC
Brozmanová H, Kacířová I, Uřinovská R, Šištík P, Grundmann M. New liquid chromatography-tandem mass spectrometry method for routine TDM of vancomycin in patients with both normal and impaired renal functions and comparison with results of polarization fluoroimmunoassay in light of varying creatinine concentrations. Clin Chim Acta. 2017;469:136–143. doi: 10.1016/j.cca.2017.04.003. PubMed DOI
miRbase.org. http://www.mirbase.org. Available online. Accessed on 14 Mar 2021.
R Core Team . R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2020.
Mohammed A, Cui Y, Mas VR, Kamaleswaran R. Differential gene expression analysis reveals novel genes and pathways in pediatric septic shock patients. Sci Rep. 2019;9:11270. doi: 10.1038/s41598-019-47703-6. PubMed DOI PMC
Tirado-Hurtado I, Fajardo W, Pinto JA. DNA damage inducible transcript 4 gene: the switch of the metabolism as potential target in Cancer. Front Oncol. 2018;8:106. doi: 10.3389/fonc.2018.00106. PubMed DOI PMC
GENE - NCBI. available online on: www.ncbi.nlm.nih.gov, accessed: in 16 Feb 2021.
Yuan XP, Liu LS, Chen CB, Zhou J, Zheng YT, Wang XP, et al. MicroRNA-423-5p facilitates hypoxia/reoxygenation-induced apoptosis in renal proximal tubular epithelial cells by targeting GSTM1 via endoplasmic reticulum stress. Oncotarget. 2017;8:82064–82077. doi: 10.18632/oncotarget.18289. PubMed DOI PMC
Nabiałek E, Wańha W, Kula D, Jadczyk T, Krajewska M, Kowalówka A, et al. Circulating microRNAs (miR-423-5p, miR-208a and miR-1) in acute myocardial infarction and stable coronary heart disease. Minerva Cardioangiol. 2013;61:627–637. PubMed
Jäntti T, Segersvärd H, Tolppanen H, Tarvasmäki T, Lassus J, Devaux Y, et al. Circulating levels of microRNA 423-5p are associated with 90 day mortality in cardiogenic shock. ESC Heart Fail. 2019;6:98–102. doi: 10.1002/ehf2.12377. PubMed DOI PMC
Bruno N, ter Maaten JM, Ovchinnikova ES, Vegter EL, Valente MA, van der Meer P, et al. MicroRNAs relate to early worsening of renal function in patients with acute heart failure. Int J Cardiol. 2016;203:564–569. doi: 10.1016/j.ijcard.2015.10.217. PubMed DOI
Mårtensson J, Bell M, Oldner A, Xu S, Venge P, Martling CR. Neutrophil gelatinase-associated lipocalin in adult septic patients with and without acute kidney injury. Intensive Care Med. 2010;36:1333–1340. doi: 10.1007/s00134-010-1887-4. PubMed DOI
Barbagallo C, Passanisi R, Mirabella F, Cirnigliaro M, Costanzo A, Lauretta G, et al. Upregulated microRNAs in membranous glomerulonephropathy are associated with significant downregulation of IL6 and MYC mRNAs. J Cell Physiol. 2019;234:12625–12636. doi: 10.1002/jcp.27851. PubMed DOI
Mu X, Wang H, Li H. Silencing of long noncoding RNA H19 alleviates pulmonary injury, inflammation, and fibrosis of acute respiratory distress syndrome through regulating the microRNA-423-5p/FOXA1 axis. Exp Lung Res. 2021;47:183–197. doi: 10.1080/01902148.2021.1887967. PubMed DOI
Bretthauer J, Anker SD, Pinet F, Thum T. Circulating miR-133a and miR-423-5p fail as biomarkers for left ventricular remodeling after myocardial infarction. Int J Cardiol. 2013;168:1837–1840. doi: 10.1016/j.ijcard.2012.12.074. PubMed DOI
Wang Y, Liu C, Wei W, Chen W. Predictive value of circulating coagulation related microRNAs expressions for major adverse cardiac and cerebral event risk in patients undergoing continuous ambulatory peritoneal dialysis: a cohort study. J Nephrol. 2020;33:157–165. doi: 10.1007/s40620-019-00626-x. PubMed DOI PMC
Lou Y, Huang Z. microRNA-15a-5p participates in sepsis by regulating the inflammatory response of macrophages and targeting TNIP2. Exp Ther Med. 2020;19:3060–3068. PubMed PMC
Kawai T, Akira S. Signaling to NF-kappaB by toll-like receptors. Trends Mol Med. 2007;13:460–469. doi: 10.1016/j.molmed.2007.09.002. PubMed DOI
Xu G, Mo L, Wu C, Shen X, Dong H, Yu L, et al. The miR-15a-5p-XIST-CUL3regulatory axis is important for sepsis-induced acute kidney injury. Ren Fail. 2019;41:955–966. doi: 10.1080/0886022X.2019.1669460. PubMed DOI PMC
Wang H, Zhang P, Chen W, Feng D, Jia Y, Xie LX. Evidence for serum miR-15a and miR-16 levels as biomarkers that distinguish sepsis from systemic inflammatory response syndrome in human subjects. Clin Chem Lab Med. 2012;50:1423–1428. PubMed
Goodwin AJ, Guo C, Cook JA, Wolf B, Halushka PV, Fan H. Plasma levels of microRNA are altered with the development of shock in human sepsis: an observational study. Crit Care. 2015;19:440. doi: 10.1186/s13054-015-1162-8. PubMed DOI PMC
Moon HG, Yang J, Zheng Y, Jin Y. miR-15a/16 regulates macrophage phagocytosis after bacterial infection. J Immunol. 2014;193:4558–4567. doi: 10.4049/jimmunol.1401372. PubMed DOI PMC
Pfeiffer D, Roßmanith E, Lang I, Falkenhagen D. miR-146a, miR-146b, and miR-155 increase expression of IL-6 and IL-8 and support HSP10 in an in vitro sepsis model. PLoS One. 2017;12:e0179850. doi: 10.1371/journal.pone.0179850. PubMed DOI PMC
Glineur SF, Hanon E, Dremier S, Snelling S, Berteau C, De Ron P, et al. Assessment of a urinary kidney MicroRNA panel as potential nephron segment-specific biomarkers of subacute renal toxicity in preclinical rat models. Toxicol Sci. 2018;166:409–419. PubMed
Li HF, Wu YL, Tseng TL, Chao SW, Lin H, Chen HH. Inhibition of miR-155 potentially protects against lipopolysaccharide-induced acute lung injury through the IRF2BP2-NFAT1 pathway. Am J Physiol Cell Physiol. 2020;319:C1070–C1081. doi: 10.1152/ajpcell.00116.2020. PubMed DOI
Kugler N, Klein K, Zanger UM. MiR-155 and other microRNAs downregulate drug metabolizing cytochromes P450 in inflammation. Biochem Pharmacol. 2020;171:113725. doi: 10.1016/j.bcp.2019.113725. PubMed DOI
Klimczak D, Kuch M, Pilecki T, Żochowska D, Wirkowska A, Pączek L. Plasma microRNA-155-5p is increased among patients with chronic kidney disease and nocturnal hypertension. J Am Soc Hypertens. 2017;11:831–841.e4. doi: 10.1016/j.jash.2017.10.008. PubMed DOI
Zhang W, Li X, Tang Y, Chen C, Jing R, Liu T. miR-155-5p implicates in the pathogenesis of renal fibrosis via targeting SOCS1 and SOCS6. Oxidative Med Cell Longev. 2020;2020:6263921. doi: 10.1155/2020/6263921. PubMed DOI PMC
Zou YF, Wen D, Zhao Q, Shen PY, Shi H, Zhao Q, et al. Urinary MicroRNA-30c-5p and MicroRNA-192-5p as potential biomarkers of ischemia-reperfusion-induced kidney injury. Exp Biol Med (Maywood) 2017;242:657–667. doi: 10.1177/1535370216685005. PubMed DOI PMC
Sun F, Yuan W, Wu H, Chen G, Sun Y, Yuan L, et al. LncRNA KCNQ1OT1 attenuates sepsis-induced myocardial injury via regulating miR-192-5p/XIAP axis. Exp Biol Med (Maywood). 2020;245:620–630. doi: 10.1177/1535370220908041. PubMed DOI PMC
Jeon BS, Lee SH, Hwang SR, Yi H, Bang JH, Tham NTT, et al. Identification of urinary microRNA biomarkers for in vivo gentamicin-induced nephrotoxicity models. J Vet Sci. 2020;21:e81. doi: 10.4142/jvs.2020.21.e81. PubMed DOI PMC
Kanki M, Moriguchi A, Sasaki D, Mitori H, Yamada A, Unami A, et al. Identification of urinary miRNA biomarkers for detecting cisplatin-induced proximal tubular injury in rats. Toxicology. 2014;324:158–168. doi: 10.1016/j.tox.2014.05.004. PubMed DOI
Ren FJ, Yao Y, Cai XY, Fang GY. Emerging role of MiR-192-5p in human diseases. Front Pharmacol. 2021;12:614068. doi: 10.3389/fphar.2021.614068. PubMed DOI PMC
Acute kidney injury due to gentamicin nephrotoxicity and specific miRNAs as biomarkers
ClinicalTrials.gov
NCT04991376