Acute kidney injury due to gentamicin nephrotoxicity and specific miRNAs as biomarkers
Language English Country Czech Republic Media print-electronic
Document type Journal Article, Review
PubMed
39403944
DOI
10.5507/bp.2024.031
Knihovny.cz E-resources
- Keywords
- acute kidney injury, biomarkers, gentamicin, miRNA, nephrotoxicity,
- MeSH
- Acute Kidney Injury * chemically induced diagnosis MeSH
- Anti-Bacterial Agents * adverse effects MeSH
- Biomarkers metabolism MeSH
- Gentamicins * adverse effects MeSH
- Humans MeSH
- MicroRNAs * metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Anti-Bacterial Agents * MeSH
- Biomarkers MeSH
- Gentamicins * MeSH
- MicroRNAs * MeSH
Acute kidney injury (AKI) due to gentamicin nephrotoxicity is a significant concern in clinical medicine, particularly in patients receiving prolonged or high-dose gentamicin therapy. Gentamicin is an aminoglycoside antibiotic frequently used in the treatment of a range of bacterial infections. However, its use is associated with nephrotoxicity which can manifest as AKI. Due to this, it is crucial to diagnose promptly and manage treatment effectively. Ongoing studies are therefore focusing on non-protein-coding RNAs as potential biomarkers for AKI. Numerous microRNAs (miRNAs) have been implicated in gentamicin-induced nephrotoxicity and AKI. They participate in pathways associated with inflammation, cell death, and oxidative stress and each of these factors play critical roles in the development of gentamicin-induced kidney injury. Research studies have demonstrated changes in the expression levels of these miRNAs in response to gentamicin exposure both in vitro and in in vivo models, as well as in human clinical trials involving patients receiving gentamicin therapy. The dysregulation of these miRNAs correlates with the severity of kidney injury and may serve as sensitive biomarkers for early detection and monitoring of AKI induced by gentamicin.
Department of Internal Medicine and Cardiology University Hospital Ostrava Ostrava Czech Republic
Faculty of Medicine Palacky University Olomouc Olomouc Czech Republic
Faculty of Medicine University of Ostrava Ostrava Czech Republic
See more in PubMed
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993;75(5):843-54. doi: 10.1016/0092-8674(93)90529-y PubMed DOI
Hammond SM. An overview of microRNAs. Adv Drug Deliv Rev 2015;87:3-14. doi: 10.1016/j.addr.2015.05.001 PubMed DOI
Ronco C, Bellomo R, Kellum JA. Acute kidney injury. Lancet 2019;394:1949-64. DOI
KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int Suppl 2012;2(1):1-138. ISSN: 2157-1716
Martinez-Salgado C, Lopez-Hernandez FJ, Lopez-Novoa JM. Glomerular nephrotoxicity of aminoglycosides. Toxicol Appl Pharmacol 2007;223:86-98. DOI
Food and Drug Administration. FDA Approved Drug Products: Gentamicin solution for injection, (Version October 2013). Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/062366s033lbl.pdf [accessed Aug 4, 2024]
Electronic Medicines Compendium. Gentamicin 40 mg/mL Injection, (Version Apr 08 2024). Available from: https://www.medicines.org.uk/emc/product/2394/smpc [accessed Nov 10, 2023]
Llanos-Paez CC, Hennig S, Staatz CE. Population pharmacokinetic modelling, Monte Carlo simulation and semi-mechanistic pharmacodynamic modelling as tools to personalize gentamicin therapy. J Antimicrob Chemother 2017;72(3):639-67. doi: 10.1093/jac/dkw461 PubMed DOI
Matthews I, Kirkpatrick C, Holford N. Quantitative justification for target concentration intervention-parameter variability and predictive performance using population pharmacokinetic models for aminoglycosides. Br J Clin Pharmacol 2004;58(1):8-19. doi: 10.1111/j.1365-2125.2004.02114.x PubMed DOI
Xuan D, Nicolau DP, Nightingale CH. Population pharmacokinetics of gentamicin in hospitalized patients receiving once-daily dosing. Int J Antimicrob Agents 2004;23(3):291-5. doi: 10.1016/j.ijantimicag.2003.07.010 PubMed DOI
Hodiamont CJ, van den Broek AK, de Vroom SL, Prins JM, Mathôt RAA, van Hest RM. Clinical Pharmacokinetics of Gentamicin in Various Patient Populations and Consequences for Optimal Dosing for Gram-Negative Infections: An Updated Review. Clin Pharmacokinet 2022;61(8):1075-94. doi: 10.1007/s40262-022-01143-0 PubMed DOI
Romero F, Pérez M, Chávez M, Parra G, Durante P. Effect of uric acid on gentamicin-induced nephrotoxicity in rats-role of matrix metalloproteinases 2 and 9. Basic Clin Pharmacol Toxicol 2009;105:416-24. DOI
Moore RD, Smith CR, Lipsky JJ, Mellits ED, Lietman PS. Risk factors for nephrotoxicity in patients treated with aminoglycosides. Ann Intern Med 1984;100:352-7. DOI
Prins JM, Weverling GJ, de Blok K, van Ketel RJ, Speelman P. Validation and nephrotoxicity of a simplified once-daily aminoglycoside dosing schedule and guidelines for monitoring therapy. Antimicrob Agents Chemother 1996;40:2494-9. DOI
Whiting PH, Brown PA. The relationship between enzymuria and kidney enzyme activities in experimental gentamicin nephrotoxicity. Ren Fail 1996;18:899-909. DOI
Li J, Li QX, Xie XF, Ao Y, Tie CR, Song RJ. Differential roles of dihydropyridine calcium antagonist nifedipine, nitrendipine and amlodipine on gentamicininduced renal tubular toxicity in rats. Eur J Pharmacol 2009;620:97-104. DOI
El Mouedden M, Laurent G, Mingeot-Leclercq MP, Taper HS, Cumps J, Tulkens PM. Apoptosis in renal proximal tubules of rats treated with low doses of aminoglycosides. Antimicrob Agents Chemother 2000;44:665-75. DOI
Edwards JR, Diamantakos EA, Peuler JD, Lamar PC, Prozialeck WC. A novel method for the evaluation of proximal tubule epithelial cellular necrosis in the intact rat kidney using ethidium homodimer. BMC Physiol 2007;7:1. DOI
Chiarugi A. Simple but not simpler: toward a unified picture of energy requirements in cell death. FASEB J 2005;19:1783-8. DOI
Lopez-Novoa JM, Quiros Y, Vicente L, Morales AI, Lopez-Hernandez FJ. New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view. Kidney Int 2011;79(1):33-45. doi: 10.1038/ki.2010.337 PubMed DOI
Schmitz C, Hilpert J, Jacobsen C, Boensch C, Christensen EI, Luft FC, Willnow TE. Megalin deficiency offers protection from renal aminoglycoside accumulation. J Biol Chem 2002;277:618-22. DOI
Schnellmann RG, Williams SW. Proteases in renal cell death: calpains mediate cell death produced by diverse toxicants. Ren Fail 1998;20:679-86. DOI
Udupa V, Prakash V. Gentamicin induced acute renal damage and its evaluation using urinary biomarkers in rats. Toxicol Rep 2018;6:91-9. DOI
Fuchs TC, Hewitt P. Biomarkers for drug-induced renal damage and nephrotoxicity-an overview for applied toxicology. AAPS J 2011;13(4):615-31. doi: 10.1208/s12248-011-9301-x PubMed DOI
Conti M, Moutereau S, Zater M, Lallali K, Durrbach A, Manivet P, Eschwège P, Loric S. Urinary cystatin C as a specific marker of tubular dysfunction. Clin Chem Lab Med 2006;44(3):288-91. DOI
Dieterle F, Perentes E, Cordier A, Roth DR, Verdes P, Grenet O, Pantano S, Moulin P, Wahl D, Mahl A, End P, Staedtler F, Legay F, Carl K, Laurie D, Chibout SD, Vonderscher J, Maurer G. Urinary clusterin, cystatin C, beta2-microglobulin and total protein as markers to detect drug-induced kidney injury. Nat Biotechnol 2010;28(5):463-9. DOI
Vaidya VS, Waikar SS, Ferguson MA, Collings FB, Sunderland K, Gioules C, Bradwin G, Matsouaka R, Betensky RA, Curhan GC, Bonventre JV. Urinary biomarkers for sensitive and specific detection of acute kidney injury in humans. Clin Transl Sci 2008;1(3):200-8. DOI
Sieber M, Hoffmann D, Adler M, Vaidya VS, Clement M, Bonventre JV, Bonventre JV, Zidek N, Rached E, Amberg A, Callanan JJ, Dekant W, Mally A. Comparative analysis of novel noninvasive renal biomarkers and metabonomic changes in a rat model of gentamicin nephrotoxicity. Toxicol Sci 2009;109(2):336-49. DOI
Dvergsten J, Manivel JC, Correa-Rotter R, Rosenberg ME. Expression of clusterin in human renal diseases. Kidney Int 1994;45(3):828-35. DOI
Hidaka S, Kranzlin B, Gretz N, Witzgall R. Urinary clusterin levels in the rat correlate with the severity of tubular damage and may help to differentiate between glomerular and tubular injuries. Cell Tissue Res 2002;310(3):289-96. DOI
van Timmeren MM, Vaidya VS, van Ree RM, Oterdoom LH, de Vries AP, Gans RO, van Goor H, Stegeman CA, Bonventre JV, Bakker SJ. High urinary excretion of kidney injury molecule-1 is an independent predictor of graft loss in renal transplant recipients. Transplantation 2007;84(12):1625-30. DOI
Zhou Y, Vaidya VS, Brown RP, Zhang J, Rosenzweig BA, Thompson KL, Miller TJ, Bonventre JV, Goering PL. Comparison of kidney injury molecule-1 and other nephrotoxicity biomarkers in urine and kidney following acute exposure to gentamicin, mercury, and chromium. Toxicol Sci 2008;101(1):159-70. DOI
Qin Z, Li H, Jiao P, Jiang L, Geng J, Yang Q, Liao R, Su B. The value of urinary interleukin-18 in predicting acute kidney injury: a systematic review and meta-analysis. Ren Fail 2022;44(1):1717-31. doi: 10.1080/0886022X.2022.2133728 PubMed DOI
Xie Y, Ankawi G, Yang B, Garzotto F, Passannante A, Breglia A, Digvijay K, Ferrari F, Brendolan A, Raffaele B, Giavarina D, Gregori D, Ronco C. Tissue inhibitor metalloproteinase-2 (TIMP-2) * IGF-binding protein-7 (IGFBP7) levels are associated with adverse outcomes in patients in the intensive care unit with acute kidney injury. Kidney Int 2019;95(6):1486-93. doi: 10.1016/j.kint.2019.01.020 PubMed DOI
Wang W, Shen Q, Zhou X. The predictive value of [TIMP-2]*[IGFBP7] in adverse outcomes for acute kidney injury: a systematic review and meta-analysis. Ren Fail 2023;45(2):2253933. doi: 10.1080/0886022X.2023.2253933 PubMed DOI
Yu Y, Jin H, Holder D, Ozer JS, Villarreal S, Shughrue P, Shi S, Figueroa DJ, Clouse H, Su M, Muniappa N, Troth SP, Bailey W, Seng J, Aslamkhan AG, Thudium D, Sistare FD, Gerhold DL. Urinary biomarkers trefoil factor 3 and albumin enable early detection of kidney tubular injury. Nat Biotechnol 2010;28(5):470-7. doi: 10.1038/nbt.1624 PubMed DOI
Debata PR, Panda H, Supakar PC. Altered expression of trefoil factor 3 and cathepsin L gene in rat kidney during aging. Biogerontology 2007;8(1):25-30. DOI
Hofstra JM, Deegens JK, Willems HL, Wetzels JF. Beta-2-microglobulin is superior to N-acetyl-beta-glucosaminidase in predicting prognosis in idiopathic membranous nephropathy. Nephrol Dial Transplant 2008;23(8):2546-51. DOI
Venkat KK. Proteinuria and microalbuminuria in adults: significance, evaluation, and treatment. South Med J 2004;97(10):969-79. DOI
Shihabi ZK, Konen JC, O'Connor ML. Albuminuria vs urinary total protein for detecting chronic renal disorders. Clin Chem 1991;37(5):621-4. DOI
Kagawa T, Zarybnicky T, Omi T, Shirai Y, Toyokuni S, Oda S, Yokoi T. A scrutiny of circulating microRNA biomarkers for drug-induced tubular and glomerular injury in rats. Toxicology 2019;415:26-36. DOI
Sun B, Qu Z, Cheng GL, Yang YW, Miao YF, Chen XG, Zhou XB, Li B. Urinary microRNAs miR-15b and miR-30a as novel noninvasive biomarkers for gentamicin-induced acute kidney injury. Toxicol Lett 2021;338:105-13. doi: 10.1016/j.toxlet.2020.12.006 PubMed DOI
Saikumar J, Hoffmann D, Kim TM, Gonzalez VR, Zhang Q, Goering PL, Brown RP, Bijol V, Park PJ, Waikar SS, Vaidya VS. Expression, circulation, and excretion profile of microRNA-21, -155, and -18a following acute kidney injury. Toxicol Sci 2012;129:256-67. DOI
Lee CG, Kim JG, Kim HJ, Kwon HK, Cho IJ, Choi DW, Lee WH, Kim WD, Hwang SJ, Choi S, Kim SG. Discovery of an integrative network of microRNAs and transcriptomics changes for acute kidney injury. Kidney Int 2014;86:943-53. DOI
Ramachandran K, Saikumar J, Bijol V, Koyner JL, Qian J, Betensky RA, Waikar SS, Vaidya VS. Human miRNome profiling identifies microRNAs differentially present in the urine after kidney injury. Clin Chem 2013;59:1742-52. DOI
Xiaobing Zhou, Zhe Qu, Cong Zhu, Zhi Lin, Yan Huo, Xue Wang, Jufeng Wang, Bo Li, Identification of urinary microRNA biomarkers for detection of gentamicin-induced acute kidney injury in rats. Regul Toxicol Pharmacol 2016;78:78-84. doi: 10.1016/j.yrtph.2016.04.001 PubMed DOI
Petejova N, Martinek A, Zadrazil J, Klementa V, Pribylova L, Bris R, Kanova M, Sigutova R, Kacirova I, Svagera Z, Bace E, Stejskal D. Expression and 7-day time course of circulating microRNAs in septic patients treated with nephrotoxic antibiotic agents. BMC Nephrol 2022;23(1):111. doi: 10.1186/s12882-022-02726-6 PubMed DOI
Yuan XP, Liu LS, Chen CB, Zhou J, Zheng YT, Wang XP, Han M, Wang CX. MicroRNA423-5p facilitates hypoxia/reoxygenation-induced apoptosis in renal proximal tubular epithelial cells by targeting GSTM1 via endoplasmic reticulum stress. Oncotarget 2017;8:82064-77. DOI
Tirado-Hurtado I, Fajardo W, Pinto JA. DNA damage inducible transcript 4 gene: the switch of the metabolism as potential target in Cancer. Front Oncol 2018;8:106. doi: 10.3389/fonc.2018.00106 PubMed DOI
GENE - NCBI. Available from: www.ncbi.nlm.nih.gov
Mu X, Wang H, Li H. Silencing of long noncoding RNA H19 alleviates pulmonary injury, infammation, and fbrosis of acute respiratory distress syndrome through regulating the microRNA-423-5p/FOXA1 axis. Exp Lung Res 2021;47:183-97. DOI
Xu G, Mo L, Wu C, Shen X, Dong H, Yu L, Pan P, Pan K. The miR-15a-5p-XIST-CUL3regulatory axis is important for sepsis-induced acute kidney injury. Ren Fail 2019;41:955-66. DOI
Lou Y, Huang Z. microRNA-15a-5p participates in sepsis by regulating the infammatory response of macrophages and targeting TNIP2. Exp Ther Med 2020;19:3060-8. DOI
Giza DE, Fuentes-Mattei E, Bullock MD, Tudor S, Goblirsch MJ, Fabbri M, Lupu F, Yeung SJ, Vasilescu C, Calin GA. Cellular and viral microRNAs in sepsis: mechanisms of action and clinical applications. Cell Death Difer 2016;23:1906-18. DOI
Li HF, Wu YL, Tseng TL, Chao SW, Lin H, Chen HH. Inhibition of miR-155 potentially protects against lipopolysaccharide-induced acute lung injury through the IRF2BP2-NFAT1 pathway. Am J Physiol Cell Physiol 2020;319:C1070-81. PubMed DOI
Sun F, Yuan W, Wu H, Chen G, Sun Y, Yuan L, Zhang W, Lei M. LncRNA KCNQ1OT1 attenuates sepsis-induced myocardial injury via regulating miR-192-5p/ XIAP axis. Exp Biol Med (Maywood) 2020;245:620-30. PubMed DOI
Chawla LS, Bellomo R, Bihorac A, Goldstein SL, Siew ED, Bagshaw SM, Bittleman D, Cruz D, Endre Z, Fitzgerald RL, Forni L, Kane-Gill SL, Hoste E, Koyner J, Liu KD, Macedo E, Mehta R, Murray P, Nadim M, Ostermann M, Palevsky PM, Pannu N, Rosner M, Wald R, Zarbock A, Ronco C, Kellum JA; Acute Disease Quality Initiative Workgroup 16. Acute kidney disease and renal recovery: consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup. Nat Rev Nephrol 2017;(4):241-57. doi: 10.1038/nrneph.2017.2 PubMed DOI