On Predicting Recurrence in Early Stage Non-small Cell Lung Cancer
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35308971
PubMed Central
PMC8861763
PII: 3577135
Knihovny.cz E-zdroje
- MeSH
- lidé MeSH
- nádory plic * diagnóza MeSH
- nemalobuněčný karcinom plic * diagnóza patologie MeSH
- nomogramy MeSH
- prognóza MeSH
- retrospektivní studie MeSH
- staging nádorů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Early detection and mitigation of disease recurrence in non-small cell lung cancer (NSCLC) patients is a nontrivial problem that is typically addressed either by rather generic follow-up screening guidelines, self-reporting, simple nomograms, or by models that predict relapse risk in individual patients using statistical analysis of retrospective data. We posit that machine learning models trained on patient data can provide an alternative approach that allows for more efficient development of many complementary models at once, superior accuracy, less dependency on the data collection protocols and increased support for explainability of the predictions. In this preliminary study, we describe an experimental suite of various machine learning models applied on a patient cohort of 2442 early stage NSCLC patients. We discuss the promising results achieved, as well as the lessons we learned while developing this baseline for further, more advanced studies in this area.
Data Science Institute NUI Galway Galway Ireland
Faculty of Informatics Masaryk University Brno Czech Republic
Insight Centre for Data Analytics NUI Galway Galway Ireland
Medical Oncology Department Hospital Universitario Puerta de Hierro Majadahonda Madrid Spain
Zobrazit více v PubMed
Bray Freddie, Ferlay Jacques, Soerjomataram Isabelle, Siegel Rebecca L, Torre Lindsey A, Jemal Ahmedin. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2018;68(6):394–424. PubMed
Tolwin Yaakov, Gillis Roni, Peled Nir. Gender and lung cancer—seer-based analysis. Annals of Epidemiology. 2020;46:14–19. PubMed
Uramoto Hidetaka, Tanaka Fumihiro. Recurrence after surgery in patients with nsclc. Translational lung cancer research. 2014;3(4):242. PubMed PMC
Arriagada Rodrigo, Dunant Ariane, Pignon Jean-Pierre, Bergman Bengt, Chabowski Mariusz, Grunen-wald Dominique, Kozlowski Miroslaw, Péchoux Cécile Le, Pirker Robert, Pinel Maria-Izabel, et al. Long-term results of the international adjuvant lung cancer trial evaluating adjuvant cisplatin-based chemotherapy in resected lung cancer. J Clin Oncol. 2010;28(1):35–42. PubMed
Burdett Sarah, Pignon Jean Pierre, Tierney Jayne, Tribodet Helene, Stewart Lesley, Pechoux Cecile Le, Aupérin Anne, Chevalier Thierry Le, Stephens Richard J, Arriagada Rodrigo, et al. Adjuvant chemotherapy for resected early-stage non-small cell lung cancer. Cochrane Database of Systematic Reviews. 2015;3 PubMed PMC
Aupérin Anne, Péchoux Cecile Le, Rolland Estelle, Curran Walter J, Furuse Kiyoyuki, Fournel Pierre, Belderbos Jose, Clamon Gerald, Ulutin Hakki Cuneyt, Paulus Rebecca, et al. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. Database of Abstracts of Reviews of Effects (DARE): Quality-assessed Reviews [Internet] 2010. PubMed
Younes Riad N, Gross Jefferson L, Deheinzelin Daniel. Follow-up in lung cancer: how often and for what purpose? Chest. 1999;115(6):1494–1499. PubMed
Denis Fabrice, Viger Louise, Charron Alexandre, Voog Eric, Dupuis Olivier, Pointreau Yoann, Letellier Christophe. Detection of lung cancer relapse using self-reported symptoms transmitted via an internet web-application: pilot study of the sentinel follow-up. Supportive Care in Cancer. 2014;22(6):1467–1473. PubMed
Judson Timothy J, Bennett Antonia V, Rogak Lauren J, Sit Laura, Barz Allison, Kris Mark G, Hudis CliffordA, Scher Howard I, Sabattini Paul, Schrag Deborah, et al. Feasibility of long-term patient self-reporting of toxicities from home via the internet during routine chemotherapy. Journal of clinical oncology. 2013;31(20):2580. PubMed PMC
Balachandran Vinod P, Gonen Mithat, Smith J Joshua, DeMatteo Ronald P. Nomograms in oncology: more than meets the eye. The lancet oncology. 2015;16(4):e173–e180. PubMed PMC
Lee Chee Khoon, Davies Lucy, Wu Yi-Long, Mitsudomi Tetsuya, Inoue Akira, Rosell Rafael, Zhou Caicun, Nakagawa Kazuhiko, Thongprasert Sumitra, Fukuoka Masahiro, et al. Gefitinib or erlotinib vs chemotherapy for egfr mutation-positive lung cancer: individual patient data meta-analysis of overall survival. JNCI: Journal of the National Cancer Institute. 2017;109(6) PubMed
Kirienko Margarita, Cozzi Luca, Antunovic Lidija, Lozza Lisa, Fogliata Antonella, Voulaz Emanuele, Rossi Alexia, Chiti Arturo, Sollini Martina. Prediction of disease-free survival by the pet/ct radiomic signature in non-small cell lung cancer patients undergoing surgery. European journal of nuclear medicine and molecular imaging. 2018;45(2):207–217. PubMed
Zhang Weiran, Lin Xuefeng, Li Xin, Wang Meng, Sun Wei, Han Xingpeng, Sun Daqiang. Survival prediction model for non-small cell lung cancer based on somatic mutations. The journal of gene medicine. 2020;22(9):e3206. PubMed
Barakat Mohamed S, Field Matthew, Ghose Aditya, Stirling David, Holloway Lois, Vinod Shalini, Dekker Andre, Thwaites David. The effect of imputing missing clinical attribute values on training lung cancer survival prediction model performance. Health information science and systems. 2017;5(1):1–11. PubMed PMC
Lai Yu-Heng, Chen Wei-Ning, Hsu Te-Cheng, Lin Che, Tsao Yu, Wu Semon. Overall survival prediction of non-small cell lung cancer by integrating microarray and clinical data with deep learning. Scientific reports. 2020;10(1):1–11. PubMed PMC
Lee Bora, Chun Sang Hoon, Hong Ji Hyung, Woo In Sook, Kim Seoree, Jeong Joon Won, Kim Jae Jun, Lee Hyun Woo, Na Sae Jung, Beck Kyongmin Sarah, et al. Deepbts: prediction of recurrence-free survival of non-small cell lung cancer using a time-binned deep neural network. Scientific reports. 2020;10(1):1–10. PubMed PMC
Kato Eisuke, Takayanagi Noboru, Takaku Yotaro, Kagiyama Naho, Kanauchi Tetsu, Ishiguro Takashi, Sugita Yutaka. Incidence and predictive factors of lung cancer in patients with idiopathic pulmonary fibrosis. ERJ open research. 2018;4(1) PubMed PMC
Wen Juyi, Liu Hongliang, Wang Lili, Wang Xiaomeng, Gu Ning, Liu Zhensheng, Xu Ting, Gomez Daniel R, Komaki Ritsuko, Liao Zhongxing, et al. Potentially functional variants of atg16l2 predict radiation pneumonitis and outcomes in patients with non-small cell lung cancer after definitive radiotherapy. Journal of Thoracic Oncology. 2018;13(5):660–675. PubMed PMC
Abdel-Rahman Omar. Causes of death in long-term lung cancer survivors: a seer database analysis. Current medical research and opinion. 2017;33(7):1343–1348. PubMed
Wong Melisa L, McMurry Timothy L, Stukenborg George J, Francescatti Amanda B, Amato-Martz Carla, Schumacher Jessica R, Chang George J, Greenberg Caprice C, Winchester David P, McKellar Daniel P, et al. Impact of age and comorbidity on treatment of non-small cell lung cancer recurrence following complete resection: A nationally representative cohort study. Lung Cancer. 2016;102:108–117. PubMed PMC
Astaraki Mehdi, Wang Chunliang, Buizza Giulia, Toma-Dasu Iuliana, Lazzeroni Marta, Smedby Örjan. Early survival prediction in non-small cell lung cancer from pet/ct images using an intra-tumor partitioning method. Physica Medica. 2019;60:58–65. PubMed
Akiba Takuya, Sano Shotaro, Yanase Toshihiko, Ohta Takeru, Koyama Masanori. Optuna: A next-generation hyperparameter optimization framework