Does ibuprofen affect the expression of alginate genes in pathogenic Pseudomonas aeruginosa strains?
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35325409
DOI
10.1007/s12223-022-00962-9
PII: 10.1007/s12223-022-00962-9
Knihovny.cz E-zdroje
- Klíčová slova
- Alginate, Antibiofilm, Cystic fibrosis, Ibuprofen, Infection, P. aeruginosa,
- MeSH
- algináty MeSH
- antibakteriální látky metabolismus farmakologie MeSH
- biofilmy MeSH
- cystická fibróza * mikrobiologie MeSH
- ibuprofen metabolismus farmakologie MeSH
- lidé MeSH
- pseudomonádové infekce * farmakoterapie mikrobiologie MeSH
- Pseudomonas aeruginosa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- algináty MeSH
- antibakteriální látky MeSH
- ibuprofen MeSH
Conversion to mucoid form is a crucial step in the pathogenesis of P. aeruginosa in burns and cystic fibrosis (CF) patients. Alginate is considered the major component of biofilm and is highly associated with the formation of mucoid biofilm in this species. Nonsteroid anti-inflammatory drugs (NSAIDs), including ibuprofen, have shown promising antibacterial and antibiofilm potential for bacterial pathogens. In this study, we aimed to evaluate the effect of ibuprofen on the expression of alginate synthetase (alg8), GDP-mannose dehydrogenase (algD), and alginate lyase (algL) genes in multiple drug-resistant (MDR) P. aeruginosa strains. The biofilm formation potential and the expression of alg8, algD, and algL among the bacteria treated with ibuprofen (at sub-inhibitory concentration) were investigated using the crystal violet staining and real-time PCR assays, respectively. The minimum inhibitory concentration of ibuprofen for the studied strains was determined 1024-2048 µg/mL. We observed that ibuprofen was able to reduce bacterial biofilm by 51-77%. Also, the expression of alg8, algD, and algL decreased by 32, 52, and 48%, respectively. The reduction of the genes responsible for alginate synthesis indicates promising antivirulece potential of ibuprofen to combat P. aeruginosa infection, especially in burns and CF patients. Our findings suggest that ibuprofen could be used to reduce the pathogenicity of P. aeruginosa that could be used in combination with antibiotics to treat drug-resistant infections.
Zobrazit více v PubMed
Abdolhosseini M, Zamani H, Salehzadeh A (2019) Synergistic antimicrobial potential of ciprofloxacin with silver nanoparticles conjugated to thiosemicarbazide against ciprofloxacin resistant Pseudomonas aeruginosa by attenuation of MexA-B efflux pump genes. Biologia 74(9):1191–1196. https://doi.org/10.2478/s11756-019-00269-0 DOI
CLSI (2017) Performance Standards for Antimicrobial Susceptibility Testing; 27th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute
Colvin KM, Gordon VD, Murakami K, Borlee BR, Wozniak DJ, Wong GC, Parsek MR (2011) The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog 7(1):e1001264. https://doi.org/10.1371/journal.ppat.1001264 PubMed DOI PMC
Dai Lu, Tian-qi Wu, Xiong Y-S, Ni H-B, Ding Ye, Zhang W-C, Chu S-P, Shao-qing Ju, Juan Yu (2019) Ibuprofen-mediated potential inhibition of biofilm development and quorum sensing in Pseudomonas aeruginosa. Life Sci 237:116947. https://doi.org/10.1016/j.lfs.2019.116947 PubMed DOI
De Kievit TR (2009) Quorum sensing in Pseudomonas aeruginosa biofilms. Environ Microbiol 11(2):279–288. https://doi.org/10.1111/j.1462-2920.2008.01792.x PubMed DOI
Franklin MJ, Nivens DE, Weadge JT, Howell PL (2011) Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Front Microbiol 2:167. https://doi.org/10.3389/fmicb.2011.00167 PubMed DOI PMC
Govan JR, Deretic V (1996) Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60(3):539–574. https://doi.org/10.1128/mr.60.3.539-574.1996 PubMed DOI PMC
Ha DG, O’Toole GA (2015) c-di-GMP and its effects on biofilm formation and dispersion: a Pseudomonas aeruginosa review. Microbiol Spectr 3(2):3–2. https://doi.org/10.1128/microbiolspec.MB-0003-2014 DOI
Hay ID, Wang Y, Moradali MF, Rehman ZU, Rehm BH (2014) Genetics and regulation of bacterial alginate production. Environ Microbiol 16(10):2997–3011. https://doi.org/10.1111/1462-2920.12389 PubMed DOI
Hentzer M, Teitzel GM, Balzer GJ, Heydorn A, Molin S, Givskov M, Parsek MR (2001) Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183(18):5395–5401. https://doi.org/10.1128/JB.183.18.5395-5401.2001 PubMed DOI PMC
Jain S, Ohman DE (2005) Role of an alginate lyase for alginate transport in mucoid Pseudomonas aeruginosa. Infect Immun 73(10):6429–6436. https://doi.org/10.1128/IAI.73.10.6429-6436.2005 PubMed DOI PMC
Khalaf A, Kamal M, Mokhtar S, Mohamed H, Salah I, Abbas R, Ali S, Abd El-Baky RM (2015) Antibacterial, anti-biofilm activity of some non-steroidal anti-inflammatory drugs and N-acetyl cysteine against some biofilm producing uropathogens. Am J Epidemiol 3(1):1–9. https://doi.org/10.12691/ajeid-3-1-1 DOI
Lyczak JB, Cannon CL, Pier GB (2000) Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2(9):1051–1060. https://doi.org/10.1016/S1286-4579(00)01259-4 PubMed DOI
Mangoudehi HT, Zamani H, Shahangian SS, Mirzanejad L (2020) Effect of curcumin on the expression of ahyI/R quorum sensing genes and some associated phenotypes in pathogenic Aeromonas hydrophila fish isolates. World J Microbiol Biotechnol 36(5):1–9. https://doi.org/10.1007/s11274-020-02846-x DOI
May TB, Shinabarger D, Maharaj RO, Kato J, Chu L, DeVault JD, Roychoudhury SI, Zielinski NA, Berry A, Rothmel RK (1991) Alginate synthesis by Pseudomonas aeruginosa: a key pathogenic factor in chronic pulmonary infections of cystic fibrosis patients. Clin Microbiol Rev 4(2):191–206. https://doi.org/10.1128/CMR.4.2.191 PubMed DOI PMC
Naves P, Del Prado G, Huelves L, Rodriguez-Cerrato V, Ruiz V, Ponte MC, Soriano F (2010) Effects of human serum albumin, ibuprofen and N-acetyl-L-cysteine against biofilm formation by pathogenic Escherichia coli strains. J Hosp Infect 76(2):165–170. https://doi.org/10.1016/j.jhin.2010.05.011 PubMed DOI
Oliveira IM, Borges A, Borges F, Simões M (2019) Repurposing ibuprofen to control Staphylococcus aureus biofilms. Eur J Med Chem 166:197–205. https://doi.org/10.1016/j.ejmech.2019.01.046 PubMed DOI
Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007. https://doi.org/10.1093/nar/29.9.e45 DOI
Pier GB (1998) Pseudomonas aeruginosa: a key problem in cystic fibrosis. Asm News 64:339–347
Ramsey DM, Wozniak DJ (2005) Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Mol Microbiol 56(2):309–322. https://doi.org/10.1111/j.1365-2958.2005.04552.x PubMed DOI
Reśliński A, Dąbrowiecki S, Głowacka K (2015) The impact of diclofenac and ibuprofen on biofilm formation on the surface of polypropylene mesh. Hernia 19(2):179–185. https://doi.org/10.1007/s10029-013-1200-x PubMed DOI
Salehzadeh A, Zamani H, Langeroudi MK, Mirzaie A (2016) Molecular typing of nosocomial Staphylococcus aureus strains associated to biofilm based on the coagulase and protein A gene polymorphisms. Iran J Basic Med Sci 19(12):1325. https://doi.org/10.22038/ijbms.2016.7919 PubMed DOI PMC
Schurr MJ, Martin DW, Mudd MH, Hibler NS, Boucher JC, Deretic V (1993) The algD promoter: regulation of alginate production by Pseudomonas aeruginosa in cystic fibrosis. Cell Mol Biol Res 39(4):371–376 PubMed
Shah PN, Marshall-Batty KR, Smolen JA, Tagaev JA, Chen Q, Rodesney CA, Le HH, Gordon VD, Greenberg DE, Cannon CL (2018) Antimicrobial activity of ibuprofen against cystic fibrosis-associated gram-negative pathogens. Antimicrob Agents Chemother 62(3):e01574-e1617. https://doi.org/10.1128/AAC PubMed DOI PMC
Valentini M, Gonzalez D, Mavridou DA, Filloux A (2018) Lifestyle transitions and adaptive pathogenesis of Pseudomonas aeruginosa. Curr Opin Microbiol 41:15–20. https://doi.org/10.1016/j.mib.2017.11.006 PubMed DOI
van Delden C (2004) Virulence factors in Pseudomonas aeruginosa. In Virulence and Gene Regulation. Springer, Boston, MA, (pp 3–45). https://doi.org/10.1007/978-1-4419-9084-6_1