Gene Profile of Adipose Tissue of Patients with Pheochromocytoma/Paraganglioma

. 2022 Mar 02 ; 10 (3) : . [epub] 20220302

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35327387
Odkazy

PubMed 35327387
PubMed Central PMC8945850
DOI 10.3390/biomedicines10030586
PII: biomedicines10030586
Knihovny.cz E-zdroje

Background: Brown adipose tissue (BAT) is a therapeutic target to combat obesity and related disorders. Pheochromocytoma and functional paraganglioma (PPGL) are associated with activated BAT due to catecholamine excess. Our aim was to evaluate BAT activity by gene profile and assess its relation to clinical characteristics and overproduced catecholamine. Methods: mRNA expression of 15 genes in subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) was measured via RT-PCR in 25 patients with PPGL and 14 controls undergoing cholecystectomy. Results: We found in VAT of PPGL higher expression of UCP1 (p < 0.001), CEBPB, PPARGC1A (both p < 0.001), PRDM16 (p = 0.069) and DIO2 (p = 0.005). UCP1 expression correlated only with norepinephrine levels and its metabolite. UCP1 expression, among others, correlated negatively with BMI, age and positively with HDLc levels. Dominance of BAT or BeAT markers was not assessed in PPGL. In SAT of PPGL, we found higher expression of ADRB3, CIDEA (both p < 0.05), and PPARGC1A (p = 0.001), but not UCP1. Conclusion: We demonstrate signs of UCP1-dependent norepinephrine-induced thermogenesis connected with higher expression of DIO2, PPARGC1A, CEBPB and PRDM16 in retroperitoneal VAT of PPGL and its relations to circulating HDLc and triglycerides levels. However, no direct relationship with increased basal energy metabolism measured by calorimetry was found.

Zobrazit více v PubMed

Lenders J.W., Eisenhofer G., Mannelli M., Pacak K. Phaeochromocytoma. Lancet. 2005;366:665–675. doi: 10.1016/S0140-6736(05)67139-5. PubMed DOI

Erlic Z., Beuschlein F. Metabolic Alterations in Patients with Pheochromocytoma. Exp. Clin. Endocrinol. Diabetes. 2019;127:129–136. doi: 10.1055/a-0649-0960. PubMed DOI

Spyroglou A., Adolf C., Hahner S., Quinkler M., Ladurner R., Reincke M., Beuschlein F. Changes in Body Mass Index in Pheochromocytoma Patients Following Adrenalectomy. Horm. Metab. Res. 2017;49:208–213. doi: 10.1055/s-0042-124189. PubMed DOI

Okamura T., Nakajima Y., Satoh T., Hashimoto K., Sapkota S., Yamada E., Okada S., Fukuda J., Higuchi T., Tsushima Y., et al. Changes in visceral and subcutaneous fat mass in patients with pheochromocytoma. Metabolism. 2015;64:706–712. doi: 10.1016/j.metabol.2015.03.004. PubMed DOI

Petrak O., Haluzikova D., Kavalkova P., Strauch B., Rosa J., Holaj R., Brabcova Vrankova A., Michalsky D., Haluzik M., Zelinka T., et al. Changes in energy metabolism in pheochromocytoma. J. Clin. Endocrinol. Metab. 2013;98:1651–1658. doi: 10.1210/jc.2012-3625. PubMed DOI

Engelman K., Mueller P.S., Sjoerdsma A. Elevated Plasma Free Fatty Acid Concentrations in Patients with Pheochromocytoma. Changes with Therapy and Correlations with the Basal Metabolic Rate. N. Engl. J. Med. 1964;270:865–870. doi: 10.1056/NEJM196404232701702. PubMed DOI

Hany T.F., Gharehpapagh E., Kamel E.M., Buck A., Himms-Hagen J., von Schulthess G.K. Brown adipose tissue: A factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur. J. Nucl. Med. Mol. Imaging. 2002;29:1393–1398. doi: 10.1007/s00259-002-0902-6. PubMed DOI

Cohade C., Osman M., Pannu H.K., Wahl R.L. Uptake in supraclavicular area fat (“USA-Fat”): Description on 18F-FDG PET/CT. J. Nucl. Med. 2003;44:170–176. PubMed

Cohade C., Mourtzikos K.A., Wahl R.L. “USA-Fat”: Prevalence is related to ambient outdoor temperature-evaluation with 18F-FDG PET/CT. J. Nucl. Med. 2003;44:1267–1270. PubMed

Yeung H.W., Grewal R.K., Gonen M., Schoder H., Larson S.M. Patterns of (18)F-FDG uptake in adipose tissue and muscle: A potential source of false-positives for PET. J. Nucl. Med. 2003;44:1789–1796. PubMed

Heeren J., Scheja L. Brown adipose tissue and lipid metabolism. Curr. Opin. Lipidol. 2018;29:180–185. doi: 10.1097/MOL.0000000000000504. PubMed DOI

Ravussin E., Galgani J.E. The implication of brown adipose tissue for humans. Annu. Rev. Nutr. 2011;31:33–47. doi: 10.1146/annurev-nutr-072610-145209. PubMed DOI PMC

Sharara-Chami R.I., Joachim M., Mulcahey M., Ebert S., Majzoub J.A. Effect of epinephrine deficiency on cold tolerance and on brown adipose tissue. Mol. Cell Endocrinol. 2010;328:34–39. doi: 10.1016/j.mce.2010.06.019. PubMed DOI

Villarroya F., Peyrou M., Giralt M. Transcriptional regulation of the uncoupling protein-1 gene. Biochimie. 2017;134:86–92. doi: 10.1016/j.biochi.2016.09.017. PubMed DOI

Bonet M.L., Oliver P., Palou A. Pharmacological and nutritional agents promoting browning of white adipose tissue. Biochim. Biophys. Acta. 2013;1831:969–985. doi: 10.1016/j.bbalip.2012.12.002. PubMed DOI

Kaisanlahti A., Glumoff T. Browning of white fat: Agents and implications for beige adipose tissue to type 2 diabetes. J. Physiol. Biochem. 2019;75:1–10. doi: 10.1007/s13105-018-0658-5. PubMed DOI PMC

Rui L. Brown and Beige Adipose Tissues in Health and Disease. Compr. Physiol. 2017;7:1281–1306. doi: 10.1002/cphy.c170001. PubMed DOI PMC

Abdul Sater Z., Jha A., Hamimi A., Mandl A., Hartley I.R., Gubbi S., Patel M., Gonzales M., Taieb D., Civelek A.C., et al. Pheochromocytoma and Paraganglioma Patients With Poor Survival Often Show Brown Adipose Tissue Activation. J. Clin. Endocrinol. Metab. 2020;105:1176–1185. doi: 10.1210/clinem/dgz314. PubMed DOI PMC

Kir S., Spiegelman B.M. Cachexia & Brown Fat: A Burning Issue in Cancer. Trends Cancer. 2016;2:461–463. doi: 10.1016/j.trecan.2016.07.005. PubMed DOI PMC

Iacobellis G., Di Gioia C., Petramala L., Chiappetta C., Serra V., Zinnamosca L., Marinelli C., Ciardi A., De Toma G., Letizia C. Brown fat expresses adiponectin in humans. Int. J. Endocrinol. 2013;2013:126751. doi: 10.1155/2013/126751. PubMed DOI PMC

Petrovic N., Walden T.B., Shabalina I.G., Timmons J.A., Cannon B., Nedergaard J. Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J. Biol. Chem. 2010;285:7153–7164. doi: 10.1074/jbc.M109.053942. PubMed DOI PMC

Jespersen N.Z., Larsen T.J., Peijs L., Daugaard S., Homoe P., Loft A., de Jong J., Mathur N., Cannon B., Nedergaard J., et al. A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metab. 2013;17:798–805. doi: 10.1016/j.cmet.2013.04.011. PubMed DOI

Wu J., Bostrom P., Sparks L.M., Ye L., Choi J.H., Giang A.H., Khandekar M., Virtanen K.A., Nuutila P., Schaart G., et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150:366–376. doi: 10.1016/j.cell.2012.05.016. PubMed DOI PMC

Harms M., Seale P. Brown and beige fat: Development, function and therapeutic potential. Nat. Med. 2013;19:1252–1263. doi: 10.1038/nm.3361. PubMed DOI

Sharp L.Z., Shinoda K., Ohno H., Scheel D.W., Tomoda E., Ruiz L., Hu H., Wang L., Pavlova Z., Gilsanz V., et al. Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS ONE. 2012;7:e49452. doi: 10.1371/journal.pone.0049452. PubMed DOI PMC

Fischer A.W., Shabalina I.G., Mattsson C.L., Abreu-Vieira G., Cannon B., Nedergaard J., Petrovic N. UCP1 inhibition in Cidea-overexpressing mice is physiologically counteracted by brown adipose tissue hyperrecruitment. Am. J. Physiol. Endocrinol. Metab. 2017;312:E72–E87. doi: 10.1152/ajpendo.00284.2016. PubMed DOI

Bartelt A., Bruns O.T., Reimer R., Hohenberg H., Ittrich H., Peldschus K., Kaul M.G., Tromsdorf U.I., Weller H., Waurisch C., et al. Brown adipose tissue activity controls triglyceride clearance. Nat. Med. 2011;17:200–205. doi: 10.1038/nm.2297. PubMed DOI

Spergel G., Bleicher S.J., Ertel N.H. Carbohydrate and fat metabolism in patients with pheochromocytoma. N. Engl. J. Med. 1968;278:803–809. doi: 10.1056/NEJM196804112781501. PubMed DOI

Calandra R.S., Antar M.A., Plautz M., Little J.A., Martin J.M., Johnson G.E. Hormonal and metabolic studies in pheochromocytoma. Can. Med. Assoc. J. 1970;102:1369–1372. PubMed PMC

Turnbull D.M., Johnston D.G., Alberti K.G., Hall R. Hormonal and metabolic studies in a patient with a pheochromocytoma. J. Clin. Endocrinol. Metab. 1980;51:930–933. doi: 10.1210/jcem-51-4-930. PubMed DOI

Krentz A.J., Hale P.J., Horrocks P.M., Heslop K.E., Johnston D.G., Wright A.D., Nattrass M. Metabolic effects of pharmacological adrenergic blockade in phaeochromocytoma. Clin. Endocrinol. 1991;34:139–145. doi: 10.1111/j.1365-2265.1991.tb00284.x. PubMed DOI

Komada H., Hirota Y., So A., Nakamura T., Okuno Y., Fukuoka H., Iguchi G., Takahashi Y., Sakaguchi K., Ogawa W. Insulin Secretion and Insulin Sensitivity before and after Surgical Treatment of Pheochromocytoma or Paraganglioma. J. Clin. Endocrinol. Metab. 2017;102:3400–3405. doi: 10.1210/jc.2017-00357. PubMed DOI

Chechi K., Blanchard P.G., Mathieu P., Deshaies Y., Richard D. Brown fat like gene expression in the epicardial fat depot correlates with circulating HDL-cholesterol and triglycerides in patients with coronary artery disease. Int. J. Cardiol. 2013;167:2264–2270. doi: 10.1016/j.ijcard.2012.06.008. PubMed DOI

Cypess A.M., Kahn C.R. Brown fat as a therapy for obesity and diabetes. Curr. Opin. Endocrinol. Diabetes Obes. 2010;17:143–149. doi: 10.1097/MED.0b013e328337a81f. PubMed DOI PMC

Wang Q., Zhang M., Ning G., Gu W., Su T., Xu M., Li B., Wang W. Brown adipose tissue in humans is activated by elevated plasma catecholamines levels and is inversely related to central obesity. PLoS ONE. 2011;6:e21006. doi: 10.1371/journal.pone.0021006. PubMed DOI PMC

Wang Q., Zhang M., Xu M., Gu W., Xi Y., Qi L., Li B., Wang W. Brown adipose tissue activation is inversely related to central obesity and metabolic parameters in adult human. PLoS ONE. 2015;10:e0123795. doi: 10.1371/journal.pone.0123795. PubMed DOI PMC

Zoico E., Rubele S., De Caro A., Nori N., Mazzali G., Fantin F., Rossi A., Zamboni M. Brown and Beige Adipose Tissue and Aging. Front. Endocrinol. 2019;10:368. doi: 10.3389/fendo.2019.00368. PubMed DOI PMC

Persichetti A., Sciuto R., Rea S., Basciani S., Lubrano C., Mariani S., Ulisse S., Nofroni I., Maini C.L., Gnessi L. Prevalence, mass, and glucose-uptake activity of (1)(8)F-FDG-detected brown adipose tissue in humans living in a temperate zone of Italy. PLoS ONE. 2013;8:e63391. doi: 10.1371/journal.pone.0063391. PubMed DOI PMC

Rodriguez-Cuenca S., Pujol E., Justo R., Frontera M., Oliver J., Gianotti M., Roca P. Sex-dependent thermogenesis, differences in mitochondrial morphology and function, and adrenergic response in brown adipose tissue. J. Biol. Chem. 2002;277:42958–42963. doi: 10.1074/jbc.M207229200. PubMed DOI

Stenstrom G., Sjostrom L., Smith U. Diabetes mellitus in phaeochromocytoma. Fasting blood glucose levels before and after surgery in 60 patients with phaeochromocytoma. Acta Endocrinol. 1984;106:511–515. doi: 10.1530/acta.0.1060511. PubMed DOI

Ilias I., Pacak K. Diagnosis, localization and treatment of pheochromocytoma in MEN 2 syndrome. Endocr. Regul. 2009;43:89–93. PubMed

Petrak O., Klimova J., Mraz M., Haluzikova D., Dolezalova R.P., Kratochvilova H., Lacinova Z., Novak K., Michalsky D., Waldauf P., et al. Pheochromocytoma With Adrenergic Biochemical Phenotype Shows Decreased GLP-1 Secretion and Impaired Glucose Tolerance. J. Clin. Endocrinol. Metab. 2020;105:dgaa154. doi: 10.1210/clinem/dgaa154. PubMed DOI

Mesmar B., Poola-Kella S., Malek R. The Physiology Behind Diabetes Mellitus in Patients with Pheochromocytoma: A Review of the Literature. Endocr. Pract. 2017;23:999–1005. doi: 10.4158/EP171914.RA. PubMed DOI

Iwen K.A., Backhaus J., Cassens M., Waltl M., Hedesan O.C., Merkel M., Heeren J., Sina C., Rademacher L., Windjager A., et al. Cold-Induced Brown Adipose Tissue Activity Alters Plasma Fatty Acids and Improves Glucose Metabolism in Men. J. Clin. Endocrinol. Metab. 2017;102:4226–4234. doi: 10.1210/jc.2017-01250. PubMed DOI

Haman F., Peronnet F., Kenny G.P., Massicotte D., Lavoie C., Scott C., Weber J.M. Effect of cold exposure on fuel utilization in humans: Plasma glucose, muscle glycogen, and lipids. J. Appl. Physiol. (1985) 2002;93:77–84. doi: 10.1152/japplphysiol.00773.2001. PubMed DOI

Di Franco A., Guasti D., Mazzanti B., Ercolino T., Francalanci M., Nesi G., Bani D., Forti G., Mannelli M., Valeri A., et al. Dissecting the origin of inducible brown fat in adult humans through a novel adipose stem cell model from adipose tissue surrounding pheochromocytoma. J. Clin. Endocrinol. Metab. 2014;99:E1903–E1912. doi: 10.1210/jc.2014-1431. PubMed DOI

Nagano G., Ohno H., Oki K., Kobuke K., Shiwa T., Yoneda M., Kohno N. Activation of classical brown adipocytes in the adult human perirenal depot is highly correlated with PRDM16-EHMT1 complex expression. PLoS ONE. 2015;10:e0122584. doi: 10.1371/journal.pone.0122584. PubMed DOI PMC

Betz M.J., Slawik M., Lidell M.E., Osswald A., Heglind M., Nilsson D., Lichtenauer U.D., Mauracher B., Mussack T., Beuschlein F., et al. Presence of brown adipocytes in retroperitoneal fat from patients with benign adrenal tumors: Relationship with outdoor temperature. J. Clin. Endocrinol. Metab. 2013;98:4097–4104. doi: 10.1210/jc.2012-3535. PubMed DOI

Giralt M., Villarroya F. White, brown, beige/brite: Different adipose cells for different functions? Endocrinology. 2013;154:2992–3000. doi: 10.1210/en.2013-1403. PubMed DOI

Sondergaard E., Gormsen L.C., Christensen M.H., Pedersen S.B., Christiansen P., Nielsen S., Poulsen P.L., Jessen N. Chronic adrenergic stimulation induces brown adipose tissue differentiation in visceral adipose tissue. Diabet. Med. 2015;32:e4–e8. doi: 10.1111/dme.12595. PubMed DOI

Ikeda K., Maretich P., Kajimura S. The Common and Distinct Features of Brown and Beige Adipocytes. Trends Endocrinol. Metab. 2018;29:191–200. doi: 10.1016/j.tem.2018.01.001. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Hypermetabolism and Substrate Utilization Rates in Pheochromocytoma and Functional Paraganglioma

. 2022 Aug 16 ; 10 (8) : . [epub] 20220816

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...