Gene Profile of Adipose Tissue of Patients with Pheochromocytoma/Paraganglioma
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35327387
PubMed Central
PMC8945850
DOI
10.3390/biomedicines10030586
PII: biomedicines10030586
Knihovny.cz E-zdroje
- Klíčová slova
- beige adipose tissue, brown adipose tissue, energy metabolism, functional paraganglioma, gene expression, lipids, metabolism, pheochromocytoma,
- Publikační typ
- časopisecké články MeSH
Background: Brown adipose tissue (BAT) is a therapeutic target to combat obesity and related disorders. Pheochromocytoma and functional paraganglioma (PPGL) are associated with activated BAT due to catecholamine excess. Our aim was to evaluate BAT activity by gene profile and assess its relation to clinical characteristics and overproduced catecholamine. Methods: mRNA expression of 15 genes in subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) was measured via RT-PCR in 25 patients with PPGL and 14 controls undergoing cholecystectomy. Results: We found in VAT of PPGL higher expression of UCP1 (p < 0.001), CEBPB, PPARGC1A (both p < 0.001), PRDM16 (p = 0.069) and DIO2 (p = 0.005). UCP1 expression correlated only with norepinephrine levels and its metabolite. UCP1 expression, among others, correlated negatively with BMI, age and positively with HDLc levels. Dominance of BAT or BeAT markers was not assessed in PPGL. In SAT of PPGL, we found higher expression of ADRB3, CIDEA (both p < 0.05), and PPARGC1A (p = 0.001), but not UCP1. Conclusion: We demonstrate signs of UCP1-dependent norepinephrine-induced thermogenesis connected with higher expression of DIO2, PPARGC1A, CEBPB and PRDM16 in retroperitoneal VAT of PPGL and its relations to circulating HDLc and triglycerides levels. However, no direct relationship with increased basal energy metabolism measured by calorimetry was found.
Zobrazit více v PubMed
Lenders J.W., Eisenhofer G., Mannelli M., Pacak K. Phaeochromocytoma. Lancet. 2005;366:665–675. doi: 10.1016/S0140-6736(05)67139-5. PubMed DOI
Erlic Z., Beuschlein F. Metabolic Alterations in Patients with Pheochromocytoma. Exp. Clin. Endocrinol. Diabetes. 2019;127:129–136. doi: 10.1055/a-0649-0960. PubMed DOI
Spyroglou A., Adolf C., Hahner S., Quinkler M., Ladurner R., Reincke M., Beuschlein F. Changes in Body Mass Index in Pheochromocytoma Patients Following Adrenalectomy. Horm. Metab. Res. 2017;49:208–213. doi: 10.1055/s-0042-124189. PubMed DOI
Okamura T., Nakajima Y., Satoh T., Hashimoto K., Sapkota S., Yamada E., Okada S., Fukuda J., Higuchi T., Tsushima Y., et al. Changes in visceral and subcutaneous fat mass in patients with pheochromocytoma. Metabolism. 2015;64:706–712. doi: 10.1016/j.metabol.2015.03.004. PubMed DOI
Petrak O., Haluzikova D., Kavalkova P., Strauch B., Rosa J., Holaj R., Brabcova Vrankova A., Michalsky D., Haluzik M., Zelinka T., et al. Changes in energy metabolism in pheochromocytoma. J. Clin. Endocrinol. Metab. 2013;98:1651–1658. doi: 10.1210/jc.2012-3625. PubMed DOI
Engelman K., Mueller P.S., Sjoerdsma A. Elevated Plasma Free Fatty Acid Concentrations in Patients with Pheochromocytoma. Changes with Therapy and Correlations with the Basal Metabolic Rate. N. Engl. J. Med. 1964;270:865–870. doi: 10.1056/NEJM196404232701702. PubMed DOI
Hany T.F., Gharehpapagh E., Kamel E.M., Buck A., Himms-Hagen J., von Schulthess G.K. Brown adipose tissue: A factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur. J. Nucl. Med. Mol. Imaging. 2002;29:1393–1398. doi: 10.1007/s00259-002-0902-6. PubMed DOI
Cohade C., Osman M., Pannu H.K., Wahl R.L. Uptake in supraclavicular area fat (“USA-Fat”): Description on 18F-FDG PET/CT. J. Nucl. Med. 2003;44:170–176. PubMed
Cohade C., Mourtzikos K.A., Wahl R.L. “USA-Fat”: Prevalence is related to ambient outdoor temperature-evaluation with 18F-FDG PET/CT. J. Nucl. Med. 2003;44:1267–1270. PubMed
Yeung H.W., Grewal R.K., Gonen M., Schoder H., Larson S.M. Patterns of (18)F-FDG uptake in adipose tissue and muscle: A potential source of false-positives for PET. J. Nucl. Med. 2003;44:1789–1796. PubMed
Heeren J., Scheja L. Brown adipose tissue and lipid metabolism. Curr. Opin. Lipidol. 2018;29:180–185. doi: 10.1097/MOL.0000000000000504. PubMed DOI
Ravussin E., Galgani J.E. The implication of brown adipose tissue for humans. Annu. Rev. Nutr. 2011;31:33–47. doi: 10.1146/annurev-nutr-072610-145209. PubMed DOI PMC
Sharara-Chami R.I., Joachim M., Mulcahey M., Ebert S., Majzoub J.A. Effect of epinephrine deficiency on cold tolerance and on brown adipose tissue. Mol. Cell Endocrinol. 2010;328:34–39. doi: 10.1016/j.mce.2010.06.019. PubMed DOI
Villarroya F., Peyrou M., Giralt M. Transcriptional regulation of the uncoupling protein-1 gene. Biochimie. 2017;134:86–92. doi: 10.1016/j.biochi.2016.09.017. PubMed DOI
Bonet M.L., Oliver P., Palou A. Pharmacological and nutritional agents promoting browning of white adipose tissue. Biochim. Biophys. Acta. 2013;1831:969–985. doi: 10.1016/j.bbalip.2012.12.002. PubMed DOI
Kaisanlahti A., Glumoff T. Browning of white fat: Agents and implications for beige adipose tissue to type 2 diabetes. J. Physiol. Biochem. 2019;75:1–10. doi: 10.1007/s13105-018-0658-5. PubMed DOI PMC
Rui L. Brown and Beige Adipose Tissues in Health and Disease. Compr. Physiol. 2017;7:1281–1306. doi: 10.1002/cphy.c170001. PubMed DOI PMC
Abdul Sater Z., Jha A., Hamimi A., Mandl A., Hartley I.R., Gubbi S., Patel M., Gonzales M., Taieb D., Civelek A.C., et al. Pheochromocytoma and Paraganglioma Patients With Poor Survival Often Show Brown Adipose Tissue Activation. J. Clin. Endocrinol. Metab. 2020;105:1176–1185. doi: 10.1210/clinem/dgz314. PubMed DOI PMC
Kir S., Spiegelman B.M. Cachexia & Brown Fat: A Burning Issue in Cancer. Trends Cancer. 2016;2:461–463. doi: 10.1016/j.trecan.2016.07.005. PubMed DOI PMC
Iacobellis G., Di Gioia C., Petramala L., Chiappetta C., Serra V., Zinnamosca L., Marinelli C., Ciardi A., De Toma G., Letizia C. Brown fat expresses adiponectin in humans. Int. J. Endocrinol. 2013;2013:126751. doi: 10.1155/2013/126751. PubMed DOI PMC
Petrovic N., Walden T.B., Shabalina I.G., Timmons J.A., Cannon B., Nedergaard J. Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J. Biol. Chem. 2010;285:7153–7164. doi: 10.1074/jbc.M109.053942. PubMed DOI PMC
Jespersen N.Z., Larsen T.J., Peijs L., Daugaard S., Homoe P., Loft A., de Jong J., Mathur N., Cannon B., Nedergaard J., et al. A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metab. 2013;17:798–805. doi: 10.1016/j.cmet.2013.04.011. PubMed DOI
Wu J., Bostrom P., Sparks L.M., Ye L., Choi J.H., Giang A.H., Khandekar M., Virtanen K.A., Nuutila P., Schaart G., et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150:366–376. doi: 10.1016/j.cell.2012.05.016. PubMed DOI PMC
Harms M., Seale P. Brown and beige fat: Development, function and therapeutic potential. Nat. Med. 2013;19:1252–1263. doi: 10.1038/nm.3361. PubMed DOI
Sharp L.Z., Shinoda K., Ohno H., Scheel D.W., Tomoda E., Ruiz L., Hu H., Wang L., Pavlova Z., Gilsanz V., et al. Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS ONE. 2012;7:e49452. doi: 10.1371/journal.pone.0049452. PubMed DOI PMC
Fischer A.W., Shabalina I.G., Mattsson C.L., Abreu-Vieira G., Cannon B., Nedergaard J., Petrovic N. UCP1 inhibition in Cidea-overexpressing mice is physiologically counteracted by brown adipose tissue hyperrecruitment. Am. J. Physiol. Endocrinol. Metab. 2017;312:E72–E87. doi: 10.1152/ajpendo.00284.2016. PubMed DOI
Bartelt A., Bruns O.T., Reimer R., Hohenberg H., Ittrich H., Peldschus K., Kaul M.G., Tromsdorf U.I., Weller H., Waurisch C., et al. Brown adipose tissue activity controls triglyceride clearance. Nat. Med. 2011;17:200–205. doi: 10.1038/nm.2297. PubMed DOI
Spergel G., Bleicher S.J., Ertel N.H. Carbohydrate and fat metabolism in patients with pheochromocytoma. N. Engl. J. Med. 1968;278:803–809. doi: 10.1056/NEJM196804112781501. PubMed DOI
Calandra R.S., Antar M.A., Plautz M., Little J.A., Martin J.M., Johnson G.E. Hormonal and metabolic studies in pheochromocytoma. Can. Med. Assoc. J. 1970;102:1369–1372. PubMed PMC
Turnbull D.M., Johnston D.G., Alberti K.G., Hall R. Hormonal and metabolic studies in a patient with a pheochromocytoma. J. Clin. Endocrinol. Metab. 1980;51:930–933. doi: 10.1210/jcem-51-4-930. PubMed DOI
Krentz A.J., Hale P.J., Horrocks P.M., Heslop K.E., Johnston D.G., Wright A.D., Nattrass M. Metabolic effects of pharmacological adrenergic blockade in phaeochromocytoma. Clin. Endocrinol. 1991;34:139–145. doi: 10.1111/j.1365-2265.1991.tb00284.x. PubMed DOI
Komada H., Hirota Y., So A., Nakamura T., Okuno Y., Fukuoka H., Iguchi G., Takahashi Y., Sakaguchi K., Ogawa W. Insulin Secretion and Insulin Sensitivity before and after Surgical Treatment of Pheochromocytoma or Paraganglioma. J. Clin. Endocrinol. Metab. 2017;102:3400–3405. doi: 10.1210/jc.2017-00357. PubMed DOI
Chechi K., Blanchard P.G., Mathieu P., Deshaies Y., Richard D. Brown fat like gene expression in the epicardial fat depot correlates with circulating HDL-cholesterol and triglycerides in patients with coronary artery disease. Int. J. Cardiol. 2013;167:2264–2270. doi: 10.1016/j.ijcard.2012.06.008. PubMed DOI
Cypess A.M., Kahn C.R. Brown fat as a therapy for obesity and diabetes. Curr. Opin. Endocrinol. Diabetes Obes. 2010;17:143–149. doi: 10.1097/MED.0b013e328337a81f. PubMed DOI PMC
Wang Q., Zhang M., Ning G., Gu W., Su T., Xu M., Li B., Wang W. Brown adipose tissue in humans is activated by elevated plasma catecholamines levels and is inversely related to central obesity. PLoS ONE. 2011;6:e21006. doi: 10.1371/journal.pone.0021006. PubMed DOI PMC
Wang Q., Zhang M., Xu M., Gu W., Xi Y., Qi L., Li B., Wang W. Brown adipose tissue activation is inversely related to central obesity and metabolic parameters in adult human. PLoS ONE. 2015;10:e0123795. doi: 10.1371/journal.pone.0123795. PubMed DOI PMC
Zoico E., Rubele S., De Caro A., Nori N., Mazzali G., Fantin F., Rossi A., Zamboni M. Brown and Beige Adipose Tissue and Aging. Front. Endocrinol. 2019;10:368. doi: 10.3389/fendo.2019.00368. PubMed DOI PMC
Persichetti A., Sciuto R., Rea S., Basciani S., Lubrano C., Mariani S., Ulisse S., Nofroni I., Maini C.L., Gnessi L. Prevalence, mass, and glucose-uptake activity of (1)(8)F-FDG-detected brown adipose tissue in humans living in a temperate zone of Italy. PLoS ONE. 2013;8:e63391. doi: 10.1371/journal.pone.0063391. PubMed DOI PMC
Rodriguez-Cuenca S., Pujol E., Justo R., Frontera M., Oliver J., Gianotti M., Roca P. Sex-dependent thermogenesis, differences in mitochondrial morphology and function, and adrenergic response in brown adipose tissue. J. Biol. Chem. 2002;277:42958–42963. doi: 10.1074/jbc.M207229200. PubMed DOI
Stenstrom G., Sjostrom L., Smith U. Diabetes mellitus in phaeochromocytoma. Fasting blood glucose levels before and after surgery in 60 patients with phaeochromocytoma. Acta Endocrinol. 1984;106:511–515. doi: 10.1530/acta.0.1060511. PubMed DOI
Ilias I., Pacak K. Diagnosis, localization and treatment of pheochromocytoma in MEN 2 syndrome. Endocr. Regul. 2009;43:89–93. PubMed
Petrak O., Klimova J., Mraz M., Haluzikova D., Dolezalova R.P., Kratochvilova H., Lacinova Z., Novak K., Michalsky D., Waldauf P., et al. Pheochromocytoma With Adrenergic Biochemical Phenotype Shows Decreased GLP-1 Secretion and Impaired Glucose Tolerance. J. Clin. Endocrinol. Metab. 2020;105:dgaa154. doi: 10.1210/clinem/dgaa154. PubMed DOI
Mesmar B., Poola-Kella S., Malek R. The Physiology Behind Diabetes Mellitus in Patients with Pheochromocytoma: A Review of the Literature. Endocr. Pract. 2017;23:999–1005. doi: 10.4158/EP171914.RA. PubMed DOI
Iwen K.A., Backhaus J., Cassens M., Waltl M., Hedesan O.C., Merkel M., Heeren J., Sina C., Rademacher L., Windjager A., et al. Cold-Induced Brown Adipose Tissue Activity Alters Plasma Fatty Acids and Improves Glucose Metabolism in Men. J. Clin. Endocrinol. Metab. 2017;102:4226–4234. doi: 10.1210/jc.2017-01250. PubMed DOI
Haman F., Peronnet F., Kenny G.P., Massicotte D., Lavoie C., Scott C., Weber J.M. Effect of cold exposure on fuel utilization in humans: Plasma glucose, muscle glycogen, and lipids. J. Appl. Physiol. (1985) 2002;93:77–84. doi: 10.1152/japplphysiol.00773.2001. PubMed DOI
Di Franco A., Guasti D., Mazzanti B., Ercolino T., Francalanci M., Nesi G., Bani D., Forti G., Mannelli M., Valeri A., et al. Dissecting the origin of inducible brown fat in adult humans through a novel adipose stem cell model from adipose tissue surrounding pheochromocytoma. J. Clin. Endocrinol. Metab. 2014;99:E1903–E1912. doi: 10.1210/jc.2014-1431. PubMed DOI
Nagano G., Ohno H., Oki K., Kobuke K., Shiwa T., Yoneda M., Kohno N. Activation of classical brown adipocytes in the adult human perirenal depot is highly correlated with PRDM16-EHMT1 complex expression. PLoS ONE. 2015;10:e0122584. doi: 10.1371/journal.pone.0122584. PubMed DOI PMC
Betz M.J., Slawik M., Lidell M.E., Osswald A., Heglind M., Nilsson D., Lichtenauer U.D., Mauracher B., Mussack T., Beuschlein F., et al. Presence of brown adipocytes in retroperitoneal fat from patients with benign adrenal tumors: Relationship with outdoor temperature. J. Clin. Endocrinol. Metab. 2013;98:4097–4104. doi: 10.1210/jc.2012-3535. PubMed DOI
Giralt M., Villarroya F. White, brown, beige/brite: Different adipose cells for different functions? Endocrinology. 2013;154:2992–3000. doi: 10.1210/en.2013-1403. PubMed DOI
Sondergaard E., Gormsen L.C., Christensen M.H., Pedersen S.B., Christiansen P., Nielsen S., Poulsen P.L., Jessen N. Chronic adrenergic stimulation induces brown adipose tissue differentiation in visceral adipose tissue. Diabet. Med. 2015;32:e4–e8. doi: 10.1111/dme.12595. PubMed DOI
Ikeda K., Maretich P., Kajimura S. The Common and Distinct Features of Brown and Beige Adipocytes. Trends Endocrinol. Metab. 2018;29:191–200. doi: 10.1016/j.tem.2018.01.001. PubMed DOI PMC