Hypermetabolism and Substrate Utilization Rates in Pheochromocytoma and Functional Paraganglioma
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NV19-01-00083
The Ministry of Health of the Czech Republic
VFN, 00064165
The Ministry of Health of the Czech Republic
the Cooperatio Program, research area "Metabolic Diseases"
Charles University
PubMed
36009527
PubMed Central
PMC9406117
DOI
10.3390/biomedicines10081980
PII: biomedicines10081980
Knihovny.cz E-zdroje
- Klíčová slova
- catecholamines, functional paraganglioma, indirect calorimetry, metanephrines, pheochromocytoma, respiratory quotient, resting energy expenditure, substrate metabolism,
- Publikační typ
- časopisecké články MeSH
The overproduction of catecholamines in pheochromocytoma/paraganglioma (PPGL) induces a hypermetabolic state. The aim of this study was to evaluate the incidence of a hypermetabolic state and differences in substrate metabolism in consecutive PPGL patients divided by catecholamine phenotype. Resting energy expenditure (REE) and respiratory quotient (RQ) were measured in 108 consecutive PPGL patients and 70 controls by indirect calorimetry. Hypermetabolic state was defined according to the Mifflin St. Jeor Equation as a ratio above 110%. Hypermetabolic state was confirmed in 70% of PPGL patients, regardless of phenotype. Older age, prevalence of diabetes mellitus and arterial hypertension were correlated with hypermetabolic PPGL as compared to normometabolic form. Analysis according to overproduced catecholamine showed differences in VCO2 (p < 0.05) and RQ (p < 0.01) and thus different substate metabolism between phenotypes in hypermetabolic form of PPGL. Lipid utilization was higher in the adrenergic phenotype (p = 0.001) and positively associated with the percentage of REE ratio (R = 0.48, p < 0.001), whereas the noradrenergic phenotype preferentially oxidizes carbohydrates (P = 0.001) and is correlated with the percentage of REE ratio (R = 0.60, p < 0.001). Hypermetabolic state in PPGL is a common finding in both catecholamine phenotypes. Hypermetabolic PPGL patients are older and suffer more from diabetes mellitus and arterial hypertension. Under basal conditions, the noradrenergic type preferentially metabolizes carbohydrates, whereas the adrenergic phenotype preferentially metabolizes lipids.
Zobrazit více v PubMed
Lenders J.W., Eisenhofer G., Mannelli M., Pacak K. Phaeochromocytoma. Lancet. 2005;366:665–675. doi: 10.1016/S0140-6736(05)67139-5. PubMed DOI
Pacak K., Tella S. Pheochromocytoma and paraganglioma. In: Feingold K.R., Anawalt B., Boyce A., Chrousos G., Dungan K., Grossman A., Hershman J.M., Kaltsas G., Koch C., Kopp P., et al., editors. Endotext. South MDText.com, Inc.; Dartmouth, MA, USA: 2018. [(accessed on 1 June 2022)]. Available online: https://www.ncbi.nlm.nih.gov/books/NBK481899/
Petrak O., Haluzikova D., Kavalkova P., Strauch B., Rosa J., Holaj R., Brabcova Vrankova A., Michalsky D., Haluzik M., Zelinka T., et al. Changes in energy metabolism in pheochromocytoma. J. Clin. Endocrinol. Metab. 2013;98:1651–1658. doi: 10.1210/jc.2012-3625. PubMed DOI
Erlic Z., Beuschlein F. Metabolic Alterations in Patients with Pheochromocytoma. Exp. Clin. Endocrinol. Diabetes. 2019;127:129–136. doi: 10.1055/a-0649-0960. PubMed DOI
Barth E., Albuszies G., Baumgart K., Matejovic M., Wachter U., Vogt J., Radermacher P., Calzia E. Glucose metabolism and catecholamines. Crit. Care Med. 2007;35:S508–S518. doi: 10.1097/01.CCM.0000278047.06965.20. PubMed DOI
Gjedsted J., Buhl M., Nielsen S., Schmitz O., Vestergaard E.T., Tonnesen E., Moller N. Effects of adrenaline on lactate, glucose, lipid and protein metabolism in the placebo controlled bilaterally perfused human leg. Acta Physiol. 2011;202:641–648. doi: 10.1111/j.1748-1716.2011.02316.x. PubMed DOI
De Glisezinski I., Larrouy D., Bajzova M., Koppo K., Polak J., Berlan M., Bulow J., Langin D., Marques M.A., Crampes F., et al. Adrenaline but not noradrenaline is a determinant of exercise-induced lipid mobilization in human subcutaneous adipose tissue. J. Physiol. 2009;587:3393–3404. doi: 10.1113/jphysiol.2009.168906. PubMed DOI PMC
Petrák O., Rosa J., Holaj R., Štrauch B., Krátká Z., Kvasnička J., Klímová J., Waldauf P., Hamplová B., Markvartová A., et al. Blood Pressure Profile, Catecholamine Phenotype, and Target Organ Damage in Pheochromocytoma/Paraganglioma. J. Clin. Endocrinol. Metab. 2019;104:5170–5180. doi: 10.1210/jc.2018-02644. PubMed DOI
Eisenhofer G., Lenders J.W., Goldstein D.S., Mannelli M., Csako G., Walther M.M., Brouwers F.M., Pacak K. Pheochromocytoma catecholamine phenotypes and prediction of tumor size and location by use of plasma free metanephrines. Clin. Chem. 2005;51:735–744. doi: 10.1373/clinchem.2004.045484. PubMed DOI
Eisenhofer G., Timmers H.J., Lenders J.W., Bornstein S.R., Tiebel O., Mannelli M., King K.S., Vocke C.D., Linehan W.M., Bratslavsky G., et al. Age at diagnosis of pheochromocytoma differs according to catecholamine phenotype and tumor location. J. Clin. Endocrinol. Metab. 2011;96:375–384. doi: 10.1210/jc.2010-1588. PubMed DOI PMC
Bechmann N., Eisenhofer G. Hypoxia-inducible Factor 2α: A Key Player in Tumorigenesis and Metastasis of Pheochromocytoma and Paraganglioma? Exp. Clin. Endocrinol. Diabetes. 2022;130:282–289. doi: 10.1055/a-1526-5263. PubMed DOI
Hartmann C., Radermacher P., Wepler M., Nussbaum B. Non-Hemodynamic Effects of Catecholamines. Shock. 2017;48:390–400. doi: 10.1097/SHK.0000000000000879. PubMed DOI
Batisse-Lignier M., Pereira B., Motreff P., Pierrard R., Burnot C., Vorilhon C., Maqdasy S., Roche B., Desbiez F., Clerfond G., et al. Acute and Chronic Pheochromocytoma-Induced Cardiomyopathies: Different Prognoses?: A Systematic Analytical Review. Medicine. 2015;94:e2198. doi: 10.1097/MD.0000000000002198. PubMed DOI PMC
Klímová J., Mráz M., Kratochvílová H., Lacinová Z., Novák K., Michalský D., Kvasnička J., Holaj R., Haluzíková D., Doležalová R.P., et al. Gene Profile of Adipose Tissue of Patients with Pheochromocytoma/Paraganglioma. Biomedicines. 2022;10:586. doi: 10.3390/biomedicines10030586. PubMed DOI PMC
Petrak O., Klimova J., Mraz M., Haluzikova D., Dolezalova R.P., Kratochvilova H., Lacinova Z., Novak K., Michalsky D., Waldauf P., et al. Pheochromocytoma With Adrenergic Biochemical Phenotype Shows Decreased GLP-1 Secretion and Impaired Glucose Tolerance. J. Clin. Endocrinol. Metab. 2020;105:1878–1887. doi: 10.1210/clinem/dgaa154. PubMed DOI
Mifflin M.D., St Jeor S.T., Hill L.A., Scott B.J., Daugherty S.A., Koh Y.O. A new predictive equation for resting energy expenditure in healthy individuals. Am. J. Clin. Nutr. 1990;51:241–247. doi: 10.1093/ajcn/51.2.241. PubMed DOI
Westenskow D.R., Schipke C.A., Raymond J.L., Saffle J.R., Becker J.M., Young E.W., Cutler C.A. Calculation of metabolic expenditure and substrate utilization from gas exchange measurements. JPEN J. Parenter. Enter. Nutr. 1988;12:20–24. doi: 10.1177/014860718801200120. PubMed DOI
Elia M., Ritz P., Stubbs R.J. Total energy expenditure in the elderly. Eur. J. Clin. Nutr. 2000;54:S92–S103. doi: 10.1038/sj.ejcn.1601030. PubMed DOI
Matthews D.E., Pesola G., Campbell R.G. Effect of epinephrine on amino acid and energy metabolism in humans. Am. J. Physiol. 1990;258:E948–E956. doi: 10.1152/ajpendo.1990.258.6.E948. PubMed DOI
Bessey P.Q., Watters J.M., Aoki T.T., Wilmore D.W. Combined hormonal infusion simulates the metabolic response to injury. Ann. Surg. 1984;200:264–281. doi: 10.1097/00000658-198409000-00004. PubMed DOI PMC
Ratheiser K.M., Brillon D.J., Campbell R.G., Matthews D.E. Epinephrine produces a prolonged elevation in metabolic rate in humans. Am. J. Clin. Nutr. 1998;68:1046–1052. doi: 10.1093/ajcn/68.5.1046. PubMed DOI
Wolfe R.R., Shaw J.H. Effect of epinephrine infusion and adrenergic blockade on glucose oxidation in conscious dogs. Metab. Clin. Exp. 1986;35:673–678. doi: 10.1016/0026-0495(86)90177-0. PubMed DOI
Ensinger H., Weichel T., Lindner K.H., Grunert A., Ahnefeld F.W. Effects of norepinephrine, epinephrine, and dopamine infusions on oxygen consumption in volunteers. Crit. Care Med. 1993;21:1502–1508. doi: 10.1097/00003246-199310000-00018. PubMed DOI
Watt M.J., Howlett K.F., Febbraio M.A., Spriet L.L., Hargreaves M. Adrenaline increases skeletal muscle glycogenolysis, pyruvate dehydrogenase activation and carbohydrate oxidation during moderate exercise in humans. J. Physiol. 2001;534:269–278. doi: 10.1111/j.1469-7793.2001.t01-1-00269.x. PubMed DOI PMC
Hoeks J., van Baak M.A., Hesselink M.K., Hul G.B., Vidal H., Saris W.H., Schrauwen P. Effect of beta1- and beta2-adrenergic stimulation on energy expenditure, substrate oxidation, and UCP3 expression in humans. Am. J. Physiology. Endocrinol. Metab. 2003;285:E775–E782. doi: 10.1152/ajpendo.00175.2003. PubMed DOI
Jones C.T., Ritchie J.W. The metabolic and endocrine effects of circulating catecholamines in fetal sheep. J. Physiol. 1978;285:395–408. doi: 10.1113/jphysiol.1978.sp012578. PubMed DOI PMC
Ensinger H., Geisser W., Brinkmann A., Wachter U., Vogt J., Radermacher P., Georgieff M., Trager K. Metabolic effects of norepinephrine and dobutamine in healthy volunteers. Shock. 2002;18:495–500. doi: 10.1097/00024382-200212000-00002. PubMed DOI
Carpentier A.C., Blondin D.P., Virtanen K.A., Richard D., Haman F., Turcotte E.E. Brown Adipose Tissue Energy Metabolism in Humans. Front. Endocrinol. 2018;9:447. doi: 10.3389/fendo.2018.00447. PubMed DOI PMC
Heeren J., Scheja L. Brown adipose tissue and lipid metabolism. Curr. Opin. Lipidol. 2018;29:180–185. doi: 10.1097/MOL.0000000000000504. PubMed DOI
Sondergaard E., Gormsen L.C., Christensen M.H., Pedersen S.B., Christiansen P., Nielsen S., Poulsen P.L., Jessen N. Chronic adrenergic stimulation induces brown adipose tissue differentiation in visceral adipose tissue. Diabet Med. 2015;32:e4–e8. doi: 10.1111/dme.12595. PubMed DOI
Wang Q., Zhang M., Ning G., Gu W., Su T., Xu M., Li B., Wang W. Brown adipose tissue in humans is activated by elevated plasma catecholamines levels and is inversely related to central obesity. PLoS ONE. 2011;6:e21006. doi: 10.1371/journal.pone.0021006. PubMed DOI PMC
Fishbein L., Leshchiner I., Walter V., Danilova L., Robertson A.G., Johnson A.R., Lichtenberg T.M., Murray B.A., Ghayee H.K., Else T., et al. Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma. Cancer Cell. 2017;31:181–193. doi: 10.1016/j.ccell.2017.01.001. PubMed DOI PMC
Tella S.H., Taieb D., Pacak K. HIF-2alpha: Achilles’ heel of pseudohypoxic subtype paraganglioma and other related conditions. Eur. J. Cancer. 2017;86:1–4. doi: 10.1016/j.ejca.2017.08.023. PubMed DOI PMC
Kluckova K., Tennant D.A. Metabolic implications of hypoxia and pseudohypoxia in pheochromocytoma and paraganglioma. Cell Tissue Res. 2018;372:367–378. doi: 10.1007/s00441-018-2801-6. PubMed DOI PMC
Warburg O. On the origin of cancer cells. Science. 1956;123:309–314. doi: 10.1126/science.123.3191.309. PubMed DOI
Taieb D., Pacak K. New Insights into the Nuclear Imaging Phenotypes of Cluster 1 Pheochromocytoma and Paraganglioma. Trends Endocrinol. Metab. 2017;28:807–817. doi: 10.1016/j.tem.2017.08.001. PubMed DOI PMC
van Berkel A., Rao J.U., Kusters B., Demir T., Visser E., Mensenkamp A.R., van der Laak J.A., Oosterwijk E., Lenders J.W., Sweep F.C., et al. Correlation between in vivo 18F-FDG PET and immunohistochemical markers of glucose uptake and metabolism in pheochromocytoma and paraganglioma. J. Nucl. Med. 2014;55:1253–1259. doi: 10.2967/jnumed.114.137034. PubMed DOI
Hayashi Y., Yokota A., Harada H., Huang G. Hypoxia/pseudohypoxia-mediated activation of hypoxia-inducible factor-1alpha in cancer. Cancer Sci. 2019;110:1510–1517. doi: 10.1111/cas.13990. PubMed DOI PMC
Diamanti-Kandarakis E., Zapanti E., Peridis M.H., Ntavos P., Mastorakos G. Insulin resistance in pheochromocytoma improves more by surgical rather than by medical treatment. Hormones. 2003;2:61–66. doi: 10.14310/horm.2002.1184. PubMed DOI