Comparison of the Field-Based Intermittent Running Fitness Test 30-15 and the Treadmill Multistage Incremental Test for the Assessment of Cardiorespiratory Fitness in Elite Handball Players
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
35329236
PubMed Central
PMC8955313
DOI
10.3390/ijerph19063535
PII: ijerph19063535
Knihovny.cz E-resources
- Keywords
- VO2max, aerobic endurance, aerobic incremental field test, laboratory treadmill test, maximal running speed,
- MeSH
- Running * physiology MeSH
- Exercise MeSH
- Cardiorespiratory Fitness * MeSH
- Oxygen Consumption physiology MeSH
- Heart Rate physiology MeSH
- Physical Fitness physiology MeSH
- Exercise Test methods MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The aim of the present study was to investigate whether the physiological parameters indicative of cardiorespiratory fitness obtained during the 30-15 intermittent fitness (30-15IFT) test and the multistage laboratory treadmill endurance (TR) test differ. Nineteen elite handball players were recruited for the current study and assigned in a cross-over manner to one of two tests to be performed 48 h apart at each visit to the testing facility. The results showed that VO2max (percentage difference [PC] = 6.1%; p = 0.004) and maximal running velocity (V) (PC = 19.4%; p < 0.001) were significantly higher for the 30-15IFT test than that obtained during the TR test. Furthermore, the onset of blood lactate accumulation was shown to be significantly higher for all measures considered to predict it during 30-15IFT compared to TR as follows: VO2max (PC = 12.6%; p = 0.001), running speed (PC = 33.9%; p < 0.001), and maximal heart rate (PC = 7.5%; p < 0.001). The current study highlights the importance of sport-specific testing, particularly for measuring individual cardiorespiratory fitness in elite handball players, as TR may underestimate crucial variables used for both diagnostics and training prescription.
Faculty of Sport and Physical Education University of Sarajevo 71000 Sarajevo Bosnia and Herzegovina
Faculty of Sport University of Ljubljana 1000 Ljubljana Slovenia
Faculty of Sports Studies Masaryk University 625 00 Brno Czech Republic
Science and Research Centre Koper Institute for Kinesiology Research 6000 Koper Slovenia
See more in PubMed
Šibila M., Vuleta D., Pori P. Position-Related Differences in Volume and Intensity of Large-Scale Cyclic Movements of Male Players in Handball. Kinesiology. 2004;36:58–68.
Massuça L.M., Fragoso I., Teles J. Attributes of Top Elite Team-Handball Players. J. Strength Cond. Res. 2014;28:178–186. doi: 10.1519/JSC.0b013e318295d50e. PubMed DOI
Jorgen I., Jeffreys I., Stein R. Physical characteristics and abilities of junior elite male and female handball players. J. Strength Cond. Res. 2013;27:302–309. PubMed
Krüger K., Pilat C., Ückert K., Frech T., Mooren F.C. Physical Performance Profile of Handball Players Is Related to Playing Position and Playing Class. J. Strength Cond. Res. 2014;28:117–125. doi: 10.1519/JSC.0b013e318291b713. PubMed DOI
Póvoas S.C.A., Ascensão A.A.M.R., Magalhães J., Seabra A.F., Krustrup P., Soares J.M.C., Rebelo A.N.C. Physiological Demands of Elite Team Handball With Special Reference to Playing Position. J. Strength Cond. Res. 2014;28:430–442. doi: 10.1519/JSC.0b013e3182a953b1. PubMed DOI
Michalsik L.B., Madsen K., Aagaard P. Physiological capacity and physical testing in male elite team handball. J. Sports Med. Phys. Fit. 2015;55:415–429. PubMed
Albouaini K., Egred M., Alahmar A., Wright D.J. Cardiopulmonary exercise testing and its application. Postgrad. Med. J. 2007;83:675–682. doi: 10.1136/hrt.2007.121558. PubMed DOI PMC
Pontaga I., Zidens J. Comparison of Latvian Qualified Basketball and Handball Players Performance. Soc. Integr. Educ. Proc. Int. Sci. Conf. 2018;4:211–221. doi: 10.17770/sie2018vol1.3228. DOI
Wagner H., Sperl B., Bell J.W., von Duvillard S.P. Testing Specific Physical Performance in Male Team Handball Players and the Relationship to General Tests in Team Sports. J. Strength Cond. Res. 2019;33:1056–1064. doi: 10.1519/JSC.0000000000003026. PubMed DOI
Ghosh A.K. Anaerobic threshold: Its concept and role in endurance sport. Malays. J. Med. Sci. 2004;11:24–36. PubMed PMC
Karlsson J., Jacobs I. Onset of Blood Lactage Accumulation during Muscular Exercise as a Threshold Concept. I. Theoretical considerations. Int. J. Sports Med. 1982;3:190–201. doi: 10.1055/s-2008-1026087. PubMed DOI
Tanaka K. Lactate-related factors as a critical determinant of endurance. Ann. Physiol. Anthropol. 1990;9:191–202. doi: 10.2114/ahs1983.9.191. PubMed DOI
Santos-Concejero J., Granados C., Irazusta J., Bidaurrazaga-Letona I., Zabala-Lili J., Tam N., Gil S.M. OBLA is a better predictor of performance than Dmax in long and middle-distance well-trained runners. J. Sports Med. Phys. Fit. 2014;54:553–558. PubMed
Figueira T.R., Caputo F., Pelarigo J.G., Denadai B.S. Influence of exercise mode and maximal lactate-steady-state concentration on the validity of OBLA to predict maximal lactate-steady-state in active individuals. J. Sci. Med. Sport. 2008;11:280–286. doi: 10.1016/j.jsams.2007.02.016. PubMed DOI
Denadai B.S., Gomide E.B.G., Greco C.C. The relationship between onset of blood lactate accumulation, critical velocity, and maximal lactate steady state in soccer players. J. Strength Cond. Res. 2005;19:364–368. doi: 10.1519/1533-4287(2005)19[364:TRBOOB]2.0.CO;2. PubMed DOI
Buchheit M. The 30-15 Intermittent Fitness Test: 10 year review The 30-15 Intermittent Fitness Test: 10 year review. Myorobie J. 2010;1:1–9.
Kilding A.E., Aziz A.R., Teh K.C. Measuring and predicting maximal aerobic power in international-level intermittent sport athletes. J. Sports Med. Phys. Fit. 2006;46:366–372. PubMed
Chirico E., Tessitore A., Demarie S. Physiological swimming test for water polo players in the last twenty years: A systematic review. J. Sports Med. Phys. Fit. 2021 doi: 10.23736/S0022-4707.21.12533-2. PubMed DOI
Léger L., Boucher R. An indirect continuous running multistage field test: The Université de Montréal track test. Can. J. Appl. Sport Sci. 1980;5:77–84. PubMed
Léger L.A., Mercier D., Gadoury C., Lambert J. The multistage 20 metre shuttle run test for aerobic fitness. J. Sports Sci. 1988;6:93–101. doi: 10.1080/02640418808729800. PubMed DOI
Thomas C., Dos’Santos T., Jones P.A., Comfort P. Reliability of the 30-15 Intermittent Fitness Test in Semiprofessional Soccer Players. Int. J. Sports Physiol. Perform. 2016;11:172–175. doi: 10.1123/ijspp.2015-0056. PubMed DOI
Buchheit M., Al Haddad H., Millet G.P., Lepretre P.M., Newton M., Ahmaidi S. Cardiorespiratory and cardiac autonomic response to 30-15 IFT in team sport players. J. Strength Cond. Res. 2009;23:93–100. doi: 10.1519/JSC.0b013e31818b9721. PubMed DOI
Buchheit M. The 30-15 Intermittent Fitness Test: Accuracy for Individualizing Interval Training of Young Intermittent Sport Players. J. Strength Cond. Res. 2008;22:365–374. doi: 10.1519/JSC.0b013e3181635b2e. PubMed DOI
Buchheit M., Lefebvre B., Laursen P.B., Ahmaidi S. Reliability, Usefulness, and Validity of the 30-15 Intermittent Ice Test in Young Elite Ice Hockey Players. J. Strength Cond. Res. 2011;25:1457–1464. doi: 10.1519/JSC.0b013e3181d686b7. PubMed DOI
Hulley S.B., Cummings S.R., Browner W.S., Grady D.G., Newman T.B. Replication and Evidence Factors in Observational Studies. 4th ed. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2013. Designing Clinical Research: An Epidemiologic Approach; pp. 1–381.
Mohorič U., Šibila M., Štrumbelj B. Positional differences in some physiological parameters obtained by the incremental field endurance test among elite handball players. Kinesiology. 2021;53:3–11. doi: 10.26582/k.53.1.1. DOI
Jones A.M., Doust J.H. A 1% treadmill grade most accurately reflects the energetic cost of outdoor running. J. Sports Sci. 1996;14:321–327. doi: 10.1080/02640419608727717. PubMed DOI
Poole D.C., Richardson R.S. Determinants of oxygen uptake: Implications for exercise testing. Sport Med. 1997;24:308–320. doi: 10.2165/00007256-199724050-00003. PubMed DOI
Rossiter H.B., Kowalchuk J.M., Whipp B.J. A test to establish maximum O2 uptake despite no plateau in the O2 uptake response to ramp incremental exercise. J. Appl. Physiol. 2006;100:764–770. doi: 10.1152/japplphysiol.00932.2005. PubMed DOI
Borszcz F.K., Tramontin A.F., de Souza K.M., Carminatti L.J., Costa V.P. Physiological Correlations With Short, Medium, and Long Cycling Time-Trial Performance. Res. Q. Exerc. Sport. 2018;89:120–125. doi: 10.1080/02701367.2017.1411578. PubMed DOI
Schrack J.A., Simonsick E.M., Ferrucci L. Comparison of the Cosmed K4b2 Portable Metabolic System in Measuring Steady-State Walking Energy Expenditure. PLoS ONE. 2010;5:e9292. doi: 10.1371/journal.pone.0009292. PubMed DOI PMC
McLaughlin J.E., King G.A., Howley E.T., Bassett J.D.R., Ainsworth B.E. Validation of the COSMED K4 b2 Portable Metabolic System. Endoscopy. 2001;22:280–284. doi: 10.1055/s-2001-13816. PubMed DOI
Usaj A., Starc V. Blood pH and lactate kinetics in the assessment of running endurance. Int. J. Sports Med. 1996;17:34–40. doi: 10.1055/s-2007-972805. PubMed DOI
Lovakov A., Agadullina E.R. Empirically derived guidelines for effect size interpretation in social psychology. Eur. J. Soc. Psychol. 2021;51:485–504. doi: 10.1002/ejsp.2752. DOI
Taylor R. Interpretation of the Correlation Coefficient: A Basic Review. J. Diagn. Med. Sonogr. 1990;6:35–39. doi: 10.1177/875647939000600106. DOI
Čović N., Jelešković E., Alić H., Rado I., Kafedžić E., Sporiš G., McMaster D.T., Milanović Z. Reliability, validity and usefulness of 30-15 intermittent fitness test in female soccer players. Front. Physiol. 2016;7:510. doi: 10.3389/fphys.2016.00510. PubMed DOI PMC
Jeličić M., Ivančev V., Cular D., Čović N., Stojanović E., Scanlan A.T., Milanović Z. The 30-15 Intermittent Fitness Test: A Reliable, Valid, and Useful Tool to Assess Aerobic Capacity in Female Basketball Players. Res. Q. Exerc. Sport. 2019;91:83–91. doi: 10.1080/02701367.2019.1648743. PubMed DOI
Irwin B.C., Scorniaenchi J., Kerr N.L., Eisenmann J.C., Feltz D.L. Aerobic Exercise Is Promoted when Individual Performance Affects the Group: A Test of the Kohler Motivation Gain Effect. Ann. Behav. Med. 2012;44:151–159. doi: 10.1007/s12160-012-9367-4. PubMed DOI
Póvoas S.C.A., Krustrup P., Pereira R., Vieira S., Carneiro I., Magalhães J., Castagna C. Maximal heart rate assessment in recreational football players: A study involving a multiple testing approach. Scand. J. Med. Sci. Sports. 2019;29:1537–1545. doi: 10.1111/sms.13472. PubMed DOI
Girard O., Sciberras P., Habrard M., Hot P., Chevalier R., Millet G. Specific incremental test in elite squash players. Br. J. Sports Med. 2005;39:921–926. doi: 10.1136/bjsm.2005.018101. PubMed DOI PMC
Girard O., Chevalier R., Leveque F., Micallef J.P., Millet G.P. Specific incremental field test for aerobic fitness in tennis. Br. J. Sports Med. 2006;40:791–796. doi: 10.1136/bjsm.2006.027680. PubMed DOI PMC
Essén B., Hagenfeldt L., Kaijser L. Utilization of blood-borne and intramuscular substrates during continuous and intermittent exercise in man. J. Physiol. 1977;265:489–506. doi: 10.1113/jphysiol.1977.sp011726. PubMed DOI PMC
Scott T.J., Delaney J.A., Duthie G., Sanctuary C.E., Ballard D.A., Hickmans J.A., Dascombe B.J. Reliability and Usefulness of the 30-15 Intermittent Fitness Test in Rugby League. J. Strength Cond. Res. 2015;29:1985–1990. doi: 10.1519/JSC.0000000000000846. PubMed DOI
Basset F.A., Boulay M.R. Specificity of treadmill and cycle ergometer tests in triathletes, runners and cyclists. Eur. J. Appl. Physiol. Occup. Physiol. 2000;81:214–221. doi: 10.1007/s004210050033. PubMed DOI