• This record comes from PubMed

Comparison of the Field-Based Intermittent Running Fitness Test 30-15 and the Treadmill Multistage Incremental Test for the Assessment of Cardiorespiratory Fitness in Elite Handball Players

. 2022 Mar 16 ; 19 (6) : . [epub] 20220316

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

The aim of the present study was to investigate whether the physiological parameters indicative of cardiorespiratory fitness obtained during the 30-15 intermittent fitness (30-15IFT) test and the multistage laboratory treadmill endurance (TR) test differ. Nineteen elite handball players were recruited for the current study and assigned in a cross-over manner to one of two tests to be performed 48 h apart at each visit to the testing facility. The results showed that VO2max (percentage difference [PC] = 6.1%; p = 0.004) and maximal running velocity (V) (PC = 19.4%; p < 0.001) were significantly higher for the 30-15IFT test than that obtained during the TR test. Furthermore, the onset of blood lactate accumulation was shown to be significantly higher for all measures considered to predict it during 30-15IFT compared to TR as follows: VO2max (PC = 12.6%; p = 0.001), running speed (PC = 33.9%; p < 0.001), and maximal heart rate (PC = 7.5%; p < 0.001). The current study highlights the importance of sport-specific testing, particularly for measuring individual cardiorespiratory fitness in elite handball players, as TR may underestimate crucial variables used for both diagnostics and training prescription.

See more in PubMed

Šibila M., Vuleta D., Pori P. Position-Related Differences in Volume and Intensity of Large-Scale Cyclic Movements of Male Players in Handball. Kinesiology. 2004;36:58–68.

Massuça L.M., Fragoso I., Teles J. Attributes of Top Elite Team-Handball Players. J. Strength Cond. Res. 2014;28:178–186. doi: 10.1519/JSC.0b013e318295d50e. PubMed DOI

Jorgen I., Jeffreys I., Stein R. Physical characteristics and abilities of junior elite male and female handball players. J. Strength Cond. Res. 2013;27:302–309. PubMed

Krüger K., Pilat C., Ückert K., Frech T., Mooren F.C. Physical Performance Profile of Handball Players Is Related to Playing Position and Playing Class. J. Strength Cond. Res. 2014;28:117–125. doi: 10.1519/JSC.0b013e318291b713. PubMed DOI

Póvoas S.C.A., Ascensão A.A.M.R., Magalhães J., Seabra A.F., Krustrup P., Soares J.M.C., Rebelo A.N.C. Physiological Demands of Elite Team Handball With Special Reference to Playing Position. J. Strength Cond. Res. 2014;28:430–442. doi: 10.1519/JSC.0b013e3182a953b1. PubMed DOI

Michalsik L.B., Madsen K., Aagaard P. Physiological capacity and physical testing in male elite team handball. J. Sports Med. Phys. Fit. 2015;55:415–429. PubMed

Albouaini K., Egred M., Alahmar A., Wright D.J. Cardiopulmonary exercise testing and its application. Postgrad. Med. J. 2007;83:675–682. doi: 10.1136/hrt.2007.121558. PubMed DOI PMC

Pontaga I., Zidens J. Comparison of Latvian Qualified Basketball and Handball Players Performance. Soc. Integr. Educ. Proc. Int. Sci. Conf. 2018;4:211–221. doi: 10.17770/sie2018vol1.3228. DOI

Wagner H., Sperl B., Bell J.W., von Duvillard S.P. Testing Specific Physical Performance in Male Team Handball Players and the Relationship to General Tests in Team Sports. J. Strength Cond. Res. 2019;33:1056–1064. doi: 10.1519/JSC.0000000000003026. PubMed DOI

Ghosh A.K. Anaerobic threshold: Its concept and role in endurance sport. Malays. J. Med. Sci. 2004;11:24–36. PubMed PMC

Karlsson J., Jacobs I. Onset of Blood Lactage Accumulation during Muscular Exercise as a Threshold Concept. I. Theoretical considerations. Int. J. Sports Med. 1982;3:190–201. doi: 10.1055/s-2008-1026087. PubMed DOI

Tanaka K. Lactate-related factors as a critical determinant of endurance. Ann. Physiol. Anthropol. 1990;9:191–202. doi: 10.2114/ahs1983.9.191. PubMed DOI

Santos-Concejero J., Granados C., Irazusta J., Bidaurrazaga-Letona I., Zabala-Lili J., Tam N., Gil S.M. OBLA is a better predictor of performance than Dmax in long and middle-distance well-trained runners. J. Sports Med. Phys. Fit. 2014;54:553–558. PubMed

Figueira T.R., Caputo F., Pelarigo J.G., Denadai B.S. Influence of exercise mode and maximal lactate-steady-state concentration on the validity of OBLA to predict maximal lactate-steady-state in active individuals. J. Sci. Med. Sport. 2008;11:280–286. doi: 10.1016/j.jsams.2007.02.016. PubMed DOI

Denadai B.S., Gomide E.B.G., Greco C.C. The relationship between onset of blood lactate accumulation, critical velocity, and maximal lactate steady state in soccer players. J. Strength Cond. Res. 2005;19:364–368. doi: 10.1519/1533-4287(2005)19[364:TRBOOB]2.0.CO;2. PubMed DOI

Buchheit M. The 30-15 Intermittent Fitness Test: 10 year review The 30-15 Intermittent Fitness Test: 10 year review. Myorobie J. 2010;1:1–9.

Kilding A.E., Aziz A.R., Teh K.C. Measuring and predicting maximal aerobic power in international-level intermittent sport athletes. J. Sports Med. Phys. Fit. 2006;46:366–372. PubMed

Chirico E., Tessitore A., Demarie S. Physiological swimming test for water polo players in the last twenty years: A systematic review. J. Sports Med. Phys. Fit. 2021 doi: 10.23736/S0022-4707.21.12533-2. PubMed DOI

Léger L., Boucher R. An indirect continuous running multistage field test: The Université de Montréal track test. Can. J. Appl. Sport Sci. 1980;5:77–84. PubMed

Léger L.A., Mercier D., Gadoury C., Lambert J. The multistage 20 metre shuttle run test for aerobic fitness. J. Sports Sci. 1988;6:93–101. doi: 10.1080/02640418808729800. PubMed DOI

Thomas C., Dos’Santos T., Jones P.A., Comfort P. Reliability of the 30-15 Intermittent Fitness Test in Semiprofessional Soccer Players. Int. J. Sports Physiol. Perform. 2016;11:172–175. doi: 10.1123/ijspp.2015-0056. PubMed DOI

Buchheit M., Al Haddad H., Millet G.P., Lepretre P.M., Newton M., Ahmaidi S. Cardiorespiratory and cardiac autonomic response to 30-15 IFT in team sport players. J. Strength Cond. Res. 2009;23:93–100. doi: 10.1519/JSC.0b013e31818b9721. PubMed DOI

Buchheit M. The 30-15 Intermittent Fitness Test: Accuracy for Individualizing Interval Training of Young Intermittent Sport Players. J. Strength Cond. Res. 2008;22:365–374. doi: 10.1519/JSC.0b013e3181635b2e. PubMed DOI

Buchheit M., Lefebvre B., Laursen P.B., Ahmaidi S. Reliability, Usefulness, and Validity of the 30-15 Intermittent Ice Test in Young Elite Ice Hockey Players. J. Strength Cond. Res. 2011;25:1457–1464. doi: 10.1519/JSC.0b013e3181d686b7. PubMed DOI

Hulley S.B., Cummings S.R., Browner W.S., Grady D.G., Newman T.B. Replication and Evidence Factors in Observational Studies. 4th ed. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2013. Designing Clinical Research: An Epidemiologic Approach; pp. 1–381.

Mohorič U., Šibila M., Štrumbelj B. Positional differences in some physiological parameters obtained by the incremental field endurance test among elite handball players. Kinesiology. 2021;53:3–11. doi: 10.26582/k.53.1.1. DOI

Jones A.M., Doust J.H. A 1% treadmill grade most accurately reflects the energetic cost of outdoor running. J. Sports Sci. 1996;14:321–327. doi: 10.1080/02640419608727717. PubMed DOI

Poole D.C., Richardson R.S. Determinants of oxygen uptake: Implications for exercise testing. Sport Med. 1997;24:308–320. doi: 10.2165/00007256-199724050-00003. PubMed DOI

Rossiter H.B., Kowalchuk J.M., Whipp B.J. A test to establish maximum O2 uptake despite no plateau in the O2 uptake response to ramp incremental exercise. J. Appl. Physiol. 2006;100:764–770. doi: 10.1152/japplphysiol.00932.2005. PubMed DOI

Borszcz F.K., Tramontin A.F., de Souza K.M., Carminatti L.J., Costa V.P. Physiological Correlations With Short, Medium, and Long Cycling Time-Trial Performance. Res. Q. Exerc. Sport. 2018;89:120–125. doi: 10.1080/02701367.2017.1411578. PubMed DOI

Schrack J.A., Simonsick E.M., Ferrucci L. Comparison of the Cosmed K4b2 Portable Metabolic System in Measuring Steady-State Walking Energy Expenditure. PLoS ONE. 2010;5:e9292. doi: 10.1371/journal.pone.0009292. PubMed DOI PMC

McLaughlin J.E., King G.A., Howley E.T., Bassett J.D.R., Ainsworth B.E. Validation of the COSMED K4 b2 Portable Metabolic System. Endoscopy. 2001;22:280–284. doi: 10.1055/s-2001-13816. PubMed DOI

Usaj A., Starc V. Blood pH and lactate kinetics in the assessment of running endurance. Int. J. Sports Med. 1996;17:34–40. doi: 10.1055/s-2007-972805. PubMed DOI

Lovakov A., Agadullina E.R. Empirically derived guidelines for effect size interpretation in social psychology. Eur. J. Soc. Psychol. 2021;51:485–504. doi: 10.1002/ejsp.2752. DOI

Taylor R. Interpretation of the Correlation Coefficient: A Basic Review. J. Diagn. Med. Sonogr. 1990;6:35–39. doi: 10.1177/875647939000600106. DOI

Čović N., Jelešković E., Alić H., Rado I., Kafedžić E., Sporiš G., McMaster D.T., Milanović Z. Reliability, validity and usefulness of 30-15 intermittent fitness test in female soccer players. Front. Physiol. 2016;7:510. doi: 10.3389/fphys.2016.00510. PubMed DOI PMC

Jeličić M., Ivančev V., Cular D., Čović N., Stojanović E., Scanlan A.T., Milanović Z. The 30-15 Intermittent Fitness Test: A Reliable, Valid, and Useful Tool to Assess Aerobic Capacity in Female Basketball Players. Res. Q. Exerc. Sport. 2019;91:83–91. doi: 10.1080/02701367.2019.1648743. PubMed DOI

Irwin B.C., Scorniaenchi J., Kerr N.L., Eisenmann J.C., Feltz D.L. Aerobic Exercise Is Promoted when Individual Performance Affects the Group: A Test of the Kohler Motivation Gain Effect. Ann. Behav. Med. 2012;44:151–159. doi: 10.1007/s12160-012-9367-4. PubMed DOI

Póvoas S.C.A., Krustrup P., Pereira R., Vieira S., Carneiro I., Magalhães J., Castagna C. Maximal heart rate assessment in recreational football players: A study involving a multiple testing approach. Scand. J. Med. Sci. Sports. 2019;29:1537–1545. doi: 10.1111/sms.13472. PubMed DOI

Girard O., Sciberras P., Habrard M., Hot P., Chevalier R., Millet G. Specific incremental test in elite squash players. Br. J. Sports Med. 2005;39:921–926. doi: 10.1136/bjsm.2005.018101. PubMed DOI PMC

Girard O., Chevalier R., Leveque F., Micallef J.P., Millet G.P. Specific incremental field test for aerobic fitness in tennis. Br. J. Sports Med. 2006;40:791–796. doi: 10.1136/bjsm.2006.027680. PubMed DOI PMC

Essén B., Hagenfeldt L., Kaijser L. Utilization of blood-borne and intramuscular substrates during continuous and intermittent exercise in man. J. Physiol. 1977;265:489–506. doi: 10.1113/jphysiol.1977.sp011726. PubMed DOI PMC

Scott T.J., Delaney J.A., Duthie G., Sanctuary C.E., Ballard D.A., Hickmans J.A., Dascombe B.J. Reliability and Usefulness of the 30-15 Intermittent Fitness Test in Rugby League. J. Strength Cond. Res. 2015;29:1985–1990. doi: 10.1519/JSC.0000000000000846. PubMed DOI

Basset F.A., Boulay M.R. Specificity of treadmill and cycle ergometer tests in triathletes, runners and cyclists. Eur. J. Appl. Physiol. Occup. Physiol. 2000;81:214–221. doi: 10.1007/s004210050033. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...