Recurrence mechanisms of non-muscle-invasive bladder cancer - a clinical perspective

. 2022 May ; 19 (5) : 280-294. [epub] 20220331

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35361927
Odkazy

PubMed 35361927
DOI 10.1038/s41585-022-00578-1
PII: 10.1038/s41585-022-00578-1
Knihovny.cz E-zdroje

Non-muscle-invasive bladder cancer (NMIBC) is an early-stage cancer without invasion into the detrusor muscle layer. Transurethral resection of bladder tumour (TURBT) is a diagnostic and potentially curative procedure for NMIBC, but has some limitations, including difficulties in ascertaining complete tumour removal upon piecemeal resection and the possibility of tumour re-implantation after the procedure. The oncological control of NMIBC is far from satisfactory, with a 1-year recurrence rate of 15-61%, and a 5-year recurrence rate of 31-78%. Various recurrence mechanisms have been described for NMIBC, such as undetected tumours upon cystoscopy, incomplete resection during TURBT, tumour re-implantation after TURBT, drop metastasis from upper tract urothelial carcinoma and field change cancerization. Understanding the recurrence mechanisms from a clinical perspective has strong implications for the optimization of NMIBC oncological outcomes, as a cure for patients with NMIBC can only be achieved by tackling all possible recurrence mechanisms in a comprehensive manner.

Zobrazit více v PubMed

Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018). PubMed DOI

Teoh, J. Y. et al. Global trends of bladder cancer incidence and mortality, and their associations with tobacco use and gross domestic product per capita. Eur. Urol. 78, 893–906 (2020). PubMed DOI

Pasin, E., Josephson, D. Y., Mitra, A. P., Cote, R. J. & Stein, J. P. Superficial bladder cancer: an update on etiology, molecular development, classification, and natural history. Rev. Urol. 10, 31–43 (2008). PubMed PMC

Babjuk, M. et al. European Association of Urology guidelines on non-muscle-invasive bladder cancer (TaT1 and carcinoma in situ) 2019 update. Eur. Urol. 76, 639–657 (2019). PubMed DOI

Khadhouri, S. et al. The IDENTIFY study: the investigation and detection of urological neoplasia in patients referred with suspected urinary tract cancer - a multicentre observational study. BJU Int. 128, 440–450 (2021). PubMed DOI

Jones, H. C. & Swinney, J. The treatment of tumours of the bladder by transurethral resection. Br. J. Urol. 34, 215–220 (1962). PubMed DOI

Mariappan, P. Attention to detail and a permissive set-up: crucial for an effective TURBT. Nat. Rev. Urol. 18, 253–254 (2021). PubMed DOI PMC

Sylvester, R. J. et al. Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur. Urol. 49, 466-5 (2006). DOI

Cheung, G., Sahai, A., Billia, M., Dasgupta, P. & Khan, M. S. Recent advances in the diagnosis and treatment of bladder cancer. BMC Med. 11, 13 (2013). PubMed DOI PMC

van den Bosch, S. & Alfred Witjes, J. Long-term cancer-specific survival in patients with high-risk, non-muscle-invasive bladder cancer and tumour progression: a systematic review. Eur. Urol. 60, 493–500 (2011). PubMed DOI

Bryan, R. T. et al. Mechanisms of recurrence of Ta/T1 bladder cancer. Ann. R. Coll. Surg. Engl. 92, 519–524 (2010). PubMed DOI PMC

Kamat, A. M. et al. BCG-unresponsive non-muscle-invasive bladder cancer: recommendations from the IBCG. Nat. Rev. Urol. 14, 244–255 (2017). PubMed DOI

O’Sullivan, D. C. & Chilton, C. P. Flexible cystoscopy. Br. J. Hosp. Med. 51, 340–345 (1994). PubMed

Lerner, S. P. & Goh, A. Novel endoscopic diagnosis for bladder cancer. Cancer 121, 169–178 (2015). PubMed DOI

Nese, N., Gupta, R., Bui, M. H. & Amin, M. B. Carcinoma in situ of the urinary bladder: review of clinicopathologic characteristics with an emphasis on aspects related to molecular diagnostic techniques and prognosis. J. Natl Compr. Canc Netw. 7, 48–57 (2009). PubMed DOI

Amin, M. B. & Young, R. H. Intraepithelial lesions of the urinary bladder with a discussion of the histogenesis of urothelial neoplasia. Semin. Diagn. Pathol. 14, 84–97 (1997). PubMed

Bryan, R. T., Billingham, L. J. & Wallace, D. M. Narrow-band imaging flexible cystoscopy in the detection of recurrent urothelial cancer of the bladder. BJU Int. 101, 702–705 (2008). PubMed DOI

Zheng, C., Lv, Y., Zhong, Q., Wang, R. & Jiang, Q. Narrow band imaging diagnosis of bladder cancer: systematic review and meta-analysis. BJU Int. 110, E680–E687 (2012). PubMed DOI

Cauberg, E. C., Mamoulakis, C., de la Rosette, J. J. & de Reijke, T. M. Narrow band imaging-assisted transurethral resection for non-muscle invasive bladder cancer significantly reduces residual tumour rate. World J. Urol. 29, 503–509 (2011). PubMed DOI PMC

Naito, S. et al. The Clinical Research Office of the Endourological Society (CROES) multicentre randomised trial of narrow band imaging-assisted transurethral resection of bladder tumour (TURBT) versus conventional white light imaging-assisted TURBT in primary non-muscle-invasive bladder cancer patients: trial protocol and 1-year results. Eur. Urol. 70, 506–515 (2016). PubMed DOI

Kausch, I. et al. Photodynamic diagnosis in non-muscle-invasive bladder cancer: a systematic review and cumulative analysis of prospective studies. Eur. Urol. 57, 595–606 (2010). PubMed DOI

Inoue, K. 5-Aminolevulinic acid-mediated photodynamic therapy for bladder cancer. Int. J. Urol. 24, 97–101 (2017). PubMed DOI

Liberti, M. V. & Locasale, J. W. The Warburg effect: how does it benefit cancer cells? Trends Biochem. Sci. 41, 211–218 (2016). PubMed DOI PMC

Burger, M. et al. Photodynamic diagnosis of non-muscle-invasive bladder cancer with hexaminolevulinate cystoscopy: a meta-analysis of detection and recurrence based on raw data. Eur. Urol. 64, 846–854 (2013). PubMed DOI

Ishizuka, M. et al. Novel development of 5-aminolevurinic acid (ALA) in cancer diagnoses and therapy. Int. Immunopharmacol. 11, 358–365 (2011). PubMed DOI

Chou, R. et al. Comparative effectiveness of fluorescent versus white light cystoscopy for initial diagnosis or surveillance of bladder cancer on clinical outcomes: systematic review and meta-analysis. J. Urol. 197, 548–558 (2017). PubMed DOI

Sari Motlagh, R. et al. Impact of enhanced optical techniques at time of transurethral resection of bladder tumour, with or without single immediate intravesical chemotherapy, on recurrence rate of non-muscle-invasive bladder cancer: a systematic review and network meta-analysis of randomized trials. BJU Int. https://doi.org/10.1111/bju.15383 (2021). PubMed DOI PMC

Kamphuis, G. et al. Storz professional image enhancement system: a new technique to improve endoscopic bladder imaging. J. Cancer Sci. Ther. 8, 71–77 (2016).

Ramponi, G., Strobel, N., Mitra, S. & Yu, T.-H. Nonlinear unsharp masking methods for image contrast enhancement. J. Electron. Imaging 5, 353–366 (1996). DOI

Wang, L. V. & Wu, H. Biomedical Optics: Principles and Imaging (John Wiley & Sons., 2007).

Sid-Ahmed, M. A. Image Processing: Theory, Algorithms, and Architectures Int. edn (McGraw-Hill, 1995).

Howard, J. M., Woldu, S. L., Daneshmand, S. & Lotan, Y. Enhanced endoscopy with IMAGE1 S CHROMA improves detection of nonmuscle invasive bladder cancer during transurethral resection. J. Endourol. 35, 647–651 (2021). PubMed DOI

US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02252549 (2021).

Cumberbatch, M. G. K. et al. Repeat transurethral resection in non-muscle-invasive bladder cancer: a systematic review. Eur. Urol. 73, 925–933 (2018). PubMed DOI

Herr, H. W. Restaging transurethral resection of high risk superficial bladder cancer improves the initial response to bacillus Calmette-Guerin therapy. J. Urol. 174, 2134–2137 (2005). PubMed DOI

Divrik, R. T., Sahin, A. F., Yildirim, U., Altok, M. & Zorlu, F. Impact of routine second transurethral resection on the long-term outcome of patients with newly diagnosed pT1 urothelial carcinoma with respect to recurrence, progression rate, and disease-specific survival: a prospective randomised clinical trial. Eur. Urol. 58, 185–190 (2010). PubMed DOI

Novara, G. & Ficarra, V. Does routine second transurethral resection affect the long-term outcome of patients with T1 bladder cancer? Why a flawed randomized controlled trial cannot address the issue. Eur. Urol. 58, 193–194 (2010). PubMed DOI

Divrik, R. T., Sahin, A. F. & Ergor, G. Reply from authors re: Marko Babjuk. Second resection for non-muscle-invasive bladder carcinoma: current role and future perspectives. Eur Urol 2010;58:191–2 and Giacomo Novara, Vincenzo Ficarra. Does routine second transurethral resection affect the long-term outcome of patients with T1 bladder cancer? Why a flawed randomized controlled trial cannot address the issue. Eur Urol 2010;58:193–4. Eur. Urol. 58, 195–196 (2010). PubMed DOI

Kitamura, K., Kataoka, K., Fujioka, H. & Kashiwai, K. Transurethral resection of a bladder tumor by the use of a polypectomy snare. J. Urol. 124, 808–809 (1980). PubMed DOI

Teoh, J. Y. et al. An international collaborative consensus statement on en bloc resection of bladder tumour incorporating two systematic reviews, a two-round Delphi Survey, and a Consensus Meeting. Eur. Urol. 78, 546–569 (2020). PubMed DOI

Teoh, J. Y., Chan, E. S., Yee, C. H., Hou, S. S. & Ng, C. F. Bipolar transurethral en-bloc resection of bladder tumour: clinical and pathologic considerations. Surgical Pract. 20, 13 (2016). DOI

Chan, V. W.-S., Ng, C.-F. & Teoh, J. Y.-C. The impact of transurethral en bloc resection of bladder tumour on pathological and oncological outcomes. AME Med. J. 5, 29 (2020). DOI

Teoh, J. Y. et al. En-bloc resection of bladder tumour as primary treatment for patients with non-muscle-invasive bladder cancer: routine implementation in a multi-centre setting. World J. Urol. https://doi.org/10.1007/s00345-021-03675-9 (2021). PubMed DOI PMC

US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02993211 (2021).

US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02555163 (2020).

US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02951078 (2016).

Teoh, J. Y. C., Herrmann, T. R. W. & Babjuk, M. Re: Valeria Panebianco, Yoshifumi Narumi, Ersan Altun, et al. Multiparametric magnetic resonance imaging for bladder cancer: development of VI-RADS (Vesical Imaging-Reporting and Data System). Eur Urol 74, 2018, 294–306. Eur. Urol. 75, e27–e28 (2019). PubMed DOI

Panebianco, V. et al. Multiparametric magnetic resonance imaging for bladder cancer: development of VI-RADS (Vesical Imaging-Reporting and Data System). Eur. Urol. https://doi.org/10.1016/j.eururo.2018.04.029 (2018). PubMed DOI PMC

Carando, R. et al. The effectiveness of multiparametric magnetic resonance imaging in bladder cancer (Vesical Imaging-Reporting and Data System): a systematic review. Arab. J. Urol. 18, 67–71 (2020). PubMed DOI PMC

Del Giudice, F. et al. Preoperative detection of Vesical Imaging-Reporting and Data System (VI-RADS) score 5 reliably identifies extravesical extension of urothelial carcinoma of the urinary bladder and predicts significant delayed time to cystectomy: time to reconsider the need for primary deep transurethral resection of bladder tumour in cases of locally advanced disease? BJU Int. 126, 610–619 (2020). PubMed DOI

Ueno, Y. et al. VI-RADS: multiinstitutional multireader diagnostic accuracy and interobserver agreement study. AJR Am. J. Roentgenol. 216, 1257–1266 (2021). PubMed DOI

Gore, J. L. et al. Mortality increases when radical cystectomy is delayed more than 12 weeks: results from a Surveillance, Epidemiology, and End Results-Medicare analysis. Cancer 115, 988–996 (2009). PubMed DOI

Bryan, R. T. et al. Comparing an imaging-guided pathway with the standard pathway for staging muscle-invasive bladder cancer: preliminary data from the BladderPath Study. Eur. Urol. 80, 12–15 (2021). PubMed DOI

Del Giudice, F. et al. Prospective assessment of vesical imaging reporting and data system (VI-RADS) and its clinical impact on the management of high-risk non-muscle-invasive bladder cancer patients candidate for repeated transurethral resection. Eur. Urol. 77, 101–109 (2020). PubMed DOI

Mariappan, P., Zachou, A., Grigor, K. M. & Edinburgh Uro-Oncology, G. Detrusor muscle in the first, apparently complete transurethral resection of bladder tumour specimen is a surrogate marker of resection quality, predicts risk of early recurrence, and is dependent on operator experience. Eur. Urol. 57, 843–849 (2010). PubMed DOI

Poletajew, S. et al. The learning curve for transurethral resection of bladder tumour: how many is enough to be independent, safe and effective surgeon? J. Surg. Educ. 77, 978–985 (2020). PubMed DOI

Teoh, J. Y. et al. A newly developed porcine training model for transurethral piecemeal and en bloc resection of bladder tumour. World J. Urol. 37, 1879–1887 (2019). PubMed DOI

Kruck, S. et al. Virtual bladder tumor transurethral resection: an objective evaluation tool to overcome learning curves with and without photodynamic diagnostics. Urol. Int. 87, 138–142 (2011). PubMed DOI

Mariappan, P. et al. Enhanced quality and effectiveness of transurethral resection of bladder tumour in non-muscle-invasive bladder cancer: a multicentre real-world experience from Scotland’s quality performance indicators programme. Eur. Urol. 78, 520–530 (2020). PubMed DOI

Simon, R. et al. Cytogenetic analysis of multifocal bladder cancer supports a monoclonal origin and intraepithelial spread of tumor cells. Cancer Res. 61, 355–362 (2001). PubMed

Sidransky, D. et al. Clonal origin of bladder cancer. N. Engl. J. Med. 326, 737–740 (1992). PubMed DOI

Acar, O. et al. Determining the origin of synchronous multifocal bladder cancer by exome sequencing. BMC Cancer 15, 871 (2015). PubMed DOI PMC

Dahse, R., Gartner, D., Werner, W., Schubert, J. & Junker, K. P53 mutations as an identification marker for the clonal origin of bladder tumors and its recurrences. Oncol. Rep. 10, 2033–2037 (2003). PubMed

Babjuk, M. et al. Indication for a single postoperative instillation of chemotherapy in non-muscle-invasive bladder cancer: what factors should be considered? Eur. Urol. Focus. 4, 525–528 (2018). PubMed DOI

Pan, J. S. et al. Inhibition of implantation of murine bladder tumor by thiotepa in cauterized bladder. J. Urol. 142, 1589–1593 (1989). PubMed DOI

Sylvester, R. J. et al. Systematic review and individual patient data meta-analysis of randomized trials comparing a single immediate instillation of chemotherapy after transurethral resection with transurethral resection alone in patients with stage pTa-pT1 urothelial carcinoma of the bladder: which patients benefit from the instillation? Eur. Urol. 69, 231–244 (2016). PubMed DOI

Zhou, Z. et al. Meta-analysis of efficacy and safety of continuous saline bladder irrigation compared with intravesical chemotherapy after transurethral resection of bladder tumors. World J. Urol. 37, 1075–1084 (2019). PubMed DOI

Onishi, T., Sasaki, T., Hoshina, A. & Yabana, T. Continuous saline bladder irrigation after transurethral resection is a prophylactic treatment choice for non-muscle invasive bladder tumor. Anticancer. Res. 31, 1471–1474 (2011). PubMed

Maekawa, S. et al. [Continuous intravesical instillation of epirubicin immediately after transurethral resection of superficial bladder cancer: a prospective controlled study]. Hinyokika Kiyo 46, 301–306 (2000). PubMed

Onishi, T. et al. Randomized controlled study of the efficacy and safety of continuous saline bladder irrigation after transurethral resection for the treatment of non-muscle-invasive bladder cancer. BJU Int. 119, 276–282 (2017). PubMed DOI

Panahi, M. H. Letter to the Editor regarding the article “Meta-analysis of efficacy and safety of continuous saline bladder irrigation compared with intravesical chemotherapy after transurethral resection of bladder tumors”. World J. Urol. 38, 513 (2020). PubMed DOI

Tse, R. T. et al. In vitro assessment of intra-operative and post-operative environment in reducing bladder cancer recurrence. Sci. Rep. 12, 22 (2022). PubMed DOI PMC

Fechner, G., Pocha, K., Schmidt, D. & Muller, S. C. Reducing recurrence and costs in superficial bladder cancer: preclinical evaluation of osmotic cytolysis by distilled water vs. mitomycin. Int. J. Clin. Pract. 60, 1178–1180 (2006). PubMed DOI

Bijalwan, P., Pooleri, G. K. & Thomas, A. Comparison of sterile water irrigation versus intravesical mitomycin C in preventing recurrence of nonmuscle invasive bladder cancer after transurethral resection. Indian. J. Urol. 33, 144–148 (2017). PubMed DOI PMC

Audenet, F. et al. Clonal relatedness and mutational differences between upper tract and bladder urothelial carcinoma. Clin. Cancer Res. 25, 967–976 (2019). PubMed DOI

van Doeveren, T. et al. Synchronous and metachronous urothelial carcinoma of the upper urinary tract and the bladder: are they clonally related? A systematic review. Urol. Oncol. 38, 590–598 (2020). PubMed DOI

Cosentino, M. et al. Upper urinary tract urothelial cell carcinoma: location as a predictive factor for concomitant bladder carcinoma. World J. Urol. 31, 141–145 (2013). PubMed DOI

Palou, J. et al. Multivariate analysis of clinical parameters of synchronous primary superficial bladder cancer and upper urinary tract tumor. J. Urol. 174, 859–861 (2005). PubMed DOI

Millan-Rodriguez, F., Chechile-Toniolo, G., Salvador-Bayarri, J., Huguet-Perez, J. & Vicente-Rodriguez, J. Upper urinary tract tumors after primary superficial bladder tumors: prognostic factors and risk groups. J. Urol. 164, 1183–1187 (2000). PubMed DOI

Khadhouri, S. et al. The IDENTIFY Study: the investigation and detection of urological neoplasia in patients referred with suspected urinary tract cancer; a multicentre observational study. BJU Int. https://doi.org/10.1111/bju.15483 (2021). PubMed DOI

Janisch, F. et al. Diagnostic performance of multidetector computed tomographic (MDCTU) in upper tract urothelial carcinoma (UTUC): a systematic review and meta-analysis. World J. Urol. 38, 1165–1175 (2020). PubMed DOI

Jinzaki, M. et al. Comparison of CT urography and excretory urography in the detection and localization of urothelial carcinoma of the upper urinary tract. AJR Am. J. Roentgenol. 196, 1102–1109 (2011). PubMed DOI

Cowan, N. C., Turney, B. W., Taylor, N. J., McCarthy, C. L. & Crew, J. P. Multidetector computed tomography urography for diagnosing upper urinary tract urothelial tumour. BJU Int. 99, 1363–1370 (2007). PubMed DOI

Razavi, S. A., Sadigh, G., Kelly, A. M. & Cronin, P. Comparative effectiveness of imaging modalities for the diagnosis of upper and lower urinary tract malignancy: a critically appraised topic. Acad. Radiol. 19, 1134–1140 (2012). PubMed DOI

O’Connor, O. J., McLaughlin, P. & Maher, M. M. MR urography. AJR Am. J. Roentgenol. 195, W201–W206 (2010). PubMed DOI

Woolen, S. A. et al. Risk of nephrogenic systemic fibrosis in patients with stage 4 or 5 chronic kidney disease receiving a group II gadolinium-based contrast agent: a systematic review and meta-analysis. JAMA Intern. Med. 180, 223–230 (2020). PubMed DOI

Tan, W. S. et al. Can renal and bladder ultrasound replace computerized tomography urogram in patients investigated for microscopic hematuria? J. Urol. 200, 973–980 (2018). PubMed DOI PMC

Cumberbatch, M. G. K. et al. Epidemiology of bladder cancer: a systematic review and contemporary update of risk factors in 2018. Eur. Urol. 74, 784–795 (2018). PubMed DOI

Mushtaq, J., Thurairaja, R. & Nair, R. Bladder cancer. Surgery 37, 529–537 (2019).

Slaughter, D. P., Southwick, H. W. & Smejkal, W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer 6, 963–968 (1953). PubMed DOI

Dakubo, G. D., Jakupciak, J. P., Birch-Machin, M. A. & Parr, R. L. Clinical implications and utility of field cancerization. Cancer Cell Int. 7, 2 (2007). PubMed DOI PMC

Jones, T. D. et al. Molecular evidence supporting field effect in urothelial carcinogenesis. Clin. Cancer Res. 11, 6512 (2005). PubMed DOI

Burger, M. et al. Epidemiology and risk factors of urothelial bladder cancer. Eur. Urol. 63, 234–241 (2013). PubMed DOI

van Osch, F. H., Jochems, S. H., van Schooten, F. J., Bryan, R. T. & Zeegers, M. P. Quantified relations between exposure to tobacco smoking and bladder cancer risk: a meta-analysis of 89 observational studies. Int. J. Epidemiol. 45, 857–870 (2016). PubMed DOI

Lammers, R. J. et al. Smoking status is a risk factor for recurrence after transurethral resection of non-muscle-invasive bladder cancer. Eur. Urol. 60, 713–720 (2011). PubMed DOI

Rink, M. et al. Smoking reduces the efficacy of intravesical bacillus Calmette-Guerin immunotherapy in non-muscle-invasive bladder cancer. Eur. Urol. 62, 1204–1206 (2012). PubMed DOI

Sfakianos, J. P., Shariat, S. F., Favaretto, R. L., Rioja, J. & Herr, H. W. Impact of smoking on outcomes after intravesical bacillus Calmette-Guerin therapy for urothelial carcinoma not invading muscle of the bladder. BJU Int. 108, 526–530 (2011). PubMed DOI

Sopori, M. Effects of cigarette smoke on the immune system. Nat. Rev. Immunol. 2, 372–377 (2002). PubMed DOI

Andrade, D. L., Moretti, T. B. C., Neto, W. A., Benedetti, J. & Reis, L. O. Smoke load prognostic impact on bacillus Calmette-Guerin (BCG) treated non-muscle invasive bladder cancer. Int. Urol. Nephrol. 52, 1471–1476 (2020). PubMed DOI

Mori, K. et al. Smoking and bladder cancer: review of the recent literature. Curr. Opin. Urol. 30, 720–725 (2020). PubMed DOI

World Health Organization. Global NCD target: reducing tobacco use. WHO https://www.who.int/beat-ncds/take-action/ncd-tobacco-target.pdf (2020).

Pettenati, C. & Ingersoll, M. A. Mechanisms of BCG immunotherapy and its outlook for bladder cancer. Nat. Rev. Urol. 15, 615–625 (2018). PubMed DOI

Kawai, K., Miyazaki, J., Joraku, A., Nishiyama, H. & Akaza, H. Bacillus Calmette-Guerin (BCG) immunotherapy for bladder cancer: current understanding and perspectives on engineered BCG vaccine. Cancer Sci. 104, 22–27 (2013). PubMed DOI PMC

Fuge, O., Vasdev, N., Allchorne, P. & Green, J. S. Immunotherapy for bladder cancer. Res. Rep. Urol. 7, 65–79 (2015). PubMed PMC

Zlotta, A. R. et al. What is the optimal regimen for BCG intravesical therapy? Are six weekly instillations necessary? Eur. Urol. 37, 470–477 (2000). PubMed DOI

Böhle, A. & Bock, P. R. Intravesical bacille Calmette-Guérin versus mitomycin C in superficial bladder cancer: formal meta-analysis of comparative studies on tumor progression. Urology 63, 682–686 (2004). PubMed DOI

Han, R. F. & Pan, J. G. Can intravesical bacillus Calmette-Guerin reduce recurrence in patients with superficial bladder cancer? A meta-analysis of randomized trials. Urology 67, 1216–1223 (2006). PubMed DOI

Oddens, J. et al. Final results of an EORTC-GU cancers group randomized study of maintenance bacillus Calmette-Guerin in intermediate- and high-risk Ta, T1 papillary carcinoma of the urinary bladder: one-third dose versus full dose and 1 year versus 3 years of maintenance. Eur. Urol. 63, 462–472 (2013). PubMed DOI

Grimm, M. O. et al. Treatment of high-grade non-muscle-invasive bladder carcinoma by standard number and dose of BCG instillations versus reduced number and standard dose of BCG instillations: results of the European Association of Urology Research Foundation randomised phase III clinical trial “NIMBUS”. Eur. Urol. 78, 690–698 (2020). PubMed DOI

Shang, P. F. et al. Intravesical Bacillus Calmette-Guerin versus epirubicin for Ta and T1 bladder cancer. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD006885.pub2 (2011). PubMed DOI

Malmstrom, P. U. et al. An individual patient data meta-analysis of the long-term outcome of randomised studies comparing intravesical mitomycin C versus bacillus Calmette-Guerin for non-muscle-invasive bladder cancer. Eur. Urol. 56, 247–256 (2009). PubMed DOI

Huncharek, M., Geschwind, J. F., Witherspoon, B., McGarry, R. & Adcock, D. Intravesical chemotherapy prophylaxis in primary superficial bladder cancer: a meta-analysis of 3703 patients from 11 randomized trials. J. Clin. Epidemiol. 53, 676–680 (2000). PubMed DOI

Joice, G. A., Bivalacqua, T. J. & Kates, M. Optimizing pharmacokinetics of intravesical chemotherapy for bladder cancer. Nat. Rev. Urol. 16, 599–612 (2019). PubMed DOI

Walker, M. C., Masters, J. R., Parris, C. N., Hepburn, P. J. & English, P. J. Intravesical chemotherapy: in vitro studies on the relationship between dose and cytotoxicity. Urol. Res. 14, 137–140 (1986). PubMed

Prescott, S., Jackson, A. M., Hawkyard, S. J., Alexandroff, A. B. & James, K. Mechanisms of action of intravesical bacille Calmette-Guérin: local immune mechanisms. Clin. Infect. Dis. 31, S91–S93 (2000). PubMed DOI

Sylvester, R. J., Oosterlinck, W. & Witjes, J. A. The schedule and duration of intravesical chemotherapy in patients with non-muscle-invasive bladder cancer: a systematic review of the published results of randomized clinical trials. Eur. Urol. 53, 709–719 (2008). PubMed DOI PMC

Tan, W. S. & Kelly, J. D. Intravesical device-assisted therapies for non-muscle-invasive bladder cancer. Nat. Rev. Urol. 15, 667–685 (2018). PubMed DOI

Westra, A. & Dewey, W. C. Variation in sensitivity to heat shock during the cell-cycle of Chinese hamster cells in vitro. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 19, 467–477 (1971). PubMed DOI

Mantso, T. et al. Effects of hyperthermia as a mitigation strategy in DNA damage-based cancer therapies. Semin. Cancer Biol. 37-38, 96–105 (2016). PubMed DOI

Lefor, A. T., Makohon, S. & Ackerman, N. B. The effects of hyperthermia on vascular permeability in experimental liver metastasis. J. Surg. Oncol. 28, 297–300 (1985). PubMed DOI

Song, C. W. Effect of hyperthermia on vascular functions of normal tissues and experimental tumors; brief communication. J. Natl Cancer Inst. 60, 711–713 (1978). PubMed DOI

Kampinga, H. H. Cell biological effects of hyperthermia alone or combined with radiation or drugs: a short introduction to newcomers in the field. Int. J. Hyperth. 22, 191–196 (2006). DOI

Milani, V. et al. Heat shock protein 70: role in antigen presentation and immune stimulation. Int. J. Hyperth. 18, 563–575 (2002). DOI

Arends, T. J. et al. Results of a randomised controlled trial comparing intravesical chemohyperthermia with mitomycin C versus Bacillus Calmette-Guerin for adjuvant treatment of patients with intermediate- and high-risk non-muscle-invasive bladder cancer. Eur. Urol. 69, 1046–1052 (2016). PubMed DOI

Tan, W. S. et al. Radiofrequency-induced thermo-chemotherapy effect versus a second course of Bacillus Calmette-Guerin or institutional standard in patients with recurrence of non-muscle-invasive bladder cancer following induction or maintenance Bacillus Calmette-Guerin Therapy (HYMN): a phase III, open-label, randomised controlled trial. Eur. Urol. 75, 63–71 (2019). PubMed DOI

Hudson, M. A. & Herr, H. W. Carcinoma in situ of the bladder. J. Urol. 153, 564–572 (1995). PubMed DOI

Fankhauser, C. D., Teoh, J. Y. & Mostafid, H. Treatment options and results of adjuvant treatment in nonmuscle-invasive bladder cancer (NMIBC) during the Bacillus Calmette-Guerin shortage. Curr. Opin. Urol. https://doi.org/10.1097/MOU.0000000000000739 (2020). PubMed DOI

Teoh, J. Y. C., Roupret, M., Shariat, S. F. & Herrmann, T. Intravesical therapy for bladder cancer in the pandemic of Covid-19. World J. Urol. https://doi.org/10.1007/s00345-020-03218-8 (2020). PubMed DOI PMC

Shore, N. D. et al. Non-muscle-invasive bladder cancer: an overview of potential new treatment options. Urol. Oncol. 39, 642–663 (2021). PubMed DOI

Balar, A. V. et al. Keynote 057: phase II trial of pembrolizumab (pembro) for patients (pts) with high-risk (HR) nonmuscle invasive bladder cancer (NMIBC) unresponsive to bacillus Calmette-Guérin (BCG). J. Clin. Oncol. 37, 350–350 (2019). DOI

Black, P. C. et al. Phase II trial of atezolizumab in BCG-unresponsive non-muscle invasive bladder cancer: SWOG S1605 (NCT #02844816). J. Clin. Oncol. 38, 5022–5022 (2020). DOI

Boorjian, S. A. et al. Intravesical nadofaragene firadenovec gene therapy for BCG-unresponsive non-muscle-invasive bladder cancer: a single-arm, open-label, repeat-dose clinical trial. Lancet Oncol. 22, 107–117 (2021). PubMed DOI

Kawahara, T. et al. PD-1 and PD-L1 are more highly expressed in high-grade bladder cancer than in low-grade cases: PD-L1 might function as a mediator of stage progression in bladder cancer. BMC Urol. 18, 97 (2018). PubMed DOI PMC

Hashizume, A. et al. Enhanced expression of PD-L1 in non-muscle-invasive bladder cancer after treatment with Bacillus Calmette-Guerin. Oncotarget 9, 34066–34078 (2018). PubMed DOI PMC

Wright, K. M. FDA approves pembrolizumab for BCG-unresponsive NMIBC. Oncology 34, 44 (2020). PubMed

Benedict, W. F. et al. Intravesical Ad-IFNalpha causes marked regression of human bladder cancer growing orthotopically in nude mice and overcomes resistance to IFN-alpha protein. Mol. Ther. 10, 525–532 (2004). PubMed DOI

Tao, Z. et al. Efficacy of a single intravesical treatment with Ad-IFN/Syn 3 is dependent on dose and urine IFN concentration obtained: implications for clinical investigation. Cancer Gene Ther. 13, 125–130 (2006). PubMed DOI

Connor, R. J., Anderson, J. M., Machemer, T., Maneval, D. C. & Engler, H. Sustained intravesical interferon protein exposure is achieved using an adenoviral-mediated gene delivery system: a study in rats evaluating dosing regimens. Urology 66, 224–229 (2005). PubMed DOI

Yamashita, M. et al. Syn3 provides high levels of intravesical adenoviral-mediated gene transfer for gene therapy of genetically altered urothelium and superficial bladder cancer. Cancer Gene Ther. 9, 687–691 (2002). PubMed DOI

Di Paolo, C. et al. A recombinant immunotoxin derived from a humanized epithelial cell adhesion molecule-specific single-chain antibody fragment has potent and selective antitumor activity. Clin. Cancer Res. 9, 2837–2848 (2003). PubMed

Balzar, M., Winter, M. J., de Boer, C. J. & Litvinov, S. V. The biology of the 17-1A antigen (Ep-CAM). J. Mol. Med. 77, 699–712 (1999). PubMed DOI

Munz, M. et al. The carcinoma-associated antigen EpCAM upregulates c-myc and induces cell proliferation. Oncogene 23, 5748–5758 (2004). PubMed DOI

Beverley, P., Olabiran, Y., Ledermann, J., Bobrow, L. & Souhami, L. Results of central data analysis. Br. J. Cancer Suppl. 14, 10–19 (1991). PubMed PMC

Oppenheimer, N. J. & Bodley, J. W. Diphtheria toxin. Site and configuration of ADP-ribosylation of diphthamide in elongation factor 2. J. Biol. Chem. 256, 8579–8581 (1981). PubMed DOI

Kowalski, M. et al. A phase II study of oportuzumab monatox: an immunotoxin therapy for patients with noninvasive urothelial carcinoma in situ previously treated with bacillus Calmette-Guerin. J. Urol. 188, 1712–1718 (2012). PubMed DOI

Pietzak, E. J. et al. Next-generation sequencing of nonmuscle invasive bladder cancer reveals potential biomarkers and rational therapeutic targets. Eur. Urol. 72, 952–959 (2017). PubMed DOI PMC

Garczyk, S. et al. Next-generation sequencing reveals potential predictive biomarkers and targets of therapy for urothelial carcinoma in situ of the urinary bladder. Am. J. Pathol. 190, 323–332 (2020). PubMed DOI

van Kessel, K. E. M. et al. Molecular markers increase precision of the European Association of Urology Non-Muscle-Invasive Bladder Cancer Progression Risk Groups. Clin. Cancer Res. 24, 1586–1593 (2018). PubMed DOI

van Rhijn, B. W. et al. Molecular grading of urothelial cell carcinoma with fibroblast growth factor receptor 3 and MIB-1 is superior to pathologic grade for the prediction of clinical outcome. J. Clin. Oncol. 21, 1912–1921 (2003). PubMed DOI

Bakkar, A. A. et al. FGFR3 and TP53 gene mutations define two distinct pathways in urothelial cell carcinoma of the bladder. Cancer Res. 63, 8108–8112 (2003). PubMed

Turner, N. & Grose, R. Fibroblast growth factor signalling: from development to cancer. Nat. Rev. Cancer 10, 116–129 (2010). PubMed DOI

Kandimalla, R. et al. Genome-wide analysis of CpG island methylation in bladder cancer identified TBX2, TBX3, GATA2, and ZIC4 as pTa-specific prognostic markers. Eur. Urol. 61, 1245–1256 (2012). PubMed DOI

Hurst, C. D., Platt, F. M., Taylor, C. F. & Knowles, M. A. Novel tumor subgroups of urothelial carcinoma of the bladder defined by integrated genomic analysis. Clin. Cancer Res. 18, 5865–5877 (2012). PubMed DOI PMC

Hurst, C. D. et al. Genomic subtypes of non-invasive bladder cancer with distinct metabolic profile and female gender bias in KDM6A mutation frequency. Cancer Cell 32, 701–715.e7 (2017). PubMed DOI PMC

Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013). PubMed DOI PMC

Petljak, M. et al. Characterizing mutational signatures in human cancer cell lines reveals episodic APOBEC mutagenesis. Cell 176, 1282–1294.e20 (2019). PubMed DOI PMC

Venkatesan, S. et al. Perspective: APOBEC mutagenesis in drug resistance and immune escape in HIV and cancer evolution. Ann. Oncol. 29, 563–572 (2018). PubMed DOI PMC

Law, E. K. et al. APOBEC3A catalyzes mutation and drives carcinogenesis in vivo. J. Exp. Med. https://doi.org/10.1084/jem.20200261 (2020). PubMed DOI PMC

Lipponen, P. K., Eskelinen, M. J., Jauhiainen, K., Harju, E. & Terho, R. Tumour infiltrating lymphocytes as an independent prognostic factor in transitional cell bladder cancer. Eur. J. Cancer 29A, 69–75 (1992). PubMed

Patschan, O. et al. A molecular pathologic framework for risk stratification of stage T1 urothelial carcinoma. Eur. Urol. 68, 824–832 (2015). PubMed DOI

Ayari, C. et al. High level of mature tumor-infiltrating dendritic cells predicts progression to muscle invasion in bladder cancer. Hum. Pathol. 44, 1630–1637 (2013). PubMed DOI

Lindskrog, S. V. et al. An integrated multi-omics analysis identifies prognostic molecular subtypes of non-muscle-invasive bladder cancer. Nat. Commun. 12, 2301 (2021). PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...