Protein purification strategies must consider downstream applications and individual biological characteristics

. 2022 Apr 07 ; 21 (1) : 52. [epub] 20220407

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35392897

Grantová podpora
LTC20078 MEYS CR
LTC20078 MEYS CR
18-10687S Czech Science Foundation
GAUK 1436220 Univerzita Karlova v Praze
SVN20-01 CRP-ICGEB research grant

Odkazy

PubMed 35392897
PubMed Central PMC8991485
DOI 10.1186/s12934-022-01778-5
PII: 10.1186/s12934-022-01778-5
Knihovny.cz E-zdroje

BACKGROUND: Proteins are used as reagents in a broad range of scientific fields. The reliability and reproducibility of experimental data will largely depend on the quality of the (recombinant) proteins and, consequently, these should undergo thorough structural and functional controls. Depending on the downstream application and the biochemical characteristics of the protein, different sets of specific features will need to be checked. RESULTS: A number of examples, representative of recurrent issues and previously published strategies, has been reported that illustrate real cases of recombinant protein production in which careful strategy design at the start of the project combined with quality controls throughout the production process was imperative to obtain high-quality samples compatible with the planned downstream applications. Some proteins possess intrinsic properties (e.g., prone to aggregation, rich in cysteines, or a high affinity for nucleic acids) that require certain precautions during the expression and purification process. For other proteins, the downstream application might demand specific conditions, such as for proteins intended for animal use that need to be endotoxin-free. CONCLUSIONS: This review has been designed to act as a practical reference list for researchers who wish to produce and evaluate recombinant proteins with certain specific requirements or that need particular care for their preparation and storage.

Zobrazit více v PubMed

Berrow N, de Marco A, Lebendiker M, Garcia-Alai M, Knauer SH, Lopez-Mendez B, Matagne A, Parret A, Remans K, Uebel S, Raynal B. Quality control of purified proteins to improve data quality and reproducibility: results from a large-scale survey. Eur Biophys J. 2021;50(3–4):453–460. doi: 10.1007/s00249-021-01528-2. PubMed DOI

de Marco A, Berrow N, Lebendiker M, Garcia-Alai M, Knauer SH, Lopez-Mendez B, Matagne A, Parret A, Remans K, Uebel S, Raynal B. Quality control of protein reagents for the improvement of research data reproducibility. Nat Commun. 2021;12(1):2795. doi: 10.1038/s41467-021-23167-z. PubMed DOI PMC

Danev R, Yanagisawa H, Kikkawa M. Cryo-EM performance testing of hardware and data acquisition strategies. Microscopy (Oxf) 2021;70(6):487–497. doi: 10.1093/jmicro/dfab016. PubMed DOI

Edinger N, Lebendiker M, Klein S, Zigler M, Langut Y, Levitzki A. Targeting polyIC to EGFR over-expressing cells using a dsRNA binding protein domain tethered to EGF. PLoS ONE. 2016;11(9):e0162321. doi: 10.1371/journal.pone.0162321. PubMed DOI PMC

Langut Y, Edinger N, Flashner-Abramson E, Melamed-Book N, Lebendiker M, Klein S, Levitzki A. (2017) PSMA-homing dsRNA chimeric protein vector kills prostate cancer cells and evokes anti-tumor immunity. Oncotarget. 2017;8(15):24046–24062. doi: 10.18632/oncotarget.15733. PubMed DOI PMC

Fish A, Lebendiker M, Nechushtai R, Livnah O. Purification, crystallization and preliminary X-ray analysis of ferredoxin isolated from thermophilic cyanobacterium Mastigocladus laminosus. Acta Crystallogr D Biol Crystallogr. 2003;59(4):734–736. doi: 10.1107/s0907444903002245. PubMed DOI

Rivera F, Espino AM. Adjuvant-enhanced antibody and cellular responses to inclusion bodies expressing FhSAP2 correlates with protection of mice to Fasciola hepatica. Exp Parasitol. 2016;160:31–38. doi: 10.1016/j.exppara.2015.11.002. PubMed DOI PMC

Plasil M, Mohandesan E, Fitak RR, Musilova P, Kubickova S, Burger PA, Horin P. The major histocompatibility complex in Old World camelids and low polymorphism of its class II genes. BMC Genomics. 2016;7:167. doi: 10.1186/s12864-016-2500-1. PubMed DOI PMC

Pardon E, Laeremans T, Triest S, Rasmussen SG, Wohlkönig A, Ruf A, Muyldermans S, Hol WG, Kobilka BK, Steyaert J. A general protocol for the generation of Nanobodies for structural biology. Nat Protoc. 2014;9(3):674–693. doi: 10.1038/nprot.2014.039. PubMed DOI PMC

de Marco A. Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli. Microb Cell Fact. 2009;8:26. doi: 10.1186/1475-2859-8-26. PubMed DOI PMC

de Marco A. Recombinant expression of nanobodies and nanobody-derived immunoreagents. Prot Expr Purif. 2020;172:105645. doi: 10.1016/j.pep.2020.105645. PubMed DOI PMC

Willis MS, Hogan JK, Prabhakar P, Liu X, Tsai K, Wei Y, Fox T. Investigation of protein refolding using a fractional factorial screen: a study of reagent effects and interactions. Protein Sci. 2005;14(7):1818–1826. doi: 10.1110/ps.051433205. PubMed DOI PMC

Soler MA, de Marco A, Fortuna S. Molecular dynamics simulations and docking enable to explore the biophysical factors controlling the yields of engineered nanobodies. Sci Rep. 2016;6:34869. doi: 10.1038/srep34869. PubMed DOI PMC

Bláha J, Pachl P, Novák P, Vaněk O. Expression and purification of soluble and stable ectodomain of natural killer cell receptor LLT1 through high-density transfection of suspension adapted HEK293S GnTI(-) cells. Prot Expr Purif. 2015;109:7–13. doi: 10.1016/j.pep.2015.01.006. PubMed DOI

Skálová T, Bláha J, Harlos K, Dušková J, Koval T, Stránský J, Hašek J, Vaněk O, Dohnálek J. Four crystal structures of human LLT1, a ligand of human NKR-P1, in varied glycosylation and oligomerization states. Acta Crystallogr D Biol Crystallogr. 2015;71(3):578–591. doi: 10.1107/S1399004714027928. PubMed DOI PMC

de Marco A, Vigh L, Diamant S, Goloubinoff P. Native folding of aggregation-prone recombinant proteins in Escherichia coli by osmolytes, plasmid- or benzyl alcohol-overexpressed molecular chaperones. Cell Stress Chaperones. 2005;10(4):329–339. doi: 10.1379/csc-139r.1. PubMed DOI PMC

Lebendiker M, Danieli T. Production of prone to aggregate proteins. FEBS Lett. 2014;588(2):236–246. doi: 10.1016/j.febslet.2013.10.044. PubMed DOI

Lebendiker M, Maes M, Friedler A. A screening methodology for purifying proteins with aggregation problems. Meth Mol Biol. 2015;1258:261–281. doi: 10.1007/978-1-4939-2205-5_14. PubMed DOI

Philo JS, Arakawa T. Mechanisms of protein aggregation. Curr Pharm Biotechnol. 2009;10(4):348–351. doi: 10.2174/138920109788488932. PubMed DOI

Leibly DJ, Nguyen TN, Kao LT, Hewitt SN, Barrett LK. Van Voorhis WC Stabilizing additives added during cell lysis aid in the solubilization of recombinant proteins. PLoS ONE. 2012;7(12):e52482. doi: 10.1371/journal.pone.0052482. PubMed DOI PMC

Esposito D, Chatterjee DK. Enhancement of soluble protein expression through the use of fusion tags. Curr Opin Biotechnol. 2006;17(4):353–358. doi: 10.1016/j.copbio.2006.06.003. PubMed DOI

Sala E, de Marco A. Screening optimized protein purification protocols by coupling small-scale expression and mini-size exclusion chromatography. Prot Expr Purif. 2010;74(2):231–235. doi: 10.1016/j.pep.2010.05.014. PubMed DOI

Fedorov O, Huber K, Eisenreich A, Filippakopoulos P, King O, Bullock AN, Szklarczyk D, Jensen LJ, Fabbro D, Trappe J, Rauch U, Bracher F, Knapp S. Specific CLK inhibitors from a novel chemotype for regulation of alternative splicing. Chem Biol. 2011;18(1):67–76. doi: 10.1016/j.chembiol.2010.11.009. PubMed DOI PMC

Dekel N, Einsenberg-Domovich Y, Karlas A, von Kries J, Lebendiker M, Danieli T, Livnah O. Expression, purification and crystallization of CLK1 kinase - A potential target for antiviral therapy. Prot Expr Purif. 2020;176:105742. doi: 10.1016/j.pep.2020.105742. PubMed DOI

Golovanov AP, Hautbergue GM, Wilson SA, Lian LY. A simple method for improving protein solubility and long-term stability. J Am Chem Soc. 2004;126(29):8933–8939. doi: 10.1021/ja049297h. PubMed DOI

Nishi N, Abe A, Iwaki J, Yoshida H, Itoh A, Shoji H, Kamitori S, Hirabayashi J, Nakamura T. Functional and structural bases of a cysteine-less mutant as a long-lasting substitute for galectin-1. Glycobiology. 2008;18(12):1065–1073. doi: 10.1093/glycob/cwn089. PubMed DOI

Ongkudon CM, Chew JH, Liu B, Danquah MK. Chromatographic Removal of Endotoxins: A Bioprocess Engineer’s Perspective. ISRN Chromatogr. 2012 doi: 10.5402/2012/649746. DOI

Karkar A, Rees A. Influence of endotoxin contamination on anti-GBM antibody induced glomerular injury in rats. Kidney Intl. 1997;52(6):1579–1583. doi: 10.1038/ki.1997.488. PubMed DOI

Watanabe J, Miyazaki Y, Zimmerman GA, Albertine KH, McIntyre TM. Endotoxin contamination of ovalbumin suppresses murine immunologic responses and development of airway hyper-reactivity. J Biol Chem. 2003;278(43):42361–42368. doi: 10.1074/jbc.M307752200. PubMed DOI

Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine. 2008;42(2):145–151. doi: 10.1016/j.cyto.2008.01.006. PubMed DOI

Yaroustovsky M, Plyushch M, Popov D, Samsonova N, Abramyan M, Popok Z, Krotenko N. Prognostic value of endotoxin activity assay in patients with severe sepsis after cardiac surgery. J Inflamm. 2013;10(1):8. doi: 10.1186/1476-9255-10-8. PubMed DOI PMC

Aida Y, Pabst M. Removal of endotoxin from protein solutions by phase separation using Triton X-114. J Immunol Meth. 1990;132(2):191–195. doi: 10.1016/0022-1759(90)90029-u. PubMed DOI

Zimmerman T, Petit Frère C, Satzger M, Raba M, Weisbach M, Döhn K, Popp A, Donzeau M. Simultaneous metal chelate affinity purification and endotoxin clearance of recombinant antibody fragments. J Immunol Meth. 2006;314(1–2):67–73. doi: 10.1016/j.jim.2006.05.012. PubMed DOI

Chen Z, Cui Y, Leong YA, Beddoe T, Yu D. Efficient production of recombinant IL-21 proteins for pre-clinical studies by a two-step dilution refolding method. Int Immunopharmacol. 2013;16(3):376–381. doi: 10.1016/j.intimp.2013.02.017. PubMed DOI

Endotoxins and Cell Culture. Corning Application Note TC-305. https://www.corning.com/catalog/cls/documents/application-notes/TC-305.pdf

Bieniossek C, Nie Y, Frey D, Olieric N, Schaffitzel C, Collinson I, Roier C, Berger P, Richmond TJ, Steinmetz MO, Berger I. Automated unrestricted multigene recombineering for multiprotein complex production. Nat Methods. 2009;6(6):447–450. doi: 10.1038/nmeth.1326. PubMed DOI

Tan S, Kern RC, Selleck W. The pST44 polycistronic expression system for producing protein complexes in Escherichia coli. Prot Expr Purif. 2005;40(2):385–395. doi: 10.1016/j.pep.2004.12.002. PubMed DOI

Berger I, Tölzer C, Gupta K. The MultiBac system: a perspective. Emerg Top Life Sci. 2019;3(5):477–482. doi: 10.1042/ETLS20190084. PubMed DOI

Weissmann F, Petzold G, VanderLinden R, Huis PJ, Brown NG, Lampert F, Westermann S, Stark H, Schulman BA, Peters JM. biGBac enables rapid gene assembly for the expression of large multisubunit protein complexes. Proc Natl Acad Sci USA. 2016;113(19):E2564–E2569. doi: 10.1073/pnas.1604935113. PubMed DOI PMC

Gradia SD, Ishida JP, Tsai MS, Jeans C, Tainer JA, Fuss JO. MacroBac: New technologies for robust and efficient large-scale production of recombinant multi-protein complexes. Meth Enzymol. 2017;592:1–26. doi: 10.1016/bs.mie.2017.03.008. PubMed DOI PMC

Mansouri M, Bellon-Echeverria I, Rizk A, Ehsaei Z, Cianciolo Cosentino C, Silva CS, Xie Y, Boyce FM, Davis MW, Neuhauss SC, Taylor V, Ballmer-Hofer K, Berger I, Berger P. Highly efficient baculovirus-mediated multigene delivery in primary cells. Nat Commun. 2016;7:11529. doi: 10.1038/ncomms11529. PubMed DOI PMC

Vijayachandran LS, Viola C, Garzoni F, Trowitzsch S, Bieniossek C, Chaillet M, Schaffitzel C, Busso D, Romier C, Poterszman A, Richmond TJ, Berger I. Robots, pipelines, polyproteins: enabling multiprotein expression in prokaryotic and eukaryotic cells. J Struct Biol. 2011;175(2):198–208. doi: 10.1016/j.jsb.2011.03.007. PubMed DOI PMC

Reich S, Guilligay D, Pflug A, Malet H, Berger I, Crépin T, Hart D, Lunardi T, Nanao M, Ruigrok RW, Cusack S. Structural insight into cap-snatching and RNA synthesis by influenza polymerase. Nature. 2014;516(7531):361–366. doi: 10.1038/nature14009. PubMed DOI

Sonn-Segev A, Belacic K, Bodrug T, Young G, VanderLinden RT, Schulman BA, Schimpf J, Friedrich T, Dip PV, Schwartz TU, Bauer B, Peters JM, Struwe WB, Benesch JLP, Brown NG, Haselbach D, Kukura P. Quantifying the heterogeneity of macromolecular machines by mass photometry. Nat Commun. 2020;11(1):1772. doi: 10.1038/s41467-020-15642-w. PubMed DOI PMC

Leney AC, Heck AJ. Native Mass Spectrometry: What is in the Name? J Am Soc Mass Spectrom. 2017;28(1):5–13. doi: 10.1021/jasms.8b05378. PubMed DOI PMC

Tamara S, den Boer MA, Heck AJR. High-Resolution Native Mass Spectrometry. Chem Rev. 2021 doi: 10.1021/acs.chemrev.1c00212. PubMed DOI PMC

Chari A, Haselbach D, Kirves JM, Ohmer J, Paknia E, Fischer N, Ganichkin O, Möller V, Frye JJ, Petzold G, Jarvis M, Tietzel M, Grimm C, Peters JM, Schulman BA, Tittmann K, Markl J, Fischer U, Stark H. ProteoPlex: stability optimization of macromolecular complexes by sparse-matrix screening of chemical space. Nat Methods. 2015;12(9):859–865. doi: 10.1038/nmeth.3493. PubMed DOI PMC

Bossi S, Ferranti B, Martinelli C, Capasso P, de Marco A. Antibody-mediated purification of co-expressed antigen-antibody complexes. Protein Expr Purif. 2010;72(1):55–58. doi: 10.1016/j.pep.2010.01.003. PubMed DOI

Gräslund S, Nordlund P, Weigelt J, Hallberg BM, Bray J, Gileadi O, Knapp S, Oppermann U, Arrowsmith C, Hui R, Ming J. Protein production and purification. Nat Methods. 2008;5(2):135–146. doi: 10.1038/nmeth.f.202. PubMed DOI PMC

Oliveira C, Domingues L. Guidelines to reach high-quality purified recombinant proteins. Appl Microbiol Biotechnol. 2018;102(1):81–92. doi: 10.1007/s00253-017-8623-8. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...