Obesity I: Overview and molecular and biochemical mechanisms

. 2022 May ; 199 () : 115012. [epub] 20220405

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, přehledy, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35393120

Grantová podpora
P30 ES025128 NIEHS NIH HHS - United States
P30 ES030283 NIEHS NIH HHS - United States
P30 DK063720 NIDDK NIH HHS - United States
P30 ES005022 NIEHS NIH HHS - United States
P01 ES028942 NIEHS NIH HHS - United States
T32 ES011564 NIEHS NIH HHS - United States
R21 ES031510 NIEHS NIH HHS - United States
R01 ES032189 NIEHS NIH HHS - United States
P20 GM103641 NIGMS NIH HHS - United States
P01 AT003961 NCCIH NIH HHS - United States
R01 MH123544 NIMH NIH HHS - United States
R00 ES030405 NIEHS NIH HHS - United States
R35 ES028373 NIEHS NIH HHS - United States
P42 ES023716 NIEHS NIH HHS - United States

Odkazy

PubMed 35393120
PubMed Central PMC9050949
DOI 10.1016/j.bcp.2022.115012
PII: S0006-2952(22)00106-X
Knihovny.cz E-zdroje

Obesity is a chronic, relapsing condition characterized by excess body fat. Its prevalence has increased globally since the 1970s, and the number of obese and overweight people is now greater than those underweight. Obesity is a multifactorial condition, and as such, many components contribute to its development and pathogenesis. This is the first of three companion reviews that consider obesity. This review focuses on the genetics, viruses, insulin resistance, inflammation, gut microbiome, and circadian rhythms that promote obesity, along with hormones, growth factors, and organs and tissues that control its development. It shows that the regulation of energy balance (intake vs. expenditure) relies on the interplay of a variety of hormones from adipose tissue, gastrointestinal tract, pancreas, liver, and brain. It details how integrating central neurotransmitters and peripheral metabolic signals (e.g., leptin, insulin, ghrelin, peptide YY3-36) is essential for controlling energy homeostasis and feeding behavior. It describes the distinct types of adipocytes and how fat cell development is controlled by hormones and growth factors acting via a variety of receptors, including peroxisome proliferator-activated receptor-gamma, retinoid X, insulin, estrogen, androgen, glucocorticoid, thyroid hormone, liver X, constitutive androstane, pregnane X, farnesoid, and aryl hydrocarbon receptors. Finally, it demonstrates that obesity likely has origins in utero. Understanding these biochemical drivers of adiposity and metabolic dysfunction throughout the life cycle lends plausibility and credence to the "obesogen hypothesis" (i.e., the importance of environmental chemicals that disrupt these receptors to promote adiposity or alter metabolism), elucidated more fully in the two companion reviews.

Brody School of Medicine East Carolina University Greenville NC 27834 United States

College of Health and Medicine Australian National University Canberra Australia

College of Pharmacy Texas A and M University College Station TX 77843 United States

Department of Biochemistry and Toxicology University of Paris INSERM U1224 75006 Paris France

Department of Cytokinetics Institute of Biophysics of the Czech Academy of Sciences Brno Czech Republic

Department of Medical Sciences University of Uppsala Uppsala Sweden

Division of Endocrinology Department of Pediatrics University of California San Francisco CA 94143 United States

Division of Gastroenterology Hepatology and Nutrition University of Louisville Louisville KY 40402 United States

Environmental Health and Disease Laboratory University of South Carolina Columbia SC 29208 United States

Healthy Environment and Endocrine Disruptor Strategies Commonweal Bolinas CA 92924 United States

Institute of Environmental Health Sciences and Department of Pharmacology Wayne State University Detroit MI 48202 United States

Norris Cotton Cancer Center Department of Molecular and Systems Biology Geisel School of Medicine at Dartmouth Lebanon NH 03756 United States

Occupational and Environmental Health Research Group University of Stirling Stirling Scotland United Kingdom

School of Environmental and Biological Sciences Rutgers University New Brunswick NJ 08901 United States

Sorbonne Paris Nord University Bobigny INSERM U1124 Paris France

Univ Rennes INSERM EHESP IRSET UMR_S 1085 35000 Rennes France

Zobrazit více v PubMed

Jastreboff AM, Kotz CM, Kahan S, Kelly AS, Heymsfield SB, Obesity as a Disease: The Obesity Society 2018 Position Statement, Obesity (Silver Spring) 27(1) (2019) 7–9. PubMed

Mechanick JI, Garber AJ, Handelsman Y, Garvey WT, American Association of Clinical Endocrinologists’ position statement on obesity and obesity medicine, Endocr Pract 18(5) (2012) 642–8. PubMed

Jaacks LM, Vandevijvere S, Pan A, McGowan CJ, Wallace C, Imamura F, Mozaffarian D, Swinburn B, Ezzati M, The obesity transition: stages of the global epidemic, The lancet. Diabetes & endocrinology 7(3) (2019) 231–240. PubMed PMC

Blüher M, Obesity: global epidemiology and pathogenesis, Nat Rev Endocrinol 15(5) (2019) 288–298. PubMed

Morales Camacho WJ, Molina Díaz JM, Plata Ortiz S, Plata Ortiz JE, Morales Camacho MA, Calderón BP, Childhood obesity: Aetiology, comorbidities, and treatment, Diabetes Metab Res Rev 35(8) (2019) e3203. PubMed

Hales CM, Carroll MD, Fryar CD, Ogden CL, Prevalence of Obesity Among Adults and Youth: United States, 2015-2016, NCHS data brief (288) (2017) 1–8. PubMed

Williams EP, Mesidor M, Winters K, Dubbert PM, Wyatt SB, Overweight and Obesity: Prevalence, Consequences, and Causes of a Growing Public Health Problem, Current obesity reports 4(3) (2015) 363–370. PubMed

Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, Mullany EC, Biryukov S, Abbafati C, Abera SF, Abraham JP, Abu-Rmeileh NM, Achoki T, AlBuhairan FS, Alemu ZA, Alfonso R, Ali MK, Ali R, Guzman NA, Ammar W, Anwari P, Banerjee A, Barquera S, Basu S, Bennett DA, Bhutta Z, Blore J, Cabral N, Nonato IC, Chang JC, Chowdhury R, Courville KJ, Criqui MH, Cundiff DK, Dabhadkar KC, Dandona L, Davis A, Dayama A, Dharmaratne SD, Ding EL, Durrani AM, Esteghamati A, Farzadfar F, Fay DF, Feigin VL, Flaxman A, Forouzanfar MH, Goto A, Green MA, Gupta R, Hafezi-Nejad N, Hankey GJ, Harewood HC, Havmoeller R, Hay S, Hernandez L, Husseini A, Idrisov BT, Ikeda N, Islami F, Jahangir E, Jassal SK, Jee SH, Jeffreys M, Jonas JB, Kabagambe EK, Khalifa SE, Kengne AP, Khader YS, Khang YH, Kim D, Kimokoti RW, Kinge JM, Kokubo Y, Kosen S, Kwan G, Lai T, Leinsalu M, Li Y, Liang X, Liu S, Logroscino G, Lotufo PA, Lu Y, Ma J, Mainoo NK, Mensah GA, Merriman TR, Mokdad AH, Moschandreas J, Naghavi M, Naheed A, Nand D, Narayan KM, Nelson EL, Neuhouser ML, Nisar MI, Ohkubo T, Oti SO, Pedroza A, Prabhakaran D, Roy N, Sampson U, Seo H, Sepanlou SG, Shibuya K, Shiri R, Shiue I, Singh GM, Singh JA, Skirbekk V, Stapelberg NJ, Sturua L, Sykes BL, Tobias M, Tran BX, Trasande L, Toyoshima H, van de Vijver S, Vasankari TJ, Veerman JL, Velasquez-Melendez G, Vlassov VV, Vollset SE, Vos T, Wang C, Wang X, Weiderpass E, Werdecker A, Wright JL, Yang YC, Yatsuya H, Yoon J, Yoon SJ, Zhao Y, Zhou M, Zhu S, Lopez AD, Murray CJ, Gakidou E, Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013, Lancet 384(9945) (2014) 766–81. PubMed PMC

Ogden CL, Carroll MD, Fryar CD, Flegal KM, Prevalence of Obesity Among Adults and Youth: United States, 2011-2014, NCHS data brief (219) (2015) 1–8. PubMed

Klimentidis YC, Beasley TM, Lin HY, Murati G, Glass GE, Guyton M, Newton W, Jorgensen M, Heymsfield SB, Kemnitz J, Fairbanks L, Allison DB, Canaries in the coal mine: a cross-species analysis of the plurality of obesity epidemics, Proc Biol Sci 278(1712) (2011) 1626–32. PubMed PMC

Landsberg L, Aronne LJ, Beilin LJ, Burke V, Igel LI, Lloyd-Jones D, Sowers J, Obesity-related hypertension: pathogenesis, cardiovascular risk, and treatment: a position paper of The Obesity Society and the American Society of Hypertension, J Clin Hypertens (Greenwich) 15(1) (2013) 14–33. PubMed PMC

Andolfi C, Fisichella PM, Epidemiology of Obesity and Associated Comorbidities, J Laparoendosc Adv Surg Tech A 28(8) (2018) 919–924. PubMed

Stefan N, Causes, consequences, and treatment of metabolically unhealthy fat distribution, The lancet. Diabetes & endocrinology 8(7) (2020) 616–627. PubMed

Chan JC, Cheung JC, Stehouwer CD, Emeis JJ, Tong PC, Ko GT, Yudkin JS, The central roles of obesity-associated dyslipidaemia, endothelial activation and cytokines in the Metabolic Syndrome--an analysis by structural equation modelling, International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity 26(7) (2002) 994–1008. PubMed

Loomis AK, Kabadi S, Preiss D, Hyde C, Bonato V, St Louis M, Desai J, Gill JM, Welsh P, Waterworth D, Sattar N, Body Mass Index and Risk of Nonalcoholic Fatty Liver Disease: Two Electronic Health Record Prospective Studies, The Journal of clinical endocrinology and metabolism 101(3) (2016) 945–52. PubMed PMC

Mathieu P, Lemieux I, Després JP, Obesity, inflammation, and cardiovascular risk, Clin Pharmacol Ther 87(4) (2010) 407–16. PubMed

Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Cheng S, Delling FN, Elkind MSV, Evenson KR, Ferguson JF, Gupta DK, Khan SS, Kissela BM, Knutson KL, Lee CD, Lewis TT, Liu J, Loop MS, Lutsey PL, Ma J, Mackey J, Martin SS, Matchar DB, Mussolino ME, Navaneethan SD, Perak AM, Roth GA, Samad Z, Satou GM, Schroeder EB, Shah SH, Shay CM, Stokes A, VanWagner LB, Wang NY, Tsao CW, Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association, Circulation 143(8) (2021) e254–e743. PubMed

Koroukian SM, Dong W, Berger NA, Changes in Age Distribution of Obesity-Associated Cancers, JAMA network open 2(8) (2019) e199261. PubMed PMC

Stephan BCM, Birdi R, Tang EYH, Cosco TD, Donini LM, Licher S, Ikram MA, Siervo M, Robinson L, Secular Trends in Dementia Prevalence and Incidence Worldwide: A Systematic Review, J Alzheimers Dis 66(2) (2018) 653–680. PubMed

Benziger CP, Roth GA, Moran AE, The Global Burden of Disease Study and the Preventable Burden of NCD, Glob Heart 11(4) (2016) 393–397. PubMed

Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study 2016, Lancet 390(10100) (2017) 1151–1210. PubMed PMC

Bhattacharya J, Bundorf MK, The incidence of the healthcare costs of obesity, Journal of health economics 28(3) (2009) 649–58. PubMed PMC

Xanthakos SA, Lavine JE, Yates KP, Schwimmer JB, Molleston JP, Rosenthal P, Murray KF, Vos MB, Jain AK, Scheimann AO, Miloh T, Fishbein M, Behling CA, Brunt EM, Sanyal AJ, Tonascia J, Progression of Fatty Liver Disease in Children Receiving Standard of Care Lifestyle Advice, Gastroenterology 159(5) (2020) 1731–1751.e10. PubMed PMC

Bjornstad P, Drews KL, Caprio S, Gubitosi-Klug R, Nathan DM, Tesfaldet B, Tryggestad J, White NH, Zeitler P, Long-Term Complications in Youth-Onset Type 2 Diabetes, The New England journal of medicine 385(5) (2021) 416–426. PubMed PMC

Lawrence JM, Divers J, Isom S, Saydah S, Imperatore G, Pihoker C, Marcovina SM, Mayer-Davis EJ, Hamman RF, Dolan L, Dabelea D, Pettitt DJ, Liese AD, Trends in Prevalence of Type 1 and Type 2 Diabetes in Children and Adolescents in the US, 2001-2017, Jama 326(8) (2021) 717–727. PubMed PMC

Dobner J, Kaser S, Body mass index and the risk of infection - from underweight to obesity, Clin Microbiol Infect 24(1) (2018) 24–28. PubMed

Korakas E, Ikonomidis I, Kousathana F, Balampanis K, Kountouri A, Raptis A, Palaiodimou L, Kokkinos A, Lambadiari V, Obesity and COVID-19: immune and metabolic derangement as a possible link to adverse clinical outcomes, American journal of physiology. Endocrinology and metabolism 319(1) (2020) E105–E109. PubMed PMC

Popkin BM, Du S, Green WD, Beck MA, Algaith T, Herbst CH, Alsukait RF, Alluhidan M, Alazemi N, Shekar M, Individuals with obesity and COVID-19: A global perspective on the epidemiology and biological relationships, Obes Rev 21(11) (2020) e13128. PubMed PMC

Chan JM, Rimm EB, Colditz GA, Stampfer MJ, Willett WC, Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men, Diabetes Care 17 (1994) 961–969. PubMed

McLaughlin T, Abbasi F, Cheal K, Chu J, Lamendola C, Reaven GM, Use of metabolic markers to identify overweight individuals who are insulin resistant, Ann. Int. Med 139 (2003) 802–809. PubMed

Chen DL, Liess C, Poljak A, Xu A, Zhang J, Thoma C, Trenell M, Milner B, Jenkins AB, Chisholm DJ, Samocha-Bonet D, Greenfield JR, Phenotypic characterization of insulin-resistant and insulin-sensitive obesity., J. Clin. Endocrinol. Metab 100(11) (2015) 4082–4091. PubMed

Samocha-Bonet D, Dixit VD, Kahn CR, Leibel RL, Lin X, Nieuwdorp M, Pietiläinen KH, Rabasa-Lhoret R, Roden M, Scherer PE, et al., Metabolically healthy and unhealthy obese--the 2013 Stock Conference report, Obes. Rev 15 (2014) 697–708. PubMed PMC

Smith GI, Mittendorfer B, Klein S, Metabolically healthy obesity: facts and fantasies, J Clin Invest 129(10) (2019) 3978–3989. PubMed PMC

Blüher M, Metabolically Healthy Obesity, Endocr Rev 41(3) (2020) 405–20. PubMed PMC

Zhou Z, Macpherson J, Gray SR, Gill JMR, Welsh P, Celis-Morales C, Sattar N, Pell JP, Ho FK, Are people with metabolically healthy obesity really healthy? A prospective cohort study of 381,363 UK Biobank participants, Diabetologia 64(9) (2021) 1963–1972. PubMed PMC

Abbasi F, Chu JW, Lamendola C, McLaughlin T, Hayden J, Reaven GM, Reaven PD, Discrimination between obesity and insulin resistance in the relationship with adiponectin, Diabetes 53(3) (2004) 585–590. PubMed

Voulgari C, Tentolouris N, Dilaveris P, Tousoulis D, Katsilambros N, Stefanadis C, Increased heart failure risk in normal-weight people with metabolic syndrome compared with metabolically healthy obese individuals, J. Am. Coll. Cardiol 58(13) (2011) 1343–1350. PubMed

Araújo J, Cai J, Stevens J, Prevalence of Optimal Metabolic Health in American Adults: National Health and Nutrition Examination Survey 2009-2016, Metab. Syndr. Relat. Disord 17(1) (2019) 46–52. PubMed

Thomas EL, Fitzpatrick JA, Malik SJ, Taylor-Robinson SD, Bell JD, Whole body fat: content and distribution, Prog. Nucl. Magn. Reson. Spectrosc 73 (2013) 56–80. PubMed

Rosenbloom AL, Guevara Aguirre J, Rosenfeld RG, Fielder PJ, The little women of Loja--growth hormone-receptor deficiency in an inbred population of southern Ecuador, N Engl J Med. 323(20) (1990) 1367–1374. PubMed

Chehab FF, Obesity and lipodystrophy--where do the circles intersect?, Endocrinology 149(3) (2008) 925–934. PubMed PMC

Schwartz MW, Seeley RJ, Zeltser LM, Drewnowski A, Ravussin E, Redman LM, Leibel RL, Obesity Pathogenesis: An Endocrine Society Scientific Statement, Endocrine reviews 38(4) (2017) 267–296. PubMed PMC

Basu S, Yoffe P, Hills N, Lustig RH, The relationship of sugar to population-level diabetes prevalence: an econometric analysis of repeated cross-sectional data, PLoS One 8(2) (2013) e57873. PubMed PMC

Sepúlveda J, Murray C, The state of global health in 2014, Science 345(6202) (2014) 1275–1278. PubMed

Park YW, Zhu S, Palaniappan L, Heshka S, Carnethon MR, Heymsfield SB, The metabolic syndrome: prevalence and associated risk factor findings in the US population from the Third National Health and Nutrition Examination Survey, 1988-1994, Archives of internal medicine 163(4) (2003) 427–36. PubMed PMC

Gallagher EJ, LeRoith D, Obesity and Diabetes: The Increased Risk of Cancer and Cancer-Related Mortality, Physiological reviews 95(3) (2015) 727–48. PubMed PMC

Calle EE, Thun MJ, Petrelli JM, Rodriguez C, Heath CW Jr., Body-mass index and mortality in a prospective cohort of U.S. adults, The New England journal of medicine 341(15) (1999) 1097–105. PubMed

Wildman RP, Muntner P, Reynolds K, McGinn AP, Rajpathak S, Wylie-Rosett J, Sowers MR, The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999-2004), Archives of internal medicine 168(15) (2008) 1617–24. PubMed

Dempster P, Aitkens S, A new air displacement method for the determination of human body composition, Med Sci Sports Exerc 27(12) (1995) 1692–7. PubMed

Ibrahim MM, Subcutaneous and visceral adipose tissue: structural and functional differences, Obes Rev 11(1) (2010) 11–8. PubMed

Ter Horst R, van den Munckhof ICL, Schraa K, Aguirre-Gamboa R, Jaeger M, Smeekens SP, Brand T, Lemmers H, Dijkstra H, Galesloot TE, de Graaf J, Xavier RJ, Li Y, Joosten LAB, Rutten JHW, Netea MG, Riksen NP, Sex-Specific Regulation of Inflammation and Metabolic Syndrome in Obesity, Arterioscler Thromb Vase Biol 40(7) (2020) 1787–1800. PubMed PMC

Torre YS, Wadeea R, Rosas V, Herbst KL, Lipedema: friend and foe, Hormone molecular biology and clinical investigation 33(1) (2018). PubMed PMC

Porter SA, Massaro JM, Hoffmann U, Vasan RS, O’Donnel CJ, Fox CS, Abdominal subcutaneous adipose tissue: a protective fat depot?, Diabetes care 32(6) (2009) 1068–1075. PubMed PMC

Mohammed BS, Cohen S, Reeds D, Young VL, Klein S, Long-term effects of large-volume liposuction on metabolic risk factors for coronary heart disease, Obesity (Silver Spring) 16(12) (2008) 2648–51. PubMed PMC

Bastien M, Poirier P, Brassard P, Arsenault BJ, Bertrand OF, Després JP, Costerousse O, Piché ME, Effect of PPARγ agonist on aerobic exercise capacity in relation to body fat distribution in men with type 2 diabetes mellitus and coronary artery disease: a 1-yr randomized study, American journal of physiology. Endocrinology and metabolism 317(1) (2019) E65–e73. PubMed

Kabir M, Catalano KJ, Ananthnarayan S, Kim SP, Van Citters GW, Dea MK, Bergman RN, Molecular evidence supporting the portal theory: a causative link between visceral adiposity and hepatic insulin resistance., Am. J. Physiol. Endocrinol. Metab 288(2) (2004) E454–E461. PubMed

Gruzdeva OV, Borodkina AD, Akbasheva OE, Dileva YA, Antonova LV, Matveeva VG, Uchasova EG, Ivanov SV, Belik EV, Fanaskova EV, Karetnikova VN, Kokov AN, Barbarash OL, Influence of visceral obesity on the secretion of adipokines with epicardial adipocytes in patients with coronary heart disease, Ter Arkh 90(10) (2018) 71–78. PubMed

Björntorp P, How should obesity be defined?, J Intern Med 227(3) (1990) 147–9. PubMed

Ravussin E, Smith SR, Increased fat intake, impaired fat oxidation, and failure of fat cell proliferation result in ectopic fat storage, insulin resistance, and type 2 diabetes mellitus, Ann N Y Acad Sci 967 (2002) 363–78. PubMed

D’Adamo E, Cali AM, Weiss R, Santoro N, Pierpont B, Northrup V, Caprio S, Central role of fatty liver in the pathogenesis of insulin resistance in obese adolescents, Diabetes Care 33(8) (2010) 1817–22. PubMed PMC

Britton KA, Fox CS, Ectopic fat depots and cardiovascular disease, Circulation 124(24) (2011) e837–41. PubMed

Lustig RH, Mulligan K, Noworolski SM, Gugliucci A, Erkin-Cakmak A, Wen MJ, Tai VW, Schwarz JM, Isocaloric fructose restriction and metabolic improvement in children with obesity and metabolic syndrome, Obesity (Silver Spring) 24 (2016) 453–460. PubMed PMC

Schwarz JM, Noworolski SM, Erkin-Cakmak A, N.J. K, Wen MJ, Tai VW, Jones GM, Palii SP, Velasco-Alin M, Pan K, Patterson BW, Gugliucci A, Lustig RH, Mulligan K, Impact of dietary fructose restriction on liver fat, de novo lipogenesis, and insulin kinetics in children with obesity, Gastroenterology 153 (2017) 743–752. PubMed PMC

Lee EH, Kim JY, Yang HR, Association between ectopic pancreatic and hepatic fat and metabolic risk factors in children with non-alcoholic fatty liver disease, Pediatric obesity 16(10) (2021) e12793. PubMed

Isserow JA, Siegelman ES, Mammone J, Focal fatty infiltration of the pancreas: MR characterization with chemical shift imaging, Am. J. Roentgenol 173(5) (1999) 1263–1265. PubMed

Blaak E, Gender differences in fat metabolism, Current opinion in clinical nutrition and metabolic care 4(6) (2001) 499–502. PubMed

Kannel WB, Hjortland MC, McNamara PM, Gordon T, Menopause and risk of cardiovascular disease: the Framingham study, Ann Intern Med 85(4) (1976) 447–52. PubMed

Derby CA, Crawford SL, Pasternak RC, Sowers M, Sternfeld B, Matthews KA, Lipid changes during the menopause transition in relation to age and weight: the Study of Women’s Health Across the Nation, Am J Epidemiol 169(11) (2009) 1352–61. PubMed PMC

Qian S, Tang Y, Tang Q-Q, Adipose tissue plasticity and the pleiotropic roles of BMP signaling, The Journal of biological chemistry 296 (2021) 100678–100678. PubMed PMC

Smith U, Kahn BB, Adipose tissue regulates insulin sensitivity: role of adipogenesis, de novo lipogenesis and novel lipids, Journal of Internal Medicine 280(5) (2016) 465–475. PubMed PMC

Arner P, Fat Tissue Growth and Development in Humans, Nestle Nutrition Institute workshop series 89 (2018) 37–45. PubMed

Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, Blomqvist L, Hoffstedt J, Naslund E, Britton T, Concha H, Hassan M, Ryden M, Frisen J, Arner P, Dynamics of fat cell turnover in humans, Nature 453(7196) (2008) 783–7. PubMed

Feldman BJ, Streeper RS, Farese RV Jr., Yamamoto KR, Myostatin modulates adipogenesis to generate adipocytes with favorable metabolic effects, Proceedings of the National Academy of Sciences of the United States of America 103(42) (2006) 15675–80. PubMed PMC

Lynes MD, Tseng Y-H, Deciphering adipose tissue heterogeneity, Annals of the New York Academy of Sciences 1411(1) (2018) 5–20. PubMed PMC

Ussar S, Lee KY, Dankel SN, Boucher J, Haering MF, Kleinridders A, Thomou T, Xue R, Macotela Y, Cypess AM, Tseng YH, Mellgren G, Kahn CR, ASC-1, PAT2, and P2RX5 are cell surface markers for white, beige, and brown adipocytes, Sci Transl Med 6(247) (2014) 247ra103. PubMed PMC

Cinti S, Pink Adipocytes, Trends in endocrinology and metabolism: TEM 29(9) (2018) 651–666. PubMed

Funcke J-B, Scherer PE, Beyond adiponectin and leptin: adipose tissue-derived mediators of interorgan communication, Journal of lipid research 60(10) (2019) 1648–1684. PubMed PMC

Heinonen S, Jokinen R, Rissanen A, Pietiläinen KH, White adipose tissue mitochondrial metabolism in health and in obesity, Obesity Reviews 21(2) (2020) e12958. PubMed

Vishvanath L, Gupta RK, Contribution of adipogenesis to healthy adipose tissue expansion in obesity, J Clin Invest 129(10) (2019) 4022–4031. PubMed PMC

Goossens GH, The Metabolic Phenotype in Obesity: Fat Mass, Body Fat Distribution, and Adipose Tissue Function, Obesity facts 10(3) (2017) 207–215. PubMed PMC

Carpentier AC, Blondin DP, Virtanen KA, Richard D, Haman F, Turcotte ÉE, Brown Adipose Tissue Energy Metabolism in Humans, Frontiers in endocrinology 9 (2018) 447–447. PubMed PMC

Cypess AM, Chen Y-C, Sze C, Wang K, English J, Chan O, Holman AR, Tal I, Palmer MR, Kolodny GM, Kahn CR, Cold but not sympathomimetics activates human brown adipose tissue in vivo, Proceedings of the National Academy of Sciences of the United States of America 109(25) (2012) 10001–10005. PubMed PMC

Sidossis L, Kajimura S, Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis, The Journal of clinical investigation 125(2) (2015) 478–486. PubMed PMC

Cao W, Daniel KW, Robidoux J, Puigserver P, Medvedev AV, Bai X, Floering LM, Spiegelman BM, Collins S, p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene, Molecular and cellular biology 24(7) (2004) 3057–3067. PubMed PMC

Guilherme A, Yenilmez B, Bedard AH, Henriques F, Liu D, Lee A, Goldstein L, Kelly M, Nicoloro SM, Chen M, Weinstein L, Collins S, Czech MP, Control of Adipocyte Thermogenesis and Lipogenesis through β3-Adrenergic and Thyroid Hormone Signal Integration, Cell reports 31(5) (2020) 107598–107598. PubMed PMC

Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scimè A, Devarakonda S, Conroe HM, Erdjument-Bromage H, Tempst P, Rudnicki MA, Beier DR, Spiegelman BM, PRDM16 controls a brown fat/skeletal muscle switch, Nature 454(7207) (2008) 961–7. PubMed PMC

Carobbio S, Guenantin A-C, Bahri M, Rodriguez-Fdez S, Honig F, Kamzolas I, Samuelson I, Long K, Awad S, Lukovic D, Erceg S, Bassett A, Mendjan S, Vallier L, Rosen BS, Chiarugi D, Vidal-Puig A, Unraveling the Developmental Roadmap toward Human Brown Adipose Tissue, Stem Cell Reports 16(3) (2021) 641–655. PubMed PMC

Oguri Y, Shinoda K, Kim H, Alba DL, Bolus WR, Wang Q, Brown Z, Pradhan RN, Tajima K, Yoneshiro T, Ikeda K, Chen Y, Cheang RT, Tsujino K, Kim CR, Greiner VJ, Datta R, Yang CD, Atabai K, McManus MT, Koliwad SK, Spiegelman BM, Kajimura S, CD81 Controls Beige Fat Progenitor Cell Growth and Energy Balance via FAK Signaling, Cell 182(3) (2020) 563–577.e20. PubMed PMC

Chen Y, Ikeda K, Yoneshiro T, Scaramozza A, Tajima K, Wang Q, Kim K, Shinoda K, Sponton CH, Brown Z, Brack A, Kajimura S, Thermal stress induces glycolytic beige fat formation via a myogenic state, Nature 565(7738) (2019) 180–185. PubMed PMC

Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, Giacobino JP, De Matteis R, Cinti S, The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation, American journal of physiology. Endocrinology and metabolism 298(6) (2010) E1244–53. PubMed

Pilkington A-C, Paz HA, Wankhade UD, Beige Adipose Tissue Identification and Marker Specificity-Overview, Frontiers in endocrinology 12 (2021) 599134–599134. PubMed PMC

Stine RR, Shapira SN, Lim H-W, Ishibashi J, Harms M, Won K-J, Seale P, EBF2 promotes the recruitment of beige adipocytes in white adipose tissue, Molecular metabolism 5(1) (2015) 57–65. PubMed PMC

Heeren J, Münzberg H, Novel aspects of brown adipose tissue biology, Endocrinology and metabolism clinics of North America 42(1) (2013) 89–107. PubMed PMC

Moseti D, Regassa A, Kim W-K, Molecular Regulation of Adipogenesis and Potential Anti-Adipogenic Bioactive Molecules, International journal of molecular sciences 17(1) (2016) 124. PubMed PMC

Lehrke M, Pascual G, Glass CK, Lazar MA, Gaining weight: the Keystone Symposium on PPAR and LXR, Genes & development 19(15) (2005) 1737–1742. PubMed PMC

Chawla A, Schwarz EJ, Dimaculangan DD, Lazar MA, Peroxisome proliferator-activated receptor (PPAR) gamma: adipose-predominant expression and induction early in adipocyte differentiation, Endocrinology 135(2) (1994) 798–800. PubMed

Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA, An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor y (PPARy), The Journal of biological chemistry 270(22) (1995) 12953–12956. PubMed

Farmer SR, Transcriptional control of adipocyte formation, Cell Metab 4(4) (2006) 263–73. PubMed PMC

Vigouroux C, Fajas L, Khallouf E, Meier M, Gyapay G, Lascols O, Auwerx J, Weissenbach J, Capeau J, Magré J, Human peroxisome proliferator-activated receptor-gamma2: genetic mapping, identification of a variant in the coding sequence, and exclusion as the gene responsible for lipoatrophic diabetes, Diabetes 47(3) (1998) 490–2. PubMed

Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS, Spiegelman BM, Mortensen RM, PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro, Mol Cell 4(4) (1999) 611–7. PubMed

Brun RP, Tontonoz P, Forman BM, Ellis R, Chen J, Evans RM, Spiegelman BM, Differential activation of adipogenesis by multiple PPAR isoforms, Genes Dev 10(8) (1996) 974–84. PubMed

Wang YX, Lee CH, Tiep S, Yu RT, Ham J, Kang H, Evans RM, Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity, Cell 113(2) (2003) 159–70. PubMed

Peters JM, Lee SS, Li W, Ward JM, Gavrilova O, Everett C, Reitman ML, Hudson LD, Gonzalez FJ, Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor beta(delta), Molecular and cellular biology 20(14) (2000) 5119–28. PubMed PMC

Guerre-Millo M, Gervois P, Raspe E, Madsen L, Poulain P, Derudas B, Herbert JM, Winegar DA, Willson TM, Fruchart JC, Berge RK, Staels B, Peroxisome proliferator-activated receptor alpha activators improve insulin sensitivity and reduce adiposity, The Journal of biological chemistry 275(22) (2000) 16638–42. PubMed

Jeong S, Yoon M, Fenofibrate inhibits adipocyte hypertrophy and insulin resistance by activating adipose PPARalpha in high fat diet-induced obese mice, Exp Mol Med 41(6) (2009) 397–405. PubMed PMC

Tsuchida A, Yamauchi T, Takekawa S, Hada Y, Ito Y, Maki T, Kadowaki T, Peroxisome proliferator-activated receptor (PPAR)alpha activation increases adiponectin receptors and reduces obesity-related inflammation in adipose tissue: comparison of activation of PPARalpha, PPARgamma, and their combination, Diabetes 54(12) (2005) 3358–70. PubMed

Das M, Irvin MR, Sha J, Aslibekyan S, Hidalgo B, Perry RT, Zhi D, Tiwari HK, Absher D, Ordovas JM, Arnett DK, Lipid changes due to fenofibrate treatment are not associated with changes in DNA methylation patterns in the GOLDN study, Frontiers in genetics 6 (2015) 304. PubMed PMC

Forcheron F, Cachefo A, Thevenon S, Pinteur C, Beylot M, Mechanisms of the triglyceride- and cholesterol-lowering effect of fenofibrate in hyperlipidemic type 2 diabetic patients, Diabetes 51(12) (2002) 3486–91. PubMed

Oliver WR Jr., Shenk JL, Snaith MR, Russell CS, Plunket KD, Bodkin NL, Lewis MC, Winegar DA, Sznaidman ML, Lambert MH, Xu HE, Sternbach DD, Kliewer SA, Hansen BC, Willson TM, A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport, Proceedings of the National Academy of Sciences of the United States of America 98(9) (2001) 5306–11. PubMed PMC

Kassotis CD, Masse L, Kim S, Schlezinger JJ, Webster TF, Stapleton HM, Characterization of adipogenic chemicals in three different cell culture systems: implications for reproducibility based on cell source and handling, Scientific reports 7 (2017) 42104. PubMed PMC

Tontonoz P, Singer S, Forman BM, Sarraf P, Fletcher JA, Fletcher CD, Brun RP, Mueller E, Altiok S, Oppenheim H, Evans RM, Spiegelman BM, Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor gamma and the retinoid X receptor, Proceedings of the National Academy of Sciences of the United States of America 94(1) (1997) 237–41. PubMed PMC

Canan Koch SS, Dardashti LJ, Cesario RM, Croston GE, Boehm MF, Heyman RA, Nadzan AM, Synthesis of retinoid X receptor-specific ligands that are potent inducers of adipogenesis in 3T3-L1 cells, J Med Chem 42(4) (1999) 742–50. PubMed

Nielsen R, Pedersen TA, Hagenbeek D, Moulos P, Siersbaek R, Megens E, Denissov S, Borgesen M, Francoijs KJ, Mandrup S, Stunnenberg HG, Genome-wide profiling of PPARgamma:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis, Genes Dev 22(21) (2008) 2953–67. PubMed PMC

Shoucri BM, Martinez ES, Abreo TJ, Hung VT, Moosova Z, Shioda T, Blumberg B, Retinoid X Receptor Activation Alters the Chromatin Landscape To Commit Mesenchymal Stem Cells to the Adipose Lineage, Endocrinology 158(10) (2017) 3109–3125. PubMed PMC

Shoucri BM, Hung VT, Chamorro-García R, Shioda T, Blumberg B, Retinoid X Receptor Activation During Adipogenesis of Female Mesenchymal Stem Cells Programs a Dysfunctional Adipocyte, Endocrinology 159(8) (2018) 2863–2883. PubMed PMC

Sucov HM, Dyson E, Gumeringer CL, Price J, Chien KR, Evans RM, RXR alpha mutant mice establish a genetic basis for vitamin A signaling in heart morphogenesis, Genes Dev 8(9) (1994) 1007–18. PubMed

Imai T, Jiang M, Chambon P, Metzger D, Impaired adipogenesis and lipolysis in the mouse upon selective ablation of the retinoid X receptor alpha mediated by a tamoxifen-inducible chimeric Cre recombinase (Cre-ERT2) in adipocytes, Proceedings of the National Academy of Sciences of the United States of America 98(1) (2001) 224–8. PubMed PMC

Mukherjee R, Davies PJ, Crombie DL, Bischoff ED, Cesario RM, Jow L, Hamann LG, Boehm MF, Mondon CE, Nadzan AM, Paterniti JR Jr., Heyman RA, Sensitization of diabetic and obese mice to insulin by retinoid X receptor agonists, Nature 386(6623) (1997) 407–10. PubMed

Sadasivuni MK, Reddy BM, Singh J, Anup MO, Sunil V, Lakshmi MN, Yogeshwari S, Chacko SK, Pooja TL, Dandu A, Harish C, Gopala AS, Pratibha S, Naveenkumar BS, Pallavi PM, Verma MK, Moolemath Y, Somesh BP, Venkataranganna MV, Jagannath MR, CNX-013-B2, a unique pan tissue acting rexinoid, modulates several nuclear receptors and controls multiple risk factors of the metabolic syndrome without risk of hypertriglyceridemia, hepatomegaly and body weight gain in animal models, Diabetol Metab Syndr 6(1) (2014) 83. PubMed PMC

Emilsson V, O’Dowd J, Wang S, Liu YL, Sennitt M, Heyman R, Cawthorne MA, The effects of rexinoids and rosiglitazone on body weight and uncoupling protein isoform expression in the Zucker fa/fa rat, Metabolism 49(12) (2000) 1610–5. PubMed

Farol LT, Hymes KB, Bexarotene: a clinical review, Expert Rev Anticancer Ther 4(2) (2004) 180–8. PubMed

de Vries-van der Weij J, de Haan W, Hu L, Kuif M, Oei HL, van der Hoorn JW, Havekes LM, Princen HM, Romijn JA, Smit JW, Rensen PC, Bexarotene induces dyslipidemia by increased very low-density lipoprotein production and cholesteryl ester transfer protein-mediated reduction of high-density lipoprotein, Endocrinology 150(5) (2009) 2368–75. PubMed

Pinaire JA, Reifel-Miller A, Therapeutic potential of retinoid x receptor modulators for the treatment of the metabolic syndrome, PPAR Res 2007 (2007) 94156. PubMed PMC

Shulman AI, Mangelsdorf DJ, Retinoid x receptor heterodimers in the metabolic syndrome, The New England journal of medicine 353(6) (2005) 604–15. PubMed

Ulven SM, Dalen KT, Gustafsson JA, Nebb HI, LXR is crucial in lipid metabolism, Prostaglandins Leukot Essent Fatty Acids 73(1) (2005) 59–63. PubMed

Kalaany NY, Gauthier KC, Zavacki AM, Mammen PP, Kitazume T, Peterson JA, Horton JD, Garry DJ, Bianco AC, Mangelsdorf DJ, LXRs regulate the balance between fat storage and oxidation, Cell Metab 1(4) (2005) 231–44. PubMed

Seo JB, Moon HM, Kim WS, Lee YS, Jeong HW, Yoo EJ, Ham J, Kang H, Park MG, Steffensen KR, Stulnig TM, Gustafsson JA, Park SD, Kim JB, Activated liver X receptors stimulate adipocyte differentiation through induction of peroxisome proliferator-activated receptor gamma expression, Mol Cell Biol 24(8) (2004) 3430–44. PubMed PMC

Juvet LK, Andresen SM, Schuster GU, Dalen KT, Tobin KA, Hollung K, Haugen F, Jacinto S, Ulven SM, Bamberg K, Gustafsson JA, Nebb HI, On the role of liver X receptors in lipid accumulation in adipocytes, Mol Endocrinol 17(2) (2003) 172–82. PubMed

Stenson BM, Ryden M, Venteclef N, Dahlman I, Pettersson AM, Mairal A, Astrom G, Blomqvist L, Wang V, Jocken JW, Clement K, Langin D, Arner P, Laurencikiene J, Liver X receptor (LXR) regulates human adipocyte lipolysis, J Biol Chem 286(1) (2011) 370–9. PubMed PMC

Gerin I, Dolinsky VW, Shackman JG, Kennedy RT, Chiang SH, Burant CF, Steffensen KR, Gustafsson JA, MacDougald OA, LXRbeta is required for adipocyte growth, glucose homeostasis, and beta cell function, J Biol Chem 280(24) (2005) 23024–31. PubMed

Korach-Andre M, Archer A, Barros RP, Parini P, Gustafsson JA, Both liver-X receptor (LXR) isoforms control energy expenditure by regulating brown adipose tissue activity, Proceedings of the National Academy of Sciences of the United States of America 108(1) (2011) 403–8. PubMed PMC

Archer A, Stolarczyk E, Doria ML, Helguero L, Domingues R, Howard JK, Mode A, Korach-Andre M, Gustafsson JA, LXR activation by GW3965 alters fat tissue distribution and adipose tissue inflammation in ob/ob female mice, J Lipid Res 54(5) (2013) 1300–11. PubMed PMC

Dahlman I, Nilsson M, Jiao H, Hoffstedt J, Lindgren CM, Humphreys K, Kere J, Gustafsson JA, Arner P, Dahlman-Wright K, Liver X receptor gene polymorphisms and adipose tissue expression levels in obesity, Pharmacogenet Genomics 16(12) (2006) 881–9. PubMed

Kirchgessner TG, Sleph P, Ostrowski J, Lupisella J, Ryan CS, Liu X, Fernando G, Grimm D, Shipkova P, Zhang R, Garcia R, Zhu J, He A, Malone H, Martin R, Behnia K, Wang Z, Barrett YC, Garmise RJ, Yuan L, Zhang J, Gandhi MD, Wastall P, Li T, Du S, Salvador L, Mohan R, Cantor GH, Kick E, Lee J, Frost RJ, Beneficial and Adverse Effects of an LXR Agonist on Human Lipid and Lipoprotein Metabolism and Circulating Neutrophils, Cell Metab 24(2) (2016) 223–33. PubMed

Gao J, Xie W, Targeting xenobiotic receptors PXR and CAR for metabolic diseases, Trends Pharmacol Sci 33(10) (2012) 552–8. PubMed PMC

Moreau A, Vilarem MJ, Maurel P, Pascussi JM, Xenoreceptors CAR and PXR activation and consequences on lipid metabolism, glucose homeostasis, and inflammatory response, Mol Pharm 5(1) (2008) 35–41. PubMed

Zhou J, Febbraio M, Wada T, Zhai Y, Kuruba R, He J, Lee JH, Khadem S, Ren S, Li S, Silverstein RL, Xie W, Hepatic fatty acid transporter Cd36 is a common target of LXR, PXR, and PPARgamma in promoting steatosis, Gastroenterology 134(2) (2008) 556–67. PubMed

He J, Gao J, Xu M, Ren S, Stefanovic-Racic M, O’Doherty RM, Xie W, PXR ablation alleviates diet-induced and genetic obesity and insulin resistance in mice, Diabetes 62(6) (2013) 1876–87. PubMed PMC

Wada T, Gao J, Xie W, PXR and CAR in energy metabolism, Trends in endocrinology and metabolism: TEM 20(6) (2009) 273–9. PubMed

Gao J, He J, Zhai Y, Wada T, Xie W, The constitutive androstane receptor is an anti-obesity nuclear receptor that improves insulin sensitivity, J Biol Chem 284(38) (2009) 25984–92. PubMed PMC

Jiao Y, Lu Y, Li XY, Farnesoid X receptor: a master regulator of hepatic triglyceride and glucose homeostasis, Acta Pharmacol Sin 36(1) (2015) 44–50. PubMed PMC

Prawitt J, Caron S, Staels B, How to modulate FXR activity to treat the Metabolic Syndrome, Drug Discov Today: Disease Mechanisms 6(1-4) (2009) e55–e64.

Rizzo G, Disante M, Mencarelli A, Renga B, Gioiello A, Pellicciari R, Fiorucci S, The farnesoid X receptor promotes adipocyte differentiation and regulates adipose cell function in vivo, Mol Pharmacol 70(4) (2006) 1164–73. PubMed

Cariou B, van Harmelen K, Duran-Sandoval D, van Dijk TH, Grefhorst A, Abdelkarim M, Caron S, Torpier G, Fruchart JC, Gonzalez FJ, Kuipers F, Staels B, The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice, J Biol Chem 281(16) (2006) 11039–49. PubMed

Yang JY, Della-Fera MA, Baile CA, Guggulsterone inhibits adipocyte differentiation and induces apoptosis in 3T3-L1 cells, Obesity (Silver Spring) 16(1) (2008) 16–22. PubMed

Abdelkarim M, Caron S, Duhem C, Prawitt J, Dumont J, Lucas A, Bouchaert E, Briand O, Brozek J, Kuipers F, Fievet C, Cariou B, Staels B, The farnesoid X receptor regulates adipocyte differentiation and function by promoting peroxisome proliferator-activated receptor-gamma and interfering with the Wnt/beta-catenin pathways, J Biol Chem 285(47) (2010) 36759–67. PubMed PMC

Prawitt J, Abdelkarim M, Stroeve JH, Popescu I, Duez H, Velagapudi VR, Dumont J, Bouchaert E, van Dijk TH, Lucas A, Dorchies E, Daoudi M, Lestavel S, Gonzalez FJ, Oresic M, Cariou B, Kuipers F, Caron S, Staels B, Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity, Diabetes 60(7) (2011) 1861–71. PubMed PMC

Zhang Y, Ge X, Heemstra LA, Chen WD, Xu J, Smith JL, Ma H, Kasim N, Edwards PA, Novak CM, Loss of FXR protects against diet-induced obesity and accelerates liver carcinogenesis in ob/ob mice, Mol Endocrinol 26(2) (2012) 272–80. PubMed PMC

Maneschi E, Vignozzi L, Morelli A, Mello T, Filippi S, Cellai I, Comeglio P, Sarchielli E, Calcagno A, Mazzanti B, Vettor R, Vannelli GB, Adorini L, Maggi M, FXR activation normalizes insulin sensitivity in visceral preadipocytes of a rabbit model of MetS, The Journal of endocrinology 218(2) (2013) 215–31. PubMed

Watanabe M, Horai Y, Houten SM, Morimoto K, Sugizaki T, Arita E, Mataki C, Sato H, Tanigawara Y, Schoonjans K, Itoh H, Auwerx J, Lowering bile acid pool size with a synthetic farnesoid X receptor (FXR) agonist induces obesity and diabetes through reduced energy expenditure, J Biol Chem 286(30) (2011) 26913–20. PubMed PMC

Rader DJ, Liver X Receptor and Farnesoid X Receptor as Therapeutic Targets, Am J Cardiology 100(11A) (2007) 15N–19N. PubMed

Lu Y, Ma Z, Zhang Z, Xiong X, Wang X, Zhang H, Shi G, Xia X, Ning G, Li X, Yin Yang 1 promotes hepatic steatosis through repression of farnesoid X receptor in obese mice, Gut 63(1) (2014) 170–8. PubMed

McIntosh BE, Hogenesch JB, Bradfield CA, Mammalian Per-Arnt-Sim proteins in environmental adaptation, Annual review of physiology 72 (2010) 625–45. PubMed

de Almeida DC, Evangelista LSM, Câmara NOS, Role of aryl hydrocarbon receptor in mesenchymal stromal cell activation: A minireview, World J Stem Cells 9(9) (2017) 152–158. PubMed PMC

Henderson Colin J., McLaughlin Lesley A., Osuna-Cabello M, Taylor M, Gilbert I, McLaren Aileen W., Wolf CR, Application of a novel regulatable Cre recombinase system to define the role of liver and gut metabolism in drug oral bioavailability, Biochemical Journal 465(3) (2015) 479–488. PubMed PMC

Shimizu Y, Nakatsuru Y, Ichinose M, Takahashi Y, Kume H, Mimura J, Fujii-Kuriyama Y, Ishikawa T, Benzo[a]pyrene carcinogenicity is lost in mice lacking the aryl hydrocarbon receptor, Proceedings of the National Academy of Sciences 97(2) (2000) 779–782. PubMed PMC

Nguyen P, Leray V, Diez M, Serisier S, Le Bloc’h J, Siliart B, Dumon H, Liver lipid metabolism, Journal of animal physiology and animal nutrition 92(3) (2008) 272–83. PubMed

Tanos R, Patel RD, Murray IA, Smith PB, Patterson AD, Perdew GH, Aryl hydrocarbon receptor regulates the cholesterol biosynthetic pathway in a dioxin response element-independent manner, Hepatology (Baltimore, Md.) 55(6) (2012) 1994–2004. PubMed PMC

Tanos R, Murray IA, Smith PB, Patterson A, Perdew GH, Role of the Ah receptor in homeostatic control of fatty acid synthesis in the liver, Toxicological sciences : an official journal of the Society of Toxicology 129(2) (2012) 372–9. PubMed PMC

Girer NG, Carter D, Bhattarai N, Mustafa M, Denner L, Porter C, Elferink CJ, Inducible Loss of the Aryl Hydrocarbon Receptor Activates Perigonadal White Fat Respiration and Brown Fat Thermogenesis via Fibroblast Growth Factor 21, International journal of molecular sciences 20(4) (2019). PubMed PMC

Beltrand J, Busiah K, Vaivre-Douret L, Fauret AL, Berdugo M, Cavé H, Polak M, Neonatal Diabetes Mellitus, Front Pediatr 8 (2020) 540718–540718. PubMed PMC

Plamper M, Gohlke B, Schreiner F, Woelfle J, Mecasermin in Insulin Receptor-Related Severe Insulin Resistance Syndromes: Case Report and Review of the Literature, International journal of molecular sciences 19(5) (2018) 1268. PubMed PMC

Boucher J, Softic S, El Ouaamari A, Krumpoch MT, Kleinridders A, Kulkarni RN, O’Neill BT, Kahn CR, Differential Roles of Insulin and IGF-1 Receptors in Adipose Tissue Development and Function, Diabetes 65(8) (2016) 2201–13. PubMed PMC

Homan EP, Brandão BB, Softic S, El Ouaamari A, O’Neill BT, Kulkarni RN, Kim JK, Kahn CR, Differential roles of FOXO transcription factors on insulin action in brown and white adipose tissue, J Clin Invest 131(19) (2021). PubMed PMC

Nadal A, Ropero AB, Laribi O, Maillet M, Fuentes E, Soria B, Nongenomic actions of estrogens and xenoestrogens by binding at a plasma membrane receptor unrelated to estrogen receptor alpha and estrogen receptor beta, Proceedings of the National Academy of Sciences of the United States of America 97(21) (2000) 11603–8. PubMed PMC

Fuentes N, Silveyra P, Estrogen receptor signaling mechanisms, Adv Protein Chem Struct Biol 116 (2019) 135–170. PubMed PMC

Jasik CB, Lustig RH, Adolescent obesity and puberty: the “perfect storm”, Ann N Y Acad Sci 1135 (2008) 265–79. PubMed

Crocker MK, Stern EA, Sedaka NM, Shomaker LB, Brady SM, Ali AH, Shawker TH, Hubbard VS, Yanovski JA, Sexual dimorphisms in the associations of BMI and body fat with indices of pubertal development in girls and boys, The Journal of clinical endocrinology and metabolism 99(8) (2014) E1519–29. PubMed PMC

Davis SR, Castelo-Branco C, Chedraui P, Lumsden MA, Nappi RE, Shah D, Villaseca P, Understanding weight gain at menopause, Climacteric 15 (2012) 419–429. PubMed

Cooke PS, Naaz A, Role of estrogens in adipocyte development and function, Exp Biol Med (Maywood) 229(11) (2004) 1127–35. PubMed

Dieudonne MN, Pecquery R, Leneveu MC, Giudicelli Y, Opposite effects of androgens and estrogens on adipogenesis in rat preadipocytes: evidence for sex and site-related specificities and possible involvement of insulin-like growth factor 1 receptor and peroxisome proliferator-activated receptor gamma2, Endocrinology 141(2) (2000) 649–56. PubMed

Roncari DA, Van RL, Promotion of human adipocyte precursor replication by 17beta-estradiol in culture, J Clin Invest 62(3) (1978) 503–8. PubMed PMC

Heine PA, Taylor JA, Iwamoto GA, Lubahn DB, Cooke PS, Increased adipose tissue in male and female estrogen receptor-alpha knockout mice, Proceedings of the National Academy of Sciences of the United States of America 97(23) (2000) 12729–34. PubMed PMC

Ohlsson C, Hellberg N, Parini P, Vidal O, Bohlooly YM, Rudling M, Lindberg MK, Warner M, Angelin B, Gustafsson JA, Obesity and disturbed lipoprotein profile in estrogen receptor-alpha-deficient male mice, Biochem Biophys Res Commun 278(3) (2000) 640–5. PubMed

Stubbins RE, Holcomb VB, Hong J, Nunez NP, Estrogen modulates abdominal adiposity and protects female mice from obesity and impaired glucose tolerance, Eur J Nutr 51(7) (2012) 861–70. PubMed

Murata Y, Robertson KM, Jones ME, Simpson ER, Effect of estrogen deficiency in the male: the ArKO mouse model, Mol Cell Endocrinol 193(1-2) (2002) 7–12. PubMed

Jones ME, Thorburn AW, Britt KL, Hewitt KN, Misso ML, Wreford NG, Proietto J, Oz OK, Leury BJ, Robertson KM, Yao S, Simpson ER, Aromatase-deficient (ArKO) mice accumulate excess adipose tissue, J Steroid Biochem Mol Biol 79(1-5) (2001) 3–9. PubMed

Jones ME, Thorburn AW, Britt KL, Hewitt KN, Wreford NG, Proietto J, Oz OK, Leury BJ, Robertson KM, Yao S, Simpson ER, Aromatase-deficient (ArKO) mice have a phenotype of increased adiposity, Proceedings of the National Academy of Sciences of the United States of America 97(23) (2000) 12735–40. PubMed PMC

Hong L, Colpan A, Peptan IA, Modulations of 17-beta estradiol on osteogenic and adipogenic differentiations of human mesenchymal stem cells, Tissue Eng 12(10) (2006) 2747–53. PubMed

Zhu P, Yuen JM, Sham KW, Cheng CH, GPER mediates the inhibitory actions of estrogen on adipogenesis in 3T3-L1 cells through perturbation of mitotic clonal expansion, General and comparative endocrinology 193 (2013) 19–26. PubMed

Blouin K, Boivin A, Tchernof A, Androgens and body fat distribution, J Steroid Biochem Mol Biol 108(3-5) (2008) 272–80. PubMed

O’Reilly MW, House PJ, Tomlinson JW, Understanding androgen action in adipose tissue, J Steroid Biochem Mol Biol 143 (2014) 277–84. PubMed

Gupta V, Bhasin S, Guo W, Singh R, Miki R, Chauhan P, Choong K, Tchkonia T, Lebrasseur NK, Flanagan JN, Hamilton JA, Viereck JC, Narula NS, Kirkland JL, Jasuja R, Effects of dihydrotestosterone on differentiation and proliferation of human mesenchymal stem cells and preadipocytes, Mol Cell Endocrinol 296(1-2) (2008) 32–40. PubMed PMC

Chazenbalk G, Singh P, Irge D, Shah A, Abbott DH, Dumesic DA, Androgens inhibit adipogenesis during human adipose stem cell commitment to preadipocyte formation, Steroids 78(9) (2013) 920–6. PubMed PMC

Singh R, Artaza JN, Taylor WE, Gonzalez-Cadavid NF, Bhasin S, Androgens stimulate myogenic differentiation and inhibit adipogenesis in C3H 10T1/2 pluripotent cells through an androgen receptor-mediated pathway, Endocrinology 144(11) (2003) 5081–8. PubMed

Sato T, Matsumoto T, Yamada T, Watanabe T, Kawano H, Kato S, Late onset of obesity in male androgen receptor-deficient (AR KO) mice, Biochem Biophys Res Commun 300(1) (2003) 167–71. PubMed

Yanase T, Fan W, Kyoya K, Min L, Takayanagi R, Kato S, Nawata H, Androgens and metabolic syndrome: lessons from androgen receptor knock out (ARKO) mice, J Steroid Biochem Mol Biol 109(3-5) (2008) 254–7. PubMed

Fagman JB, Wilhelmson AS, Motta BM, Pirazzi C, Alexanderson C, De Gendt K, Verhoeven G, Holmang A, Anesten F, Jansson JO, Levin M, Boren J, Ohlsson C, Krettek A, Romeo S, Tivesten A, The androgen receptor confers protection against diet-induced atherosclerosis, obesity, and dyslipidemia in female mice, FASEB journal : official publication of the Federation of American Societies for Experimental Biology 29(4) (2015) 1540–50. PubMed PMC

Yeh S, Tsai MY, Xu Q, Mu XM, Lardy H, Huang KE, Lin H, Yeh SD, Altuwaijri S, Zhou X, Xing L, Boyce BF, Hung MC, Zhang S, Gan L, Chang C, Generation and characterization of androgen receptor knockout (ARKO) mice: an in vivo model for the study of androgen functions in selective tissues, Proceedings of the National Academy of Sciences of the United States of America 99(21) (2002) 13498–503. PubMed PMC

Fan W, Yanase T, Nomura M, Okabe T, Goto K, Sato T, Kawano H, Kato S, Nawata H, Androgen receptor null male mice develop late-onset obesity caused by decreased energy expenditure and lipolytic activity but show normal insulin sensitivity with high adiponectin secretion, Diabetes 54(4) (2005) 1000–8. PubMed

Blouin K, Nadeau M, Perreault M, Veilleux A, Drolet R, Marceau P, Mailloux J, Luu-The V, Tchernof A, Effects of androgens on adipocyte differentiation and adipose tissue explant metabolism in men and women, Clinical endocrinology 72(2) (2010) 176–88. PubMed

Mammi C, Calanchini M, Antelmi A, Cinti F, Rosano GM, Lenzi A, Caprio M, Fabbri A, Androgens and adipose tissue in males: a complex and reciprocal interplay, Int J Endocrinol 2012 (2012) 789653. PubMed PMC

Diamanti-Kandarakis E, Mitrakou A, Raptis S, Tolis G, Duleba AJ, The effect of a pure antiandrogen receptor blocker, flutamide, on the lipid profile in the polycystic ovary syndrome, The Journal of clinical endocrinology and metabolism 83(8) (1998) 2699–705. PubMed

Ibanez L, Ong K, Ferrer A, Amin R, Dunger D, de Zegher F, Low-dose flutamide-metformin therapy reverses insulin resistance and reduces fat mass in nonobese adolescents with ovarian hyperandrogenism, The Journal of clinical endocrinology and metabolism 88(6) (2003) 2600–6. PubMed

Ibanez L, De Zegher F, Flutamide-metformin therapy to reduce fat mass in hyperinsulinemic ovarian hyperandrogenism: effects in adolescents and in women on third-generation oral contraception, The Journal of clinical endocrinology and metabolism 88(10) (2003) 4720–4. PubMed

Pasquali R, Obesity and androgens: facts and perspectives, Fertil Steril 85(5) (2006) 1319–40. PubMed

Feldman BJ, Glucocorticoids influence on mesenchymal stem cells and implications for metabolic disease, Pediatr Res 65(2) (2009) 249–51. PubMed PMC

Walker BR, Soderberg S, Lindahl B, Olsson T, Independent effects of obesity and cortisol in predicting cardiovascular risk factors in men and women, J Intern Med 247(2) (2000) 198–204. PubMed

Pickering RT, Lee MJ, Karastergiou K, Gower A, Fried SK, Depot Dependent Effects of Dexamethasone on Gene Expression in Human Omental and Abdominal Subcutaneous Adipose Tissues from Obese Women, PLoS One 11(12) (2016) e0167337. PubMed PMC

Geer EB, Shen W, Strohmayer E, Post KD, Freda PU, Body composition and cardiovascular risk markers after remission of Cushing’s disease: a prospective study using whole-body MRI, The Journal of clinical endocrinology and metabolism 97(5) (2012) 1702–11. PubMed PMC

Masuzaki H, Paterson J, Shinyama H, Morton NM, Mullins JJ, Seckl JR, Flier JS, A transgenic model of visceral obesity and the metabolic syndrome, Science 294(5549) (2001) 2166–70. PubMed

John K, Marino JS, Sanchez ER, Hinds TD Jr., The glucocorticoid receptor: cause of or cure for obesity?, American journal of physiology. Endocrinology and metabolism 310(4) (2016) E249–57. PubMed PMC

Contador D, Ezquer F, Espinosa M, Arango-Rodriguez M, Puebla C, Sobrevia L, Conget P, Dexamethasone and rosiglitazone are sufficient and necessary for producing functional adipocytes from mesenchymal stem cells, Exp Biol Med (Maywood) 240(9) (2015) 1235–46. PubMed PMC

Asada M, Rauch A, Shimizu H, Maruyama H, Miyaki S, Shibamori M, Kawasome H, Ishiyama H, Tuckermann J, Asahara H, DNA binding-dependent glucocorticoid receptor activity promotes adipogenesis via Kruppel-like factor 15 gene expression, Lab Invest 91(2) (2011) 203–15. PubMed PMC

Vidal-Puig AJ, Considine RV, Jimenez-Linan M, Werman A, Pories WJ, Caro JF, Flier JS, Peroxisome proliferator-activated receptor gene expression in human tissues. Effects of obesity, weight loss, and regulation by insulin and glucocorticoids, J Clin Invest 99(10) (1997) 2416–22. PubMed PMC

Sargis RM, Johnson DN, Choudhury RA, Brady MJ, Environmental Endocrine Disruptors Promote Adipogenesis in the 3T3-L1 Cell Line through Glucocorticoid Receptor Activation, Obesity (Silver Spring, Md.) 18(7) (2010) 1283–1288. PubMed PMC

Lee MJ, Fried SK, The glucocorticoid receptor, not the mineralocorticoid receptor, plays the dominant role in adipogenesis and adipokine production in human adipocytes, International journal of obesity (2005) 38(9) (2014) 1228–33. PubMed PMC

Pantoja C, Huff JT, Yamamoto KR, Glucocorticoid signaling defines a novel commitment state during adipogenesis in vitro, Mol Biol Cell 19(10) (2008) 4032–41. PubMed PMC

Whirledge S, DeFranco DB, Glucocorticoid Signaling in Health and Disease: Insights From Tissue-Specific GR Knockout Mice, Endocrinology 159(1) (2018) 46–64. PubMed PMC

Kershaw EE, Morton NM, Dhillon H, Ramage L, Seckl JR, Flier JS, Adipocyte-specific glucocorticoid inactivation protects against diet-induced obesity, Diabetes 54(4) (2005) 1023–31. PubMed PMC

Iwen KA, Schroder E, Brabant G, Thyroid hormones and the metabolic syndrome, European thyroid journal 2(2) (2013) 83–92. PubMed PMC

Obregon MJ, Thyroid hormone and adipocyte differentiation, Thyroid 18(2) (2008) 185–95. PubMed

Darimont C, Gaillard D, Ailhaud G, Negrel R, Terminal differentiation of mouse preadipocyte cells: adipogenic and antimitogenic role of triiodothyronine, Mol Cell Endocrinol 98(1) (1993) 67–73. PubMed

Jiang W, Miyamoto T, Kakizawa T, Sakuma T, Nishio S, Takeda T, Suzuki S, Hashizume K, Expression of thyroid hormone receptor alpha in 3T3-L1 adipocytes; triiodothyronine increases the expression of lipogenic enzyme and triglyceride accumulation, The Journal of endocrinology 182(2) (2004) 295–302. PubMed

Pelletier P, Gauthier K, Sideleva O, Samarut J, Silva JE, Mice lacking the thyroid hormone receptor-alpha gene spend more energy in thermogenesis, burn more fat, and are less sensitive to high-fat diet-induced obesity, Endocrinology 149(12) (2008) 6471–86. PubMed

Liu YY, Schultz JJ, Brent GA, A thyroid hormone receptor alpha gene mutation (P398H) is associated with visceral adiposity and impaired catecholamine-stimulated lipolysis in mice, J Biol Chem 278(40) (2003) 38913–20. PubMed

Weiss RE, Murata Y, Cua K, Hayashi Y, Seo H, Refetoff S, Thyroid hormone action on liver, heart, and energy expenditure in thyroid hormone receptor beta-deficient mice, Endocrinology 139(12) (1998) 4945–52. PubMed

Lu C, Cheng SY, Thyroid hormone receptors regulate adipogenesis and carcinogenesis via crosstalk signaling with peroxisome proliferator-activated receptors, J Mol Endocrinol 44(3) (2010) 143–54. PubMed PMC

Grover GJ, Mellstrom K, Malm J, Therapeutic potential for thyroid hormone receptor-beta selective agonists for treating obesity, hyperlipidemia and diabetes, Curr Vasc Pharmacol 5(2) (2007) 141–54. PubMed

Bryzgalova G, Effendic S, Khan A, Rehnmark S, Barbounis P, Boulet J, Dong G, Singh R, Shapses S, Malm J, Webb P, Baxter JD, Grover GJ, Anti-obesity, anti-diabetic, and lipid lowering effects of the thyroid receptor beta subtype selective agonist KB-141, J Steroid Biochem Mol Biol 111(3-5) (2008) 262–7. PubMed

Dale J, Daykin J, Holder R, Sheppard MC, Franklyn JA, Weight gain following treatment of hyperthyroidism, Clinical endocrinology 55(2) (2001) 233–9. PubMed

Lonn L, Stenlof K, Ottosson M, Lindroos AK, Nystrom E, Sjostrom L, Body weight and body composition changes after treatment of hyperthyroidism, The Journal of clinical endocrinology and metabolism 83(12) (1998) 4269–73. PubMed

Kolyvanos Naumann U, Furer J, Kaser L, Vetter W, [Hypothyroidism. Main symptoms: fatigue, weight gain, depression, myalgia, edema], Praxis (Bern 1994) 96(38) (2007) 1411–7. PubMed

Bratusch-Marrain P, Schmid P, Waldhausl W, Schlick W, Specific weight loss in hyperthyroidism, Horm Metab Res 10(5) (1978) 412–5. PubMed

Valassi E, Scacchi M, Cavagnini F, Neuroendocrine control of food intake, Nutr Metab Cardiovasc Dis 18(2) (2008) 158–68. PubMed

Sohn JW, Network of Hypothalamic Neurons that Control Appetite, BMB reports (2015). PubMed PMC

Rossi MA, Stuber GD, Overlapping Brain Circuits for Homeostatic and Hedonic Feeding, Cell Metab 27(1) (2018) 42–56. PubMed PMC

Lutter M, Nestler EJ, Homeostatic and hedonic signals interact in the regulation of food intake, The Journal of nutrition 139(3) (2009) 629–32. PubMed PMC

Matafome P, Seiça R, The Role of Brain in Energy Balance, Adv Neurobiol 19 (2017) 33–48. PubMed

Heisler LK, Lam DD, An appetite for life: brain regulation of hunger and satiety, Current opinion in pharmacology 37 (2017) 100–106. PubMed

Koliaki C, Liatis S, Dalamaga M, Kokkinos A, The Implication of Gut Hormones in the Regulation of Energy Homeostasis and Their Role in the Pathophysiology of Obesity, Current obesity reports 9(3) (2020) 255–271. PubMed

Morton GJ, Meek TH, Schwartz MW, Neurobiology of food intake in health and disease, Nature reviews. Neuroscience 15(6) (2014) 367–78. PubMed PMC

Kleinridders A, Ferris HA, Cai W, Kahn CR, Insulin action in brain regulates systemic metabolism and brain function, Diabetes 63(7) (2014) 2232–43. PubMed PMC

Stincic TL, Rønnekleiv OK, Kelly MJ, Diverse actions of estradiol on anorexigenic and orexigenic hypothalamic arcuate neurons, Horm Behav 104 (2018) 146–155. PubMed PMC

Zanchi D, Depoorter A, Egloff L, Haller S, Mählmann L, Lang UE, Drewe J, Beglinger C, Schmidt A, Borgwardt S, The impact of gut hormones on the neural circuit of appetite and satiety: A systematic review, Neurosci Biobehav Rev 80 (2017) 457–475. PubMed

Makris MC, Alexandrou A, Papatsoutsos EG, Malietzis G, Tsilimigras DI, Guerron AD, Moris D, Ghrelin and Obesity: Identifying Gaps and Dispelling Myths. A Reappraisal, In Vivo 31(6) (2017) 1047–1050. PubMed PMC

Kessler RM, Hutson PH, Herman BK, Potenza MN, Neuroscience and Biobehavioral Reviews The neurobiological basis of binge-eating disorder, Neuroscience and Biobehavioral Reviews 63 (2016) 223–238. PubMed

Baik JH, Dopamine signaling in reward-related behaviors, Front Neural Circuits 7 (2013) 152. PubMed PMC

Baik JH, Dopaminergic Control of the Feeding Circuit, Endocrinol Metab (Seoul) 36(2) (2021) 229–239. PubMed PMC

Wiss DA, Criscitelli K, Gold M, Avena N, Preclinical evidence for the addiction potential of highly palatable foods: Current developments related to maternal influence, Appetite 115 (2017) 19–27. PubMed

Charbogne P, Gardon O, Martín-García E, Keyworth HL, Matsui A, Mechling AE, Bienert T, Nasseef MT, Robé A, Moquin L, Darcq E, Ben Hamida S, Robledo P, Matifas A, Befort K, Gavériaux-Ruff C, Harsan LA, von Elverfeldt D, Hennig J, Gratton A, Kitchen I, Bailey A, Alvarez VA, Maldonado R, Kieffer BL, Mu Opioid Receptors in Gamma-Aminobutyric Acidergic Forebrain Neurons Moderate Motivation for Heroin and Palatable Food, Biol Psychiatry 81(9) (2017) 778–788. PubMed PMC

Rosenbaum M, Murphy EM, Heymsfield SB, Matthews DE, Leibel RL, Low dose leptin administration reverses effects of sustained weight-reduction on energy expenditure and circulating concentrations of thyroid hormones, The Journal of clinical endocrinology and metabolism 87(5) (2002) 2391–4. PubMed

Yu YH, Vasselli JR, Zhang Y, Mechanick JI, Korner J, Peterli R, Metabolic vs. hedonic obesity: a conceptual distinction and its clinical implications, Obes Rev 16(3) (2015) 234–47. PubMed PMC

Yu YH, Making sense of metabolic obesity and hedonic obesity, J Diabetes 9(7) (2017) 656–666. PubMed

Lustig RH, Sen S, Soberman JE, Velasquez-Mieyer PA, Obesity, leptin resistance, and the effects of insulin reduction, International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity 28(10) (2004) 1344–8. PubMed

Farooqi IS, Bullmore E, Keogh J, Gillard J, O’Rahilly S, Fletcher PC, Leptin regulates striatal regions and human eating behavior, Science 317(5843) (2007) 1355. PubMed PMC

Münzberg H, Myers MG Jr., Molecular and anatomical determinants of central leptin resistance, Nat Neurosci 8(5) (2005) 566–70. PubMed

Figlewicz DP, Evans SB, Murphy J, Hoen M, Baskin DG, Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat, Brain research 964(1) (2003) 107–15. PubMed

Hill JW, Williams KW, Ye C, Luo J, Balthasar N, Coppari R, Cowley MA, Cantley LC, Lowell BB, Elmquist JK, Acute effects of leptin require PI3K signaling in hypothalamic proopiomelanocortin neurons in mice, J Clin Invest 118(5) (2008) 1796–805. PubMed PMC

Lin X, Taguchi A, Park S, Kushner JA, Li F, Li Y, White MF, Dysregulation of insulin receptor substrate 2 in beta cells and brain causes obesity and diabetes, J Clin Invest 114(7) (2004) 908–16. PubMed PMC

Zabolotny JM, Bence-Hanulec KK, Stricker-Krongrad A, Haj F, Wang Y, Minokoshi Y, Kim YB, Elmquist JK, Tartaglia LA, Kahn BB, Neel BG, PTP1B regulates leptin signal transduction in vivo, Dev Cell 2(4) (2002) 489–95. PubMed

Lustig RH, Childhood obesity: behavioral aberration or biochemical drive? Reinterpreting the First Law of Thermodynamics, Nat Clin Pract Endocrinol Metab 2(8) (2006) 447–58. PubMed

Mietus-Snyder ML, Lustig RH, Childhood obesity: adrift in the “limbic triangle”, Annu Rev Med 59 (2008) 147–62. PubMed

Aguilera CM, Olza J, Gil A, Genetic susceptibility to obesity and metabolic syndrome in childhood, Nutricion hospitalaria 28 Suppl 5 (2013) 44–55. PubMed

Lusis AJ, Attie AD, Reue K, Metabolic syndrome: from epidemiology to systems biology, Nat Rev Genet 9(11) (2008) 819–30. PubMed PMC

Ludwig DS, Aronne LJ, Astrup A, de Cabo R, Cantley LC, Friedman MI, Heymsfield SB, Johnson JD, King JC, Krauss RM, Lieberman DE, Taubes G, Volek JS, Westman EC, Willett WC, Yancy WS, Ebbeling CB, The carbohydrate-insulin model: a physiological perspective on the obesity pandemic, Am J Clin Nutr (2021). PubMed PMC

Stanhope KL, Goran MI, Bosy-Westphal A, et al., Pathways and mechanisms linking dietary components to cardiometabolic disease: thinking beyond calories, Obes. Rev 19(9) (2018) 1205–1295. PubMed PMC

Weickert MO, Pfeiffer AFH, Metabolic effects of dietary fiber consumption and prevention of diabetes, J. Nutr 138 (2008) 439–442. PubMed

Desai MS, Seekatz AM, Koropatkin NM, et al., A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility, Cell 167(5) (2016) 1339–1353.e21. PubMed PMC

Ferrarese R, Ceresola ER, Preti A, Canducci F, Probiotics, prebiotics and synbiotics for weight loss and metabolic syndrome in the microbiome era, Eur. Rev. Med. Pharmacol. Sci 22(21) (2018) 7588–7605. PubMed

Johnston CS, Day CS, Swan PD, Postprandial thermogenesis is increased 100% on a high-protein, low-fat diet versus a high-carbohydrate, low-fat diet in healthy, young women, J. Am. Coll. Nutr 21 (2002) 55–61. PubMed

Howard BV, Manson JE, Stefanick ML, Beresford SA, Frank G, Jones B, Rodabough RJ, Snetselaar L, Thomson C, Tinker L, Vitolins M, Prentice R, Low-fat dietary pattern and weight change over 7 years: the Women’s Health Initiative Dietary Modification Trial, JAMA 295(1) (2006) 39–49. PubMed

Howard BV, Van Horn L, Hsia J, Manson JE, Stefanick ML, Wassertheil-Smoller S, Kuller LH, LaCroix AZ, Langer RD, Lasser NL, Lewis CE, Limacher MC, Margolis KL, Mysiw WJ, Ockene JK, Parker LM, Perri MG, Phillips L, Prentice RL, Robbins J, Rossouw JE, Sarto GE, Schatz IJ, Snetselaar LG, Stevens VJ, Tinker LF, Trevisan M, Vitolins MZ, Anderson GL, Assaf AR, Bassford T, Beresford SA, Black HR, Brunner RL, Brzyski RG, Caan B, Chlebowski RT, Gass M, Granek I, Greenland P, Hays J, Heber D, Heiss G, Hendrix SL, Hubbell FA, Johnson KC, Kotchen JM, Low-fat dietary pattern and risk of cardiovascular disease: the Women’s Health Initiative Randomized Controlled Dietary Modification Trial., JAMA 295(6) (2006) 655–666. PubMed

Ramsden CE, Zamora D, Majchrzak-Hong S, et al., Re-evaluation of the traditional diet-heart hypothesis: analysis of recovered data from Minnesota Coronary Experiment (1968-73), BMJ (Clinical research ed.) 353 (2016) i1246. PubMed PMC

Frantz ID, Dawson EA, Ashman PL, et al., Test of effect of lipid lowering by diet on cardiovascular risk. The Minnesota Coronary Survey. , Arteriosclerosis. 9 (1989) 129–135. PubMed

Goran MI, Dumke K, Bouret SG, Kayser B, Walker RW, Blumberg B, The obesogenic effect of high fructose exposure during early development, Nature reviews. Endocrinology 9(8) (2013) 494–500. PubMed PMC

Temelkova-Kurktschiev T, Siegert G, Bergmann S, et al., Subclinical inflammation is strongly related to insulin resistance but not to impaired insulin secretion in a high risk population for diabetes, Metabolism 51(6) (2002) 743–749. PubMed

de Vegt F, Dekker JM, Ruhé HG, et al., Hyperglycaemia is associated with all-cause and cardiovascular mortality in the Hoorn population: the Hoorn Study, Diabetologia 42(8) (1999) 926–931. PubMed

Foster-Powell K, Brand-Miller J, International tables of glycemic index, Am. J. Clin. Nutr 62(4) (1995) 871S–890S. PubMed

Slabber M, Barnard HC, Kuyl JM, Dannhauser A, Schall R, Effects of a low-insulin-response, energy-restricted diet on weight loss and plasma insulin concentrations in hyperinsulinemic obese females, Am. J. Clin. Nutr 60(1) (1994) 48–53. PubMed

Ludwig DS, Hu FB, Tappy L, Brand-Miller J, Dietary carbohydrates: role of quality and quantity in chronic disease, BMJ (Clinical research ed.) 361 (2018) k2340–k2340. PubMed PMC

Lee HS, Lee J, Effects of Combined Exercise and Low Carbohydrate Ketogenic Diet Interventions on Waist Circumference and Triglycerides in Overweight and Obese Individuals: A Systematic Review and Meta-Analysis, Int J Environ Res Public Health 18(2) (2021). PubMed PMC

Magkos F, Hjorth MF, Astrup A, Diet and exercise in the prevention and treatment of type 2 diabetes mellitus, Nat Rev Endocrinol 16(10) (2020) 545–555. PubMed

Li H, Dun Y, Zhang W, You B, Liu Y, Fu S, Qiu L, Cheng J, Ripley-Gonzalez JW, Liu S, Exercise improves lipid droplet metabolism disorder through activation of AMPK-mediated lipophagy in NAFLD, Life sciences 273 (2021) 119314. PubMed

Thorp A, Stine JG, Exercise as Medicine: The Impact of Exercise Training on Nonalcoholic Fatty Liver Disease, Curr Hepatol Rep 19(4) (2020) 402–411. PubMed PMC

Kim JY, Jeon JY, Role of exercise on insulin sensitivity and beta-cell function: is exercise sufficient for the prevention of youth-onset type 2 diabetes?, Annals of pediatric endocrinology & metabolism 25(4) (2020) 208–216. PubMed PMC

Barber TM, Kyrou I, Randeva HS, Weickert MO, Mechanisms of Insulin Resistance at the Crossroad of Obesity with Associated Metabolic Abnormalities and Cognitive Dysfunction, International journal of molecular sciences 22(2) (2021). PubMed PMC

Imierska M, Kurianiuk A, Błachnio-Zabielska A, The Influence of Physical Activity on the Bioactive Lipids Metabolism in Obesity-Induced Muscle Insulin Resistance, Biomolecules 10(12) (2020). PubMed PMC

Sun Y, Ding S, ER-Mitochondria Contacts and Insulin Resistance Modulation through Exercise Intervention, International journal of molecular sciences 21(24) (2020). PubMed PMC

Gonzalez-Gil AM, Elizondo-Montemayor L, The Role of Exercise in the Interplay between Myokines, Hepatokines, Osteokines, Adipokines, and Modulation of Inflammation for Energy Substrate Redistribution and Fat Mass Loss: A Review, Nutrients 12(6) (2020). PubMed PMC

Rosa-Neto JC, Silveira LS, Endurance Exercise Mitigates Immunometabolic Adipose Tissue Disturbances in Cancer and Obesity, International journal of molecular sciences 21(24) (2020). PubMed PMC

Soltani N, Marandi SM, Kazemi M, Esmaeil N, The Exercise Training Modulatory Effects on the Obesity-Induced Immunometabolic Dysfunctions, Diabetes, metabolic syndrome and obesity : targets and therapy 13 (2020) 785–810. PubMed PMC

Laurens C, Bergouignan A, Moro C, Exercise-Released Myokines in the Control of Energy Metabolism, Frontiers in physiology 11 (2020) 91. PubMed PMC

Fan Z, Xu M, Exercise and Organ Cross Talk, Adv Exp Med Biol 1228 (2020) 63–76. PubMed

Trovato E, Di Felice V, Barone R, Extracellular Vesicles: Delivery Vehicles of Myokines, Frontiers in physiology 10 (2019) 522. PubMed PMC

Vechetti IJ, Valentino T, Mobley CB, McCarthy JJ, The role of extracellular vesicles in skeletal muscle and systematic adaptation to exercise, The Journal of physiology 599(3) (2021) 845–861. PubMed PMC

Improta Caria AC, Nonaka CKV, Pereira CS, Soares MBP, Macambira SG, Souza BSF, Exercise Training-Induced Changes in MicroRNAs: Beneficial Regulatory Effects in Hypertension, Type 2 Diabetes, and Obesity, International journal of molecular sciences 19(11) (2018). PubMed PMC

Ehtesham N, Shahrbanian S, Valadiathar M, Mowla SJ, Modulations of obesity-related microRNAs after exercise intervention: a systematic review and bioinformatics analysis, Mol Biol Rep (2021). PubMed

Harris JE, Baer LA, Stanford KI, Maternal Exercise Improves the Metabolic Health of Adult Offspring, Trends in endocrinology and metabolism: TEM 29(3) (2018) 164–177. PubMed PMC

Zheng J, Zhou LY, Xiao XH, Maternal exercise and its beneficial effects on glucose metabolism in offspring, Chin Med J (Engl) 133(7) (2020) 863–867. PubMed PMC

McCarthy SF, Islam H, Hazell TJ, The emerging role of lactate as a mediator of exercise-induced appetite suppression, American journal of physiology. Endocrinology and metabolism 319(4) (2020) E814–E819. PubMed

Atkinson RL, Viruses as an etiology of obesity, Mayo Clin Proc 82(10) (2007) 1192–8. PubMed

Lyons MJ, Faust IM, Hemmes RB, Buskirk DR, Hirsch J, Zabriskie JB, A virally induced obesity syndrome in mice, Science 216(4541) (1982) 82–5. PubMed

Carter JK, Ow CL, Smith RE, Rous-associated virus type 7 induces a syndrome in chickens characterized by stunting and obesity, Infect Immun 39(1) (1983) 410–22. PubMed PMC

Atkinson RL, Dhurandhar NV, Allison DB, Bowen RL, Israel BA, Albu JB, Augustus AS, Human adenovirus-36 is associated with increased body weight and paradoxical reduction of serum lipids, International journal of obesity (2005) 29(3) (2005) 281–6. PubMed

Shang Q, Wang H, Song Y, Wei L, Lavebratt C, Zhang F, Gu H, Serological data analyses show that adenovirus 36 infection is associated with obesity: a meta-analysis involving 5739 subjects, Obesity (Silver Spring) 22(3) (2014) 895–900. PubMed

Ponterio E, Gnessi L, Adenovirus 36 and Obesity: An Overview, Viruses 7(7) (2015) 3719–40. PubMed PMC

Vangipuram SD, Yu M, Tian J, Stanhope KL, Pasarica M, Havel PJ, Heydari AR, Dhurandhar NV, Adipogenic human adenovirus-36 reduces leptin expression and secretion and increases glucose uptake by fat cells, International journal of obesity (2005) 31(1) (2007) 87–96. PubMed

Sapunar J, Fonseca L, Molina V, Ortiz E, Barra MI, Reimer C, Charles M, Schneider C, Ortiz M, Brito R, Manríquez V, Pavez M, Cerda A, Adenovirus 36 seropositivity is related to obesity risk, glycemic control, and leptin levels in Chilean subjects, International journal of obesity (2005) 44(1) (2020) 159–166. PubMed

Fazakerley DJ, Krycer JR, Kearney AL, Hocking SL, James DE, Muscle and adipose tissue insulin resistance: malady without mechanism?, J Lipid Res 60(10) (2019) 1720–1732. PubMed PMC

Samocha-Bonet D, Dixit VD, Kahn CR, Leibel RL, Lin X, Nieuwdorp M, Pietiläinen KH, Rabasa-Lhoret R, Roden M, Scherer PE, Klein S, Ravussin E, Metabolically healthy and unhealthy obese--the 2013 Stock Conference report, Obes Rev 15(9) (2014) 697–708. PubMed PMC

Kitamura T, Kahn CR, Accili D, Insulin receptor knockout mice, Annual review of physiology 65 (2003) 313–32. PubMed

Matsumoto M, Han S, Kitamura T, Accili D, Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism, J Clin Invest 116(9) (2006) 2464–72. PubMed PMC

Naïmi M, Gautier N, Chaussade C, Valverde AM, Accili D, Van Obberghen E, Nuclear forkhead box O1 controls and integrates key signaling pathways in hepatocytes, Endocrinology 148(5) (2007) 2424–34. PubMed

Lewis GF, Uffelman KD, Szeto LW, Steiner G, Effects of acute hyperinsulinemia on VLDL triglyceride and VLDL apoB production in normal weight and obese individuals, Diabetes 42(6) (1993) 833–42. PubMed

Fu S, Watkins SM, Hotamisligil GS, The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling, Cell Metab 15(5) (2012) 623–34. PubMed

Birkenfeld AL, Shulman GI, Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes, Hepatology 59(2) (2014) 713–23. PubMed PMC

Sripetchwandee J, Chattipakorn N, Chattipakorn SC, Links Between Obesity-Induced Brain Insulin Resistance, Brain Mitochondrial Dysfunction, and Dementia, Front Endocrinol (Lausanne) 9 (2018) 496. PubMed PMC

Valdearcos M, Douglass JD, Robblee MM, Dorfman MD, Stifler DR, Bennett ML, Gerritse I, Fasnacht R, Barres BA, Thaler JP, Koliwad SK, Microglial Inflammatory Signaling Orchestrates the Hypothalamic Immune Response to Dietary Excess and Mediates Obesity Susceptibility, Cell Metab 26(1) (2017) 185–197.e3. PubMed PMC

Lewis GF, Carpentier A, Adeli K, Giacca A, Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes, Endocr Rev 23(2) (2002) 201–29. PubMed

Lobo S, Bernlohr DA, Fatty acid transport in adipocytes and the development of insulin resistance, Novartis Found Symp 286 (2007) 113–21; discussion 121-6, 162-3, 196-203. PubMed

Thompson BR, Lobo S, Bernlohr DA, Fatty acid flux in adipocytes: the in's and out's of fat cell lipid trafficking, Mol Cell Endocrinol 318(1-2) (2010) 24–33. PubMed PMC

Zhao P, Wong KI, Sun X, Reilly SM, Uhm M, Liao Z, Skorobogatko Y, Saltiel AR, TBK1 at the Crossroads of Inflammation and Energy Homeostasis in Adipose Tissue, Cell 172(4) (2018) 731–743.e12. PubMed PMC

Bremer AA, Devaraj S, Afify A, Jialal I, Adipose tissue dysregulation in patients with metabolic syndrome, The Journal of clinical endocrinology and metabolism 96(11) (2011) E1782–8. PubMed PMC

Shoelson SE, Lee J, Goldfine AB, Inflammation and insulin resistance, J Clin Invest 116(7) (2006) 1793–801. PubMed PMC

Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H, Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance, J Clin Invest 112(12) (2003) 1821–30. PubMed PMC

Saltiel AR, Olefsky JM, Inflammatory mechanisms linking obesity and metabolic disease, J Clin Invest 127(1) (2017) 1–4. PubMed PMC

Cildir G, Akincilar SC, Tergaonkar V, Chronic adipose tissue inflammation: all immune cells on the stage, Trends Mol Med 19(8) (2013) 487–500. PubMed

Kolb R, Sutterwala FS, Zhang W, Obesity and cancer: inflammation bridges the two, Current opinion in pharmacology 29 (2016) 77–89. PubMed PMC

Steppan CM, Brown EJ, Wright CM, Bhat S, Banerjee RR, Dai CY, Enders GH, Silberg DG, Wen X, Wu GD, Lazar MA, A family of tissue-specific resistin-like molecules, Proceedings of the National Academy of Sciences of the United States of America 98(2) (2001) 502–506. PubMed PMC

Bansal A, Henao-Mejia J, Simmons RA, Immune System: An Emerging Player in Mediating Effects of Endocrine Disruptors on Metabolic Health, Endocrinology 159(1) (2018) 32–45. PubMed PMC

Crewe C, An YA, Scherer PE, The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis, J Clin Invest 127(1) (2017) 74–82. PubMed PMC

Reilly SM, Saltiel AR, Adapting to obesity with adipose tissue inflammation, Nat Rev Endocrinol 13(11) (2017) 633–643. PubMed

Russo L, Lumeng CN, Properties and functions of adipose tissue macrophages in obesity, Immunology 155(4) (2018) 407–417. PubMed PMC

Li Y, Yun K, Mu R, A review on the biology and properties of adipose tissue macrophages involved in adipose tissue physiological and pathophysiological processes, Lipids Health Dis 19(1) (2020) 164. PubMed PMC

Osborn O, Olefsky JM, The cellular and signaling networks linking the immune system and metabolism in disease, Nat Med. 18(3) (2012) 363–74. doi: 10.1038/nm.2627. PubMed DOI

Ouchi N, Parker JL, Lugus JJ, Walsh K, Adipokines in inflammation and metabolic disease, Nat Rev Immunol. 11(2) (2011) 85–97. doi: 10.1038/nri2921. Epub 2011 Jan 21. PubMed DOI PMC

Sell H, Habich C, Eckel J, Adaptive immunity in obesity and insulin resistance, Nat Rev Endocrinol. 8(12) (2012) 709–16. doi: 10.1038/nrendo.2012.114. Epub 2012 Jul 31. PubMed DOI

Brestoff JR, Artis D, Immune regulation of metabolic homeostasis in health and disease, Cell. 161(1) (2015) 146–60. doi: 10.1016/j.cell.2015.02.022. PubMed DOI PMC

Itoh M, Suganami T, Hachiya R, Ogawa Y, Adipose tissue remodeling as homeostatic inflammation, Int J Inflam 2011 (2011) 720926. PubMed PMC

Hill JO, Understanding and addressing the epidemic of obesity: an energy balance perspective, Endocr Rev 27(7) (2006) 750–61. PubMed

Sarwar R, Pierce N, Koppe S, Obesity and nonalcoholic fatty liver disease: current perspectives, Diabetes, metabolic syndrome and obesity : targets and therapy 11 (2018) 533–542. PubMed PMC

Hruby A, Hu FB, The Epidemiology of Obesity: A Big Picture, PharmacoEconomics 33(7) (2015) 673–89. PubMed PMC

Durack J, Lynch SV, The gut microbiome: Relationships with disease and opportunities for therapy, J Exp Med 216(1) (2019) 20–40. PubMed PMC

Shreiner AB, Kao JY, Young VB, The gut microbiome in health and in disease, Curr Opin Gastroenterol 31(1) (2015) 69–75. PubMed PMC

Cani PD, Human gut microbiome: hopes, threats and promises, Gut 67(9) (2018) 1716–1725. PubMed PMC

Li M, van Esch B, Wagenaar GTM, Garssen J, Folkerts G, Henricks PAJ, Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells, Eur J Pharmacol 831 (2018) 52–59. PubMed

Castaner O, Goday A, Park YM, Lee SH, Magkos F, Shiow STE, Schroder H, The Gut Microbiome Profile in Obesity: A Systematic Review, Int J Endocrinol 2018 (2018) 4095789. PubMed PMC

Abenavoli L, Scarpellini E, Colica C, Boccuto L, Salehi B, Sharifi-Rad J, Aiello V, Romano B, De Lorenzo A, Izzo AA, Capasso R, Gut Microbiota and Obesity: A Role for Probiotics, Nutrients 11(11) (2019) 2690. PubMed PMC

Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Meta HITC, Bork P, Ehrlich SD, Wang J, A human gut microbial gene catalogue established by metagenomic sequencing, Nature 464(7285) (2010) 59–65. PubMed PMC

Ley RE, Turnbaugh PJ, Klein S, Gordon JI, Microbial ecology: human gut microbes associated with obesity, Nature 444(7122) (2006) 1022–3. PubMed

Wang R, Tang R, Li B, Ma X, Schnabl B, Tilg H, Gut microbiome, liver immunology, and liver diseases, Cell Mol Immunol 18(1) (2021) 4–17. PubMed PMC

Aguilar T, Nava GM, Olvera-Ramirez AM, Ronquillo D, Camacho M, Zavala GA, Caamano MC, Acevedo-Whitehouse K, Rosado JL, Garcia OP, Gut Bacterial Families Are Associated with Body Composition and Metabolic Risk Markers in School-Aged Children in Rural Mexico, Childhood obesity (Print) 16(5) (2020) 358–366. PubMed

Sekikawa A, Kadowaki T, Curb JD, Evans RW, Maegawa H, Abbott RD, Sutton-Tyrrell K, Okamura T, Shin C, Edmundowicz D, Kadota A, Choo J, El-Saed A, Ueshima H, Kuller LH, group EJS, Circulating levels of 8 cytokines and marine n-3 fatty acids and indices of obesity in Japanese, white, and Japanese American middle-aged men, J Interferon Cytokine Res 30(7) (2010) 541–8. PubMed PMC

Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, Thaiss CA, Kau AL, Eisenbarth SC, Jurczak MJ, Camporez JP, Shulman GI, Gordon JI, Hoffman HM, Flavell RA, Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity, Nature 482(7384) (2012) 179–85. PubMed PMC

Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR, Muehlbauer MJ, Ilkayeva O, Semenkovich CF, Funai K, Hayashi DK, Lyle BJ, Martini MC, Ursell LK, Clemente JC, Van Treuren W, Walters WA, Knight R, Newgard CB, Heath AC, Gordon JI, Gut microbiota from twins discordant for obesity modulate metabolism in mice, Science 341(6150) (2013) 1241214. PubMed PMC

Agus A, Planchais J, Sokol H, Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease, Cell host & microbe 23(6) (2018) 716–724. PubMed

Laurans L, Venteclef N, Haddad Y, Chajadine M, Alzaid F, Metghalchi S, Sovran B, Denis RGP, Dairou J, Cardellini M, Moreno-Navarrete JM, Straub M, Jegou S, McQuitty C, Viel T, Esposito B, Tavitian B, Callebert J, Luquet SH, Federici M, Fernandez-Real JM, Burcelin R, Launay JM, Tedgui A, Mallat Z, Sokol H, Taleb S, Genetic deficiency of indoleamine 2,3-dioxygenase promotes gut microbiota-mediated metabolic health, Nat Med 24(8) (2018) 1113–1120. PubMed

Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vich Vila A, Vosa U, Mujagic Z, Masclee AAM, Jonkers D, Oosting M, Joosten LAB, Netea MG, Franke L, Zhernakova A, Fu J, Wijmenga C, McCarthy MI, Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases, Nat Genet 51(4) (2019) 600–605. PubMed PMC

Xiao H, Kang S, The Role of the Gut Microbiome in Energy Balance With a Focus on the Gut-Adipose Tissue Axis, Front Genet 11 (2020) 297. PubMed PMC

Tilg H, Zmora N, Adolph TE, Elinav E, The intestinal microbiota fuelling metabolic inflammation, Nature reviews. Immunology 20(1) (2020) 40–54. PubMed

Virtue AT, McCright SJ, Wright JM, Jimenez MT, Mowel WK, Kotzin JJ, Joannas L, Basavappa MG, Spencer SP, Clark ML, Eisennagel SH, Williams A, Levy M, Manne S, Henrickson SE, Wherry EJ, Thaiss CA, Elinav E, Henao-Mejia J, The gut microbiota regulates white adipose tissue inflammation and obesity via a family of microRNAs, Sci Transl Med 11(496) (2019). PubMed PMC

Boursier J, Mueller O, Barret M, Machado M, Fizanne L, Araujo-Perez F, Guy CD, Seed PC, Rawls JF, David LA, Hunault G, Oberti F, Cales P, Diehl AM, The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota, Hepatology 63(3) (2016) 764–75. PubMed PMC

Fandriks L, Roles of the gut in the metabolic syndrome: an overview, J Intern Med 281(4) (2017) 319–336. PubMed

Kohsaka A, Bass J, A sense of time: how molecular clocks organize metabolism, Trends in endocrinology and metabolism: TEM 18(1) (2007) 4–11. PubMed

Gooley JJ, Circadian regulation of lipid metabolism, The Proceedings of the Nutrition Society 75(4) (2016) 440–450. PubMed

Mayeuf-Louchart A, Zecchin M, Staels B, Duez H, Circadian control of metabolism and pathological consequences of clock perturbations, Biochimie 143 (2017) 42–50. PubMed

Serin Y, Acar Tek N, Effect of Circadian Rhythm on Metabolic Processes and the Regulation of Energy Balance, Annals of nutrition & metabolism 74(4) (2019) 322–330. PubMed

Guan D, Lazar MA, Interconnections between circadian clocks and metabolism, J Clin Invest 131(15) (2021). PubMed PMC

Parkar SG, Kalsbeek A, Cheeseman JF, Potential Role for the Gut Microbiota in Modulating Host Circadian Rhythms and Metabolic Health, Microorganisms 7(2) (2019). PubMed PMC

Mukherji A, Bailey SM, Staels B, Baumert TF, The circadian clock and liver function in health and disease, J Hepatol 71(1) (2019) 200–211. PubMed PMC

Pan X, Mota S, Zhang B, Circadian Clock Regulation on Lipid Metabolism and Metabolic Diseases, Adv Exp Med Biol 1276 (2020) 53–66. PubMed PMC

Saran AR, Dave S, Zarrinpar A, Circadian Rhythms in the Pathogenesis and Treatment of Fatty Liver Disease, Gastroenterology 158(7) (2020) 1948–1966.e1. PubMed PMC

Andriessen C, Schrauwen P, Hoeks J, The importance of 24-h metabolism in obesity-related metabolic disorders: opportunities for timed interventions, International journal of obesity (2005) 45(3) (2021) 479–490. PubMed

Barker DJ, The fetal and infant origins of adult disease, BMJ (Clinical research ed.) 301(6761) (1990) 1111. PubMed PMC

Barker DJ, The origins of the developmental origins theory, J Intern Med 261(5) (2007) 412–7. PubMed

Oken E, Gillman MW, Fetal origins of obesity, Obesity research 11(4) (2003) 496–506. PubMed

Taylor PD, Poston L, Developmental programming of obesity in mammals, Exp Physiol 92(2) (2007) 287–98. PubMed

Hales CN, Barker DJ, Clark PM, Cox LJ, Fall C, Osmond C, Winter PD, Fetal and infant growth and impaired glucose tolerance at age 64, BMJ (Clinical research ed.) 303(6809) (1991) 1019–22. PubMed PMC

Curhan GC, Willett WC, Rimm EB, Spiegelman D, Ascherio AL, Stampfer MJ, Birth weight and adult hypertension, diabetes mellitus, and obesity in US men, Circulation 94(12) (1996) 3246–50. PubMed

Curhan GC, Chertow GM, Willett WC, Spiegelman D, Colditz GA, Manson JE, Speizer FE, Stampfer MJ, Birth weight and adult hypertension and obesity in women, Circulation 94(6) (1996) 1310–5. PubMed

Rogers I, Group E-BS, The influence of birthweight and intrauterine environment on adiposity and fat distribution in later life, International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity 27(7) (2003) 755–77. PubMed

Ong KK, Ahmed ML, Emmett PM, Preece MA, Dunger DB, Association between postnatal catch-up growth and obesity in childhood: prospective cohort study, BMJ (Clinical research ed.) 320 (2000). PubMed PMC

Ibáñez L, Ong K, Dunger DB, de Zegher F, Early development of adiposity and insulin resistance after catch-up weight gain in small-for-gestational-age children, The Journal of clinical endocrinology and metabolism 91(6) (2006) 2153–8. PubMed

Halldorsson TI, Rytter D, Haug LS, Bech BH, Danielsen I, Becher G, Henriksen TB, Olsen SF, Prenatal Exposure to Perfluorooctanoate and Risk of Overweight at 20 Years of Age: A Prospective Cohort Study, Environ Health Perspect (2012). PubMed PMC

Braun JM, Chen A, Romano ME, Calafat AM, Webster GM, Yolton K, Lanphear BP, Prenatal perfluoroalkyl substance exposure and child adiposity at 8 years of age: The HOME study, Obesity (Silver Spring) 24(1) (2016) 231–7. PubMed PMC

Vrijheid M, Fossati S, Maitre L, Marquez S, Roumeliotaki T, Agier L, Andrusaityte S, Cadiou S, Casas M, de Castro M, Dedele A, Donaire-Gonzalez D, Grazuleviciene R, Haug LS, McEachan R, Meltzer HM, Papadopouplou E, Robinson O, Sakhi AK, Siroux V, Sunyer J, Schwarze PE, Tamayo-Uria I, Urquiza J, Vafeiadi M, Valentin A, Warembourg C, Wright J, Nieuwenhuijsen MJ, Thomsen C, Basagana X, Slama R, Chatzi L, Early-Life Environmental Exposures and Childhood Obesity: An Exposome-Wide Approach, Environ Health Perspect 128(6) (2020) 67009. PubMed PMC

Oken E, Levitan EB, Gillman MW, Maternal smoking during pregnancy and child overweight: systematic review and meta-analysis, International journal of obesity (2005) 32(2) (2008) 201–10. PubMed PMC

Boney CM, Verma A, Tucker R, Vohr BR, Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus, Pediatrics 115(3) (2005) e290–6. PubMed

Roseboom TJ, van der Meulen JH, Ravelli AC, Osmond C, Barker DJ, Bleker OP, Effects of prenatal exposure to the Dutch famine on adult disease in later life: an overview, Mol Cell Endocrinol 185(1-2) (2001) 93–8. PubMed

Yajnik CS, Lubree HG, Rege SS, Naik SS, Deshpande JA, Deshpande SS, Joglekar CV, Yudkin JS, Adiposity and hyperinsulinemia in Indians are present at birth, The Journal of clinical endocrinology and metabolism 87(12) (2002) 5575–80. PubMed

Arends NJ, Boonstra VH, Duivenvoorden HJ, Hofman PL, Cutfield WS, Hokken-Koelega AC, Reduced insulin sensitivity and the presence of cardiovascular risk factors in short prepubertal children born small for gestational age (SGA), Clinical endocrinology 62(1) (2005) 44–50. PubMed

Petry CJ, Ozanne SE, Wang CL, Hales CN, Effects of early protein restriction and adult obesity on rat pancreatic hormone content and glucose tolerance, Horm Metab Res 32(6) (2000) 233–9. PubMed

Simmons RA, Templeton LJ, Gertz SJ, Intrauterine growth retardation leads to the development of type 2 diabetes in the rat, Diabetes 50(10) (2001) 2279–86. PubMed

Bouret SG, Simerly RB, Minireview: Leptin and development of hypothalamic feeding circuits, Endocrinology 145 (2004) 2621–2626. PubMed

Pinto S, Roseberry AG, Liu H, Diano S, Shanabrough M, Cai X, Friedman JM, Horvath TL, Rapid rewiring of arcuate nucleus feeding circuits by leptin, Science 304(5667) (2004) 110–5. PubMed

Vickers MH, Gluckman PD, Coveny AH, Hofman PL, Cutfield WS, Gertler A, Breier BH, Harris M, Neonatal leptin treatment reverses developmental programming, Endocrinology 146(10) (2005) 4211–6. PubMed

Starling AP, Brinton JT, Glueck DH, Shapiro AL, Harrod CS, Lynch AM, Siega-Riz AM, Dabelea D, Associations of maternal BMI and gestational weight gain with neonatal adiposity in the Healthy Start study, Am J Clin Nutr 101(2) (2015) 302–9. PubMed PMC

Catalano PM, Drago NM, Amini SB, Maternal carbohydrate metabolism and its relationship to fetal growth and body composition, Am J Obstet Gynecol 172(5) (1995) 1464–70. PubMed

Whitaker RC, Dietz WH, Role of the prenatal environment in the development of obesity, The Journal of pediatrics 132(5) (1998) 768–76. PubMed

Lawlor DA, Smith GD, O’Callaghan M, Alati R, Mamun AA, Williams GM, Najman JM, Epidemiologic evidence for the fetal overnutrition hypothesis: findings from the mater-university study of pregnancy and its outcomes, Am J Epidemiol 165(4) (2007) 418–24. PubMed

Silverman BL, Landsberg L, Metzger BE, Fetal hyperinsulinism in offspring of diabetic mothers. Association with the subsequent development of childhood obesity, Ann N Y Acad Sci 699 (1993) 36–45. PubMed

Silverman BL, Rizzo TA, Cho NH, Metzger BE, Long-term effects of the intrauterine environment. The Northwestern University Diabetes in Pregnancy Center, Diabetes Care 21 Suppl 2 (1998) B142–9. PubMed

Kral JG, Biron S, Simard S, Hould FS, Lebel S, Marceau S, Marceau P, Large maternal weight loss from obesity surgery prevents transmission of obesity to children who were followed for 2 to 18 years, Pediatrics 118(6) (2006) e1644–9. PubMed

Pinney S, Simmons R, Metabolic Programming, Epigenetics, and Gestational Diabetes Mellitus, Current Diabetes Reports 12(1) (2012) 67–74. PubMed

Boyle KE, Patinkin ZW, Shapiro ALB, Bader C, Vanderlinden L, Kechris K, Janssen RC, Ford RJ, Smith BK, Steinberg GR, Davidson EJ, Yang IV, Dabelea D, Friedman JE, Maternal obesity alters fatty acid oxidation, AMPK activity, and associated DNA methylation in mesenchymal stem cells from human infants, Molecular metabolism 6(11) (2017) 1503–1516. PubMed PMC

Heerwagen MJ, Miller MR, Barbour LA, Friedman JE, Maternal obesity and fetal metabolic programming: a fertile epigenetic soil, Am J Physiol Regul Integr Comp Physiol 299(3) (2010) R711–22. PubMed PMC

Allard C, Desgagne V, Patenaude J, Lacroix M, Guillemette L, Battista MC, Doyon M, Menard J, Ardilouze JL, Perron P, Bouchard L, Hivert MF, Mendelian randomization supports causality between maternal hyperglycemia and epigenetic regulation of leptin gene in newborns, Epigenetics 10(4) (2015) 342–51. PubMed PMC

Heindel JJ, vom Saal FS, Role of nutrition and environmental endocrine disrupting chemicals during the perinatal period on the aetiology of obesity, Mol Cell Endocrinol 304(1-2) (2009) 90–6. PubMed

Barouki R, Melén E, Herceg Z, Beckers J, Chen J, Karagas M, Puga A, Xia Y, Chadwick L, Yan W, Audouze K, Slama R, Heindel J, Grandjean P, Kawamoto T, Nohara K, Epigenetics as a mechanism linking developmental exposures to long-term toxicity, Environment International 114 (2018) 77–86. PubMed PMC

Hofman PL, Regan F, Jackson WE, Jefferies C, Knight DB, Robinson EM, Cutfield WS, Premature birth and later insulin resistance, The New England journal of medicine 351(21) (2004) 2179–86. PubMed

French NP, Hagan R, Evans SF, Godfrey M, Newnham JP, Repeated antenatal corticosteroids: size at birth and subsequent development, Am J Obstet Gynecol 180(1 Pt 1) (1999) 114–21. PubMed

Bloom SL, Sheffield JS, Mclntire DD, Leveno KJ, Antenatal dexamethasone and decreased birth weight, Obstetrics and gynecology 97(4) (2001) 485–90. PubMed

Entringer S, Wüst S, Kumsta R, Layes IM, Nelson EL, Hellhammer DH, Wadhwa PD, Prenatal psychosocial stress exposure is associated with insulin resistance in young adults, Am J Obstet Gynecol 199(5) (2008) 498.e1–7. PubMed PMC

Tamashiro KL, Terrillion CE, Hyun J, Koenig JI, Moran TH, Prenatal stress or high-fat diet increases susceptibility to diet-induced obesity in rat offspring, Diabetes 58(5) (2009) 1116–25. PubMed PMC

Oberlander TF, Weinberg J, Papsdorf M, Grunau R, Misri S, Devlin AM, Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses, Epigenetics 3(2) (2008) 97–106. PubMed

Dallman MF, Pecoraro NC, la Fleur SE, Chronic stress and comfort foods: self-medication and abdominal obesity, Brain Behav Immun 19(4) (2005) 275–80. PubMed

Dallman MF, Pecoraro N, Akana SF, La Fleur SE, Gomez F, Houshyar H, Bell ME, Bhatnagar S, Laugero KD, Manalo S, Chronic stress and obesity: a new view of “comfort food”, Proceedings of the National Academy of Sciences of the United States of America 100(20) (2003) 11696–701. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...