Obesity II: Establishing causal links between chemical exposures and obesity
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, přehledy, Research Support, U.S. Gov't, Non-P.H.S., Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 ES031139
NIEHS NIH HHS - United States
P30 ES025128
NIEHS NIH HHS - United States
P30 ES030283
NIEHS NIH HHS - United States
P30 DK063720
NIDDK NIH HHS - United States
R15 ES026791
NIEHS NIH HHS - United States
P30 ES005022
NIEHS NIH HHS - United States
P01 ES028942
NIEHS NIH HHS - United States
T32 ES011564
NIEHS NIH HHS - United States
R21 ES031510
NIEHS NIH HHS - United States
R01 ES032189
NIEHS NIH HHS - United States
P20 GM103641
NIGMS NIH HHS - United States
R01 MH123544
NIMH NIH HHS - United States
P30 ES027792
NIEHS NIH HHS - United States
R01 ES028879
NIEHS NIH HHS - United States
R35 ES028373
NIEHS NIH HHS - United States
P42 ES023716
NIEHS NIH HHS - United States
P30 CA023108
NCI NIH HHS - United States
R21 ES030786
NIEHS NIH HHS - United States
P01 AT003961
NCCIH NIH HHS - United States
R01 ES023316
NIEHS NIH HHS - United States
R21 ES030884
NIEHS NIH HHS - United States
R00 ES030405
NIEHS NIH HHS - United States
R15 ES026370
NIEHS NIH HHS - United States
P30 DK020595
NIDDK NIH HHS - United States
PubMed
35395240
PubMed Central
PMC9124454
DOI
10.1016/j.bcp.2022.115015
PII: S0006-2952(22)00109-5
Knihovny.cz E-zdroje
- Klíčová slova
- Adipocyte differentiation, Endocrine disruptor, Obesity, Obesogen, Weight gain,
- MeSH
- adipogeneze MeSH
- endokrinní disruptory * toxicita MeSH
- lidé MeSH
- obezita etiologie MeSH
- předškolní dítě MeSH
- tuková tkáň MeSH
- vystavení vlivu životního prostředí škodlivé účinky MeSH
- Check Tag
- lidé MeSH
- předškolní dítě MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- endokrinní disruptory * MeSH
Obesity is a multifactorial disease with both genetic and environmental components. The prevailing view is that obesity results from an imbalance between energy intake and expenditure caused by overeating and insufficient exercise. We describe another environmental element that can alter the balance between energy intake and energy expenditure: obesogens. Obesogens are a subset of environmental chemicals that act as endocrine disruptors affecting metabolic endpoints. The obesogen hypothesis posits that exposure to endocrine disruptors and other chemicals can alter the development and function of the adipose tissue, liver, pancreas, gastrointestinal tract, and brain, thus changing the set point for control of metabolism. Obesogens can determine how much food is needed to maintain homeostasis and thereby increase the susceptibility to obesity. The most sensitive time for obesogen action is in utero and early childhood, in part via epigenetic programming that can be transmitted to future generations. This review explores the evidence supporting the obesogen hypothesis and highlights knowledge gaps that have prevented widespread acceptance as a contributor to the obesity pandemic. Critically, the obesogen hypothesis changes the narrative from curing obesity to preventing obesity.
Brody School of Medicine East Carolina University Greenville NC 27834 USA
Center for Environmental Health Sciences Mississippi State University Mississippi State MS 39762 USA
College of Health and Medicine Australian National University Canberra Australia
College of Pharmacy Texas A and M University College Station TX 77843 USA
Department of Biochemistry University of Paris INSERM T3S 75006 Paris France
Department of Developmental and Cell Biology University of California Irvine Irvine CA 92697 USA
Department of Endocrinology University of Bari Aldo Moro Bari Italy
Department of Epidemiology The University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
Department of Life and Health Sciences University of Bordeaux INSERM Pessac France
Department of Physiology and Pharmacology Karolinska Institute Solna Sweden
Department of Preventive Medicine and Public Health University of Granada Granada Spain
Department of Systems Biology and Bioinformatics University of Paris INSERM T3S Paris France
Division of Biological Sciences The University of Missouri Columbia MO 65211 USA
Environmental Health and Disease Laboratory University of South Carolina Columbia SC 29208 USA
Health and Environment Research Lab The Azrieli Faculty of Medicine Bar Ilan University Israel
Healthy Environment and Endocrine Disruptor Strategies Commonweal Bolinas CA 92924 USA
McMaster University Department of Obstetrics and Gynecology Hamilton Ontario CA USA
Obstetrics and Gynecology University of Cote d'Azur Cote d'Azur France
Occupational and Environmental Health Research Group University of Stirling Stirling Scotland
Sorbonne Paris Nord University Bobigny INSERM U1124 Paris France
Univ Rennes INSERM EHESP IRSET UMR_5S 1085 35000 Rennes France
Zobrazit více v PubMed
Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, Mullany EC, Biryukov S, Abbafati C, Abera SF, Abraham JP, Abu-Rmeileh NM, Achoki T, AlBuhairan FS, Alemu ZA, Alfonso R, Ali MK, Ali R, Guzman NA, Ammar W, Anwari P, Banerjee A, Barquera S, Basu S, Bennett DA, Bhutta Z, Blore J, Cabral N, Nonato IC, Chang JC, Chowdhury R, Courville KJ, Criqui MH, Cundiff DK, Dabhadkar KC, Dandona L, Davis A, Dayama A, Dharmaratne SD, Ding EL, Durrani AM, Esteghamati A, Farzadfar F, Fay DF, Feigin VL, Flaxman A, Forouzanfar MH, Goto A, Green MA, Gupta R, Hafezi-Nejad N, Hankey GJ, Harewood HC, Havmoeller R, Hay S, Hernandez L, Husseini A, Idrisov BT, Ikeda N, Islami F, Jahangir E, Jassal SK, Jee SH, Jeffreys M, Jonas JB, Kabagambe EK, Khalifa SE, Kengne AP, Khader YS, Khang YH, Kim D, Kimokoti RW, Kinge JM, Kokubo Y, Kosen S, Kwan G, Lai T, Leinsalu M, Li Y, Liang X, Liu S, Logroscino G, Lotufo PA, Lu Y, Ma J, Mainoo NK, Mensah GA, Merriman TR, Mokdad AH, Moschandreas J, Naghavi M, Naheed A, Nand D, Narayan KM, Nelson EL, Neuhouser ML, Nisar MI, Ohkubo T, Oti SO, Pedroza A, Prabhakaran D, Roy N, Sampson U, Seo H, Sepanlou SG, Shibuya K, Shiri R, Shiue I, Singh GM, Singh JA, Skirbekk V, Stapelberg NJ, Sturua L, Sykes BL, Tobias M, Tran BX, Trasande L, Toyoshima H, van de Vijver S, Vasankari TJ, Veerman JL, Velasquez-Melendez G, Vlassov VV, Vollset SE, Vos T, Wang C, Wang X, Weiderpass E, Werdecker A, Wright JL, Yang YC, Yatsuya H, Yoon J, Yoon SJ, Zhao Y, Zhou M, Zhu S, Lopez AD, Murray CJ, Gakidou E, Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013, Lancet 384 (9945) (2014) 766–781. PubMed PMC
Schwartz MW, Seeley RJ, Zeltser LM, Drewnowski A, Ravussin E, Redman LM, Leibel RL, Obesity Pathogenesis: An Endocrine Society Scientific Statement, Endocr. Rev 38 (4) (2017) 267–296. PubMed PMC
Blüher M, Obesity: global epidemiology and pathogenesis, Nat. Rev. Endocrinol 15 (5) (2019) 288–298. PubMed
Williams EP, Mesidor M, Winters K, Dubbert PM, Wyatt SB, Overweight and Obesity: Prevalence, Consequences, and Causes of a Growing Public Health Problem, Current obesity reports 4 (3) (2015) 363–370. PubMed
Zoeller RT, Brown TR, Doan LL, Gore AC, Skakkebaek NE, Soto AM, Endocrine-disrupting chemicals and public health protection: a statement of principles from the Endocrine Society, Endocrinology 153 (2012). PubMed PMC
La Merrill MA, Vandenberg LN, Smith MT, Goodson W, Browne P, Patisaul HB, Guyton KZ, Kortenkamp A, Cogliano VJ, Woodruff TJ, Rieswijk L, Sone H, Korach KS, Gore AC, Zeise L, Zoeller RT, Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification, Nat. Rev. Endocrinol 16 (1) (2020) 45–57. PubMed PMC
Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT, Executive Summary to EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals, Endocr. Rev 36 (6) (2015) E1–E150. PubMed PMC
Godfray HCJ, Stephens AEA, Jepson PD, Jobling S, Johnson AC, Matthiessen P, Sumpter JP, Tyler CR, McLean AR, A restatement of the natural science evidence base on the effects of endocrine disrupting chemicals on wildlife, Proceedings. Biological sciences 286 (1897) (2019) 20182416. PubMed PMC
Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR, Lee DH, Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses, Endocr. Rev 33 (2012). PubMed PMC
Villar-Pazos S, Martinez-Pinna J, Castellano-Munoz M, Alonso-Magdalena P, Marroqui L, Quesada I, Gustafsson JA, Nadal A, Molecular mechanisms involved in the non-monotonic effect of bisphenol-a on ca2+ entry in mouse pancreatic beta-cells, Sci. Rep 7 (1) (2017) 11770. PubMed PMC
vom Saal FS, Vandenberg LN, Update on the Health Effects of Bisphenol A: Overwhelming Evidence of Harm, Endocrinology 162 (3) (2021) 1–25. PubMed PMC
Heindel JJ, Blumberg B, Environmental Obesogens: Mechanisms and Controversies, Annu. Rev. Pharmacol. Toxicol 59 (2019) 89–106. PubMed PMC
Heindel JJ, Blumberg B, Cave M, Machtinger R, Mantovani A, Mendez MA, Nadal A, Palanza P, Panzica G, Sargis R, Vandenberg LN, vom Saal FS, Metabolism disrupting chemicals and metabolic disorders, Reprod. Toxicol 68 (2017) 3–33. PubMed PMC
Darbre PD, Endocrine Disruptors and Obesity, Current obesity reports (2017). PubMed PMC
Veiga-Lopez A, Pu Y, Gingrich J, Padmanabhan V, Obesogenic Endocrine Disrupting Chemicals: Identifying Knowledge Gaps, Trends in endocrinology and metabolism: TEM 29 (9) (2018) 607–625. PubMed PMC
Chamorro-Garcia R, Blumberg B, Current Research Approaches and Challenges in the Obesogen Field, Front Endocrinol (Lausanne) 10 (2019) 167. PubMed PMC
Amato AA, Wheeler HB, Blumberg B, Obesity and endocrine-disrupting chemicals, Endocr Connect 10 (2) (2021) R87–R105. PubMed PMC
Egusquiza RJ, Blumberg B, Environmental Obesogens and Their Impact on Susceptibility to Obesity: New Mechanisms and Chemicals, Endocrinology 161 (3) (2020). PubMed PMC
Papalou O, Kandaraki EA, Papadakis G, Diamanti-Kandarakis E, Endocrine Disrupting Chemicals: An Occult Mediator of Metabolic Disease, Front Endocrinol (Lausanne) 10 (2019) 112. PubMed PMC
Heindel JJ, History of the Obesogen Field: Looking Back to Look Forward, Front. Endocrinol 10 (14) (2019). PubMed PMC
Hanson MA, Gluckman PD, Early Developmental Conditioning of Later Health and Disease, Physiology or Pathophysiology? (2014). PubMed PMC
Heindel JJ, Balbus J, Birnbaum L, Brune-Drisse MN, Grandjean P, Gray K, Landrigan PJ, Sly PD, Suk W, Cory Slechta D, Thompson C, Hanson M, Developmental Origins of Health and Disease: Integrating Environmental Influences, Endocrinology 156(10) (2015) 3416–21. PubMed PMC
Heindel JJ, Role of exposure to environmental chemicals in the developmental basis of reproductive disease and dysfunction, Semin Reprod Med 24 (3) (2006) 168–177. PubMed
Stel J, Legler J, The Role of Epigenetics in the Latent Effects of Early Life Exposure to Obesogenic Endocrine Disrupting Chemicals, Endocrinology (2015) en20151434. PubMed PMC
Martinez-Jimenez CP, Sandoval J, Epigenetic crosstalk: a molecular language in human metabolic disorders, Frontiers in bioscience (Scholar edition) 7 (2015) 46–57. PubMed
Statello L, Guo CJ, Chen LL, Huarte M, Gene regulation by long non-coding RNAs and its biological functions, Nat. Rev. Mol. Cell Biol 22 (2) (2021) 96–118. PubMed PMC
Romano G, Veneziano D, Nigita G, Nana-Sinkam SP, RNA Methylation in ncRNA: Classes, Detection, and Molecular Associations, Front Genet 9 (2018) 243. PubMed PMC
Sonkar R, Powell CA, Choudhury M, Benzyl butyl phthalate induces epigenetic stress to enhance adipogenesis in mesenchymal stem cells, Mol. Cell. Endocrinol 431 (2016) 109–122. PubMed
Zhang J, Choudhury M, Benzyl Butyl Phthalate Induced Early lncRNA H19 Regulation in C3H10T1/2 Stem Cell Line, Chem. Res. Toxicol 34 (1) (2021) 54–62. PubMed
Verbanck M, Canouil M, Leloire A, Dhennin V, Coumoul X, Yengo L, Froguel P, Poulain-Godefroy O, Low-dose exposure to bisphenols A, F and S of human primary adipocyte impacts coding and non-coding RNA profiles, PLoS ONE 12 (6) (2017), e0179583. PubMed PMC
Susiarjo M, Xin F, Bansal A, Stefaniak M, Li C, Simmons RA, Bartolomei MS, Bisphenol A exposure disrupts metabolic health across multiple generations in the mouse, Endocrinology (2015) en20142027. PubMed PMC
Joh RI, Palmieri CM, Hill IT, Motamedi M, Regulation of histone methylation by noncoding RNAs, BBA 1839 (12) (2014) 1385–1394. PubMed PMC
Squillaro T, Peluso G, Galderisi U, Di Bernardo G, Long non-coding RNAs in regulation of adipogenesis and adipose tissue function, Elife 9 (2020). PubMed PMC
Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY, Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs, Cell 129 (7) (2007) 1311–1323. PubMed PMC
Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS, Specific expression of long noncoding RNAs in the mouse brain, PNAS 105 (2) (2008) 716–721. PubMed PMC
Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A, Lawrence JB, An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles, Mol. Cell 33 (6) (2009) 717–726. PubMed PMC
Chen G, Wang Z, Wang D, Qiu C, Liu M, Chen X, Zhang Q, Yan G, Cui Q, LncRNADisease: a database for long-non-coding RNA-associated diseases, Nucleic acids research 41(Database issue) (2013) D983–6. PubMed PMC
Sun L, Goff LA, Trapnell C, Alexander R, Lo KA, Hacisuleyman E, Sauvageau M, Tazon-Vega B, Kelley DR, Hendrickson DG, Yuan B, Kellis M, Lodish HF, Rinn JL, Long noncoding RNAs regulate adipogenesis, PNAS 110 (9) (2013) 3387–3392. PubMed PMC
Zhao XY, Li S, Wang GX, Yu Q, Lin JD, A long noncoding RNA transcriptional regulatory circuit drives thermogenic adipocyte differentiation, Mol. Cell 55 (3) (2014) 372–382. PubMed PMC
Wijesinghe SN, Nicholson T, Tsintzas K, Jones SW, Involvements of long noncoding RNAs in obesity-associated inflammatory diseases, Obes. Rev 22 (4) (2021), e13156. PubMed
Woeller CF, Flores E, Pollock SJ, Phipps RP, Editor’s Highlight: Thy1 (CD90) Expression is Reduced by the Environmental Chemical Tetrabromobisphenol-A to Promote Adipogenesis Through Induction of microRNA-103, Toxicological sciences : an official journal of the Society of Toxicology 157 (2) (2017) 305–319. PubMed PMC
Skinner MK, Environmental Epigenetics and a Unified Theory of the Molecular Aspects of Evolution: A Neo-Lamarckian Concept that Facilitates Neo-Darwinian Evolution, Genome biology and evolution 7 (5) (2015) 1296–1302. PubMed PMC
Chamorro-Garcia R, Sahu M, Abbey RJ, Laude J, Pham N, Blumberg B, Transgenerational inheritance of increased fat depot size, stem cell reprogramming, and hepatic steatosis elicited by prenatal exposure to the obesogen tributyltin in mice, Environ. Health Perspect 121 (3) (2013) 359–366. PubMed PMC
Chamorro-Garcia R, Diaz-Castillo C, Shoucri BM, Kach H, Leavitt R, Shioda T, Blumberg B, Ancestral perinatal obesogen exposure results in a transgenerational thrifty phenotype in mice, Nat. Commun 8 (1) (2017) 2012. PubMed PMC
Chamorro-García R, Poupin N, Tremblay-Franco M, Canlet C, Egusquiza R, Gautier R, Jouanin I, Shoucri BM, Blumberg B, Zalko D, Transgenerational metabolomic fingerprints in mice ancestrally exposed to the obesogen TBT, Environ. Int 157 (2021), 106822. PubMed PMC
Skinner MK, Manikkam M, Tracey R, Guerrero-Bosagna C, Haque M, Nilsson EE, Ancestral dichlorodiphenyltrichloroethane (DDT) exposure promotes epigenetic transgenerational inheritance of obesity, BMC Med 11 (2013) 228. PubMed PMC
Tracey R, Manikkam M, Guerrero-Bosagna C, Skinner MK, Hydrocarbons (jet fuel JP-8) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations, Reprod. Toxicol 36 (2013) 104–116. PubMed PMC
Manikkam M, Tracey R, Guerrero-Bosagna C, Skinner MK, Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations, PLoS ONE 8 (1) (2013), e55387. PubMed PMC
King SE, Nilsson E, Beck D, Skinner MK, Adipocyte epigenetic alterations and potential therapeutic targets in transgenerationally inherited lean and obese phenotypes following ancestral exposures, Adipocyte 8 (1) (2019) 362–378. PubMed PMC
Xu Y, Wang W, Chen M, Zhou J, Huang X, Tao S, Pan B, Li Z, Xie X, Li W, Kan H, Ying Z, Developmental programming of obesity by maternal exposure to concentrated ambient PM(2.5) is maternally transmitted into the third generation in a mouse model, Part. Fibre Toxicol 16 (1) (2019) 27. PubMed PMC
Bansal A, Li C, Xin F, Duemler A, Li W, Rashid C, Bartolomei MS, Simmons RA, Transgenerational effects of maternal bisphenol: a exposure on offspring metabolic health, Journal of developmental origins of health and disease 10 (2) (2019) 164–175. PubMed PMC
Rechavi O, Houri-Ze’evi L, Anava S, Goh WSS, Kerk SY, Hannon GJ, Hobert O, Starvation-induced transgenerational inheritance of small RNAs in C. elegans, Cell 158 (2) (2014) 277–287. PubMed PMC
Tauffenberger A, Parker JA, Heritable transmission of stress resistance by high dietary glucose in Caenorhabditis elegans, PLoS Genet. 10 (5) (2014), e1004346. PubMed PMC
Zhou X, Li J, Zhang X, Zhang C, Bai J, Zhao Y, Zhu Y, Zhang J, Xiao X, Bisphenol S promotes fat storage in multiple generations of Caenorhabditis elegans in a daf-16/nhr-49 dependent manner, Comp. Biochem. Physiol. C: Toxicol. Pharmacol 109175 (2021). PubMed
Chen MY, Liu HP, Cheng J, Chiang SY, Liao WP, Lin WY, Transgenerational impact of DEHP on body weight of Drosophila, Chemosphere 221 (2019) 493–499. PubMed
Camacho J, Truong L, Kurt Z, Chen YW, Morselli M, Gutierrez G, Pellegrini M, Yang X, Allard P, The Memory of Environmental Chemical Exposure in C. elegans Is Dependent on the Jumonji Demethylases jmjd-2 and jmjd-3/utx-1, Cell reports 23 (8) (2018) 2392–2404. PubMed PMC
Ben Maamar M, Nilsson E, Sadler-Riggleman I, Beck D, McCarrey JR, Skinner MK, Developmental origins of transgenerational sperm DNA methylation epimutations following ancestral DDT exposure, Dev. Biol 445 (2) (2018) 280–293. PubMed PMC
Skinner MK, Ben Maamar M, Sadler-Riggleman I, Beck D, Nilsson E, McBirney M, Klukovich R, Xie Y, Tang C, Yan W, Alterations in sperm DNA methylation, non-coding RNA and histone retention associate with DDT-induced epigenetic transgenerational inheritance of disease, Epigenetics Chromatin 11 (1) (2018) 8. PubMed PMC
Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li R, Bock C, Li C, Gu H, Zamore PD, Meissner A, Weng Z, Hofmann HA, Friedman N, Rando OJ, Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals, Cell 143 (7) (2010) 1084–1096. PubMed PMC
Diaz-Castillo C, Chamorro-Garcia R, Shioda T, Blumberg B, Transgenerational Self-Reconstruction of Disrupted Chromatin Organization After Exposure To An Environmental Stressor in Mice, Sci. Rep 9 (1) (2019) 13057. PubMed PMC
Shao X, Wang M, Wei X, Deng S, Fu N, Peng Q, Jiang Y, Ye L, Xie J, Lin Y, Peroxisome Proliferator-Activated Receptor-γ: Master Regulator of Adipogenesis and Obesity, Curr. Stem Cell Res. Ther 11 (3) (2016) 282–289. PubMed
Gao P, Wang L, Yang N, Wen J, Zhao M, Su G, Zhang J, Weng D, Peroxisome proliferator-activated receptor gamma (PPARγ) activation and metabolism disturbance induced by bisphenol A and its replacement analog bisphenol S using in vitro macrophages and in vivo mouse models, Environ. Int 134 (2020), 105328. PubMed
Hoepner LA, Bisphenol a: A narrative review of prenatal exposure effects on adipogenesis and childhood obesity via peroxisome proliferator-activated receptor gamma, Environ. Res 173 (2019) 54–68. PubMed PMC
Wen Q, Xie X, Zhao C, Ren Q, Zhang X, Wei D, Emanuelli B, Du Y, The brominated flame retardant PBDE 99 promotes adipogenesis via regulating mitotic clonal expansion and PPARgamma expression, The Science of the total environment 670 (2019) 67–77. PubMed
Ma Y, Yang J, Wan Y, Peng Y, Ding S, Li Y, Xu B, Chen X, Xia W, Ke Y, Xu S, Low-level perfluorooctanoic acid enhances 3T3–L1 preadipocyte differentiation via altering peroxisome proliferator activated receptor gamma expression and its promoter DNA methylation, Journal of applied toxicology : JAT 38 (3) (2018) 398–407. PubMed
Lyssimachou A, Santos JG, André A, Soares J, Lima D, Guimarães L, Almeida CMR, Teixeira C, Castro LFC, Santos MM, The Mammalian “Obesogen” Tributyltin Targets Hepatic Triglyceride Accumulation and the Transcriptional Regulation of Lipid Metabolism in the Liver and Brain of Zebrafish, PLoS ONE 10 (12) (2015) e0143911. PubMed PMC
Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS, Spiegelman BM, Mortensen RM, PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro, Mol. Cell 4 (4) (1999) 611–617. PubMed
Tontonoz P, Singer S, Forman BM, Sarraf P, Fletcher JA, Fletcher CD, Brun RP, Mueller E, Altiok S, Oppenheim H, Evans RM, Spiegelman BM, Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor gamma and the retinoid X receptor, PNAS 94 (1) (1997) 237–241. PubMed PMC
Kassotis CD, Masse L, Kim S, Schlezinger JJ, Webster TF, Stapleton HM, Characterization of adipogenic chemicals in three different cell culture systems: implications for reproducibility based on cell source and handling, Sci. Rep 7 (2017) 42104. PubMed PMC
Kanayama T, Kobayashi N, Mamiya S, Nakanishi T, Nishikawa J, Organotin compounds promote adipocyte differentiation as agonists of the peroxisome proliferator-activated receptor [gamma]/retinoid X receptor pathway, Mol. Pharmacol 67 (2005) 766–774. PubMed
Grun F, Blumberg B, Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling, Endocrinology 147 (6 Suppl) (2006) S50–S55. PubMed
Shoucri BM, Hung VT, Chamorro-Garcia R, Shioda T, Blumberg B, Retinoid X receptor activation during adipogenesis of female mesenchymal stem cells programs a dysfunctional adipocyte, Endocrinology (2018). PubMed PMC
Kim S, Li A, Monti S, Schlezinger JJ, Tributyltin induces a transcriptional response without a brite adipocyte signature in adipocyte models, Arch. Toxicol 92 (9) (2018) 2859–2874. PubMed PMC
Regnier SM, El-Hashani E, Kamau W, Zhang X, Massad NL, Sargis RM, Tributyltin differentially promotes development of a phenotypically distinct adipocyte, Obesity (Silver Spring) 23 (9) (2015) 1864–1871. PubMed PMC
Fuentes N, Silveyra P, Estrogen receptor signaling mechanisms, Adv Protein Chem Struct Biol 116 (2019) 135–170. PubMed PMC
Hugo ER, Brandebourg TD, Woo JG, Loftus J, Alexander JW, Ben-Jonathan N, Bisphenol A at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes, Environ. Health Perspect 116 (12) (2008) 1642–1647. PubMed PMC
Cooke PS, Naaz A, Role of estrogens in adipocyte development and function, Exp Biol Med (Maywood) 229 (11) (2004) 1127–1135. PubMed
Dieudonne MN, Pecquery R, Leneveu MC, Giudicelli Y, Opposite effects of androgens and estrogens on adipogenesis in rat preadipocytes: evidence for sex and site-related specificities and possible involvement of insulin-like growth factor 1 receptor and peroxisome proliferator-activated receptor gamma2, Endocrinology 141 (2) (2000) 649–656. PubMed
Roncari DA, Van RL, Promotion of human adipocyte precursor replication by 17beta-estradiol in culture, J Clin Invest 62 (3) (1978) 503–508. PubMed PMC
Hatch EE, Troisi R, Palmer JR, Wise LA, Titus L, Strohsnitter WC, Ricker W, Hyer M, Hoover RN, Prenatal diethylstilbestrol exposure and risk of obesity in adult women, J Dev Orig Health Dis 6 (3) (2015) 201–207. PubMed
Lee S, Kim C, Shin H, Kho Y, Choi K, Comparison of thyroid hormone disruption potentials by bisphenols A, S, F, and Z in embryo-larval zebrafish, Chemosphere 221 (2019) 115–123. PubMed
Blouin K, Boivin A, Tchernof A, Androgens and body fat distribution, J. Steroid Biochem. Mol. Biol 108 (3–5) (2008) 272–280. PubMed
O’Reilly MW, House PJ, Tomlinson JW, Understanding androgen action in adipose tissue, J. Steroid Biochem. Mol. Biol 143 (2014) 277–284. PubMed
John K, Marino JS, Sanchez ER, Hinds TD Jr., The glucocorticoid receptor: cause of or cure for obesity?, American journal of physiology, Endocrinology and metabolism 310 (4) (2016) E249–E257. PubMed PMC
Contador D, Ezquer F, Espinosa M, Arango-Rodriguez M, Puebla C, Sobrevia L, Conget P, Dexamethasone and rosiglitazone are sufficient and necessary for producing functional adipocytes from mesenchymal stem cells, Exp Biol Med (Maywood) 240 (9) (2015) 1235–1246. PubMed PMC
Asada M, Rauch A, Shimizu H, Maruyama H, Miyaki S, Shibamori M, Kawasome H, Ishiyama H, Tuckermann J, Asahara H, DNA binding-dependent glucocorticoid receptor activity promotes adipogenesis via Kruppel-like factor 15 gene expression, Lab. Invest 91 (2) (2011) 203–215. PubMed PMC
Sargis RM, Johnson DN, Choudhury RA, Brady MJ, Environmental Endocrine Disruptors Promote Adipogenesis in the 3T3-L1 Cell Line through Glucocorticoid Receptor Activation, Obesity (Silver Spring, Md.) 18 (7) (2010) 1283–1288. PubMed PMC
Iwen KA, Schroder E, Brabant G, Thyroid hormones and the metabolic syndrome, European thyroid journal 2 (2) (2013) 83–92. PubMed PMC
Obregon MJ, Thyroid hormone and adipocyte differentiation, Thyroid 18 (2) (2008) 185–195. PubMed
Shulman AI, Mangelsdorf DJ, Retinoid x receptor heterodimers in the metabolic syndrome, The New England journal of medicine 353 (6) (2005) 604–615. PubMed
Mullur R, Liu YY, Brent GA, Thyroid hormone regulation of metabolism, Physiol. Rev 94 (2) (2014) 355–382. PubMed PMC
Gao J, Xie W, Targeting xenobiotic receptors PXR and CAR for metabolic diseases, Trends Pharmacol. Sci 33 (10) (2012) 552–558. PubMed PMC
Moreau A, Vilarem MJ, Maurel P, Pascussi JM, Xenoreceptors CAR and PXR activation and consequences on lipid metabolism, glucose homeostasis, and inflammatory response, Mol. Pharm 5 (1) (2008) 35–41. PubMed
Saito K, Kobayashi K, Mizuno Y, Fukuchi Y, Furihata T, Chiba K, Peroxisome proliferator-activated receptor alpha (PPARalpha) agonists induce constitutive androstane receptor (CAR) and cytochrome P450 2B in rat primary hepatocytes, Drug Metab. Pharmacokinet 25 (1) (2010) 108–111. PubMed
Hardesty JE, Wahlang B, Falkner KC, Shi H, Jin J, Wilkey D, Merchant M, Watson C, Prough RA, Cave MC, Hepatic signalling disruption by pollutant Polychlorinated biphenyls in steatohepatitis, Cell. Signal 53 (2019) 132–139. PubMed PMC
Lukowicz C, Ellero-Simatos S, Régnier M, Polizzi A, Lasserre F, Montagner A, Lippi Y, Jamin EL, Martin J-F, Naylies C, Canlet C, Debrauwer L, Bertrand-Michel J, Al Saati T, Théodorou V, Loiseau N, Mselli-Lakhal L, Guillou H, Gamet-Payrastre L, Metabolic Effects of a Chronic Dietary Exposure to a Low-Dose Pesticide Cocktail in Mice: Sexual Dimorphism and Role of the Constitutive Androstane Receptor, Environ. Health Perspect 126 (6) (2018) 067007. PubMed PMC
Wang H, Chen J, Hollister K, Sowers LC, Forman BM, Endogenous bile acids are ligands for the nuclear receptor FXR/BAR, Mol. Cell 3 (5) (1999) 543–553. PubMed
Jiao Y, Lu Y, Li XY, Farnesoid X receptor: a master regulator of hepatic triglyceride and glucose homeostasis, Acta Pharmacol. Sin 36 (1) (2015) 44–50. PubMed PMC
Prawitt J, Caron S, Staels B, How to modulate FXR activity to treat the Metabolic Syndrome, Drug Discov Today: Disease Mechanisms 6 (1–4) (2009) e55–e64.
Rizzo G, Disante M, Mencarelli A, Renga B, Gioiello A, Pellicciari R, Fiorucci S, The farnesoid X receptor promotes adipocyte differentiation and regulates adipose cell function in vivo, Mol. Pharmacol 70 (4) (2006) 1164–1173. PubMed
Cariou B, van Harmelen K, Duran-Sandoval D, van Dijk TH, Grefhorst A, Abdelkarim M, Caron S, Torpier G, Fruchart JC, Gonzalez FJ, Kuipers F, Staels B, The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice, J. Biol. Chem 281 (16) (2006) 11039–11049. PubMed
Bjork JA, Butenhoff JL, Wallace KB, Multiplicity of nuclear receptor activation by PFOA and PFOS in primary human and rodent hepatocytes, Toxicology 288 (1–3) (2011) 8–17. PubMed
McIntosh BE, Hogenesch JB, Bradfield CA, Mammalian Per-Arnt-Sim proteins in environmental adaptation, Annu. Rev. Physiol 72 (2010) 625–645. PubMed
Rathore K, Cekanova M, Effects of environmental carcinogen benzo(a)pyrene on canine adipose-derived mesenchymal stem cells, Res. Vet. Sci 103 (2015) 34–43. PubMed
Kim MJ, Pelloux V, Guyot E, Tordjman J, Bui L-C, Chevallier A, Forest C, Benelli C, Clément K, Barouki R, Inflammatory Pathway Genes belong to Major Targets of Persistent Organic Pollutants in Adipose Cells, Environ. Health Perspect (2012). PubMed PMC
Kanno J, Introduction to the concept of signal toxicity, J Toxicol Sci 41(Special) (2016) SP105–SP109. PubMed
e.e.e. European Association for the Study of the Liver. Electronic address, C. Clinical Practice Guideline Panel, m. Panel, E.G.B. representative, EASL Clinical Practice Guideline: Occupational liver diseases, J Hepatol 71(5) (2019) 1022–1037. PubMed
Wahlang B, Beier JI, Clair HB, Bellis-Jones HJ, Falkner KC, McClain CJ, Cave MC, Toxicant-associated Steatohepatitis, Toxicol. Pathol 41 (2) (2013) 343–360. PubMed PMC
Wahlang B, Jin J, Beier JI, Hardesty JE, Daly EF, Schnegelberger RD, Falkner KC, Prough RA, Kirpich IA, Cave MC, Mechanisms of Environmental Contributions to Fatty Liver Disease, Current environmental health reports 6 (3) (2019) 80–94. PubMed PMC
Cave M, Falkner KC, Ray M, Joshi-Barve S, Brock G, Khan R, Bon Homme M, McClain CJ, Toxicant-associated steatohepatitis in vinyl chloride workers, Hepatology 51 (2) (2010) 474–481. PubMed PMC
Wahlang B, Falkner KC, Gregory B, Ansert D, Young D, Conklin DJ, Bhatnagar A, McClain CJ, Cave M, Polychlorinated biphenyl 153 is a diet-dependent obesogen that worsens nonalcoholic fatty liver disease in male C57BL6/J mice, The Journal of Nutritional Biochemistry 24 (9) (2013) 1587–1595. PubMed PMC
Foulds CE, Trevino LS, York B, Walker CL, Endocrine-disrupting chemicals and fatty liver disease, Nat Rev Endocrinol advance online publication (2017). PubMed PMC
Wang CW, Chuang HY, Liao KW, Yu ML, Dai CY, Chang WT, Tsai CH, Chiang HC, Huang PC, Urinary thiodiglycolic acid is associated with increased risk of non-alcoholic fatty liver disease in children living near a petrochemical complex, Environ. Int 131 (2019), 104978. PubMed
Yuan TH, Chen JL, Shie RH, Yeh YP, Chen YH, Chan CC, Liver fibrosis associated with potential vinyl chloride and ethylene dichloride exposure from the petrochemical industry, The Science of the total environment 739 (2020), 139920. PubMed
Li X, Zhang C, Wang K, Lehmler HJ, Fatty liver and impaired hepatic metabolism alter the congener-specific distribution of polychlorinated biphenyls (PCBs) in mice with a liver-specific deletion of cytochrome P450 reductase, Environmental pollution (Barking, Essex : 1987) 266(Pt 1) (2020) 115233. PubMed PMC
Allard J, Le Guillou D, Begriche K, Fromenty B, Drug-induced liver injury in obesity and nonalcoholic fatty liver disease, Adv. Pharmacol 85 (2019) 75–107. PubMed
Hardesty JE, Al-Eryani L, Wahlang B, Falkner KC, Shi H, Jin J, Vivace BJ, Ceresa BP, Prough RA, Cave MC, Epidermal Growth Factor Receptor Signaling Disruption by Endocrine and Metabolic Disrupting Chemicals, Toxicological sciences : an official journal of the Society of Toxicology 162 (2) (2018) 622–634. PubMed PMC
Hardesty JE, Wahlang B, Prough RA, Head KZ, Wilkey D, Merchant M, Shi H, Jin J, Cave MC, Effect of Epidermal Growth Factor Treatment and Polychlorinated Biphenyl Exposure in a Dietary-Exposure Mouse Model of Steatohepatitis, Environ. Health Perspect 129 (3) (2021) 37010. PubMed PMC
Lim JJ, Li X, Lehmler HJ, Wang D, Gu H, Cui JY, Gut Microbiome Critically Impacts PCB-induced Changes in Metabolic Fingerprints and the Hepatic Transcriptome in Mice, Toxicological sciences : an official journal of the Society of Toxicology 177 (1) (2020) 168–187. PubMed PMC
Bassler J, Ducatman A, Elliott M, Wen S, Wahlang B, Barnett J, Cave MC, Environmental perfluoroalkyl acid exposures are associated with liver disease characterized by apoptosis and altered serum adipocytokines, Environmental pollution (Barking, Essex 247 (2019) (1987) 1055–1063. PubMed PMC
Jin R, McConnell R, Catherine C, Xu S, Walker DI, Stratakis N, Jones DP, Miller GW, Peng C, Conti DV, Vos MB, Chatzi L, Perfluoroalkyl substances and severity of nonalcoholic fatty liver in Children: An untargeted metabolomics approach, Environ. Int 134 (2020), 105220. PubMed PMC
Stratakis N, D VC, Jin R, Margetaki K, Valvi D, Siskos AP, Maitre L, Garcia E, Varo N, Zhao Y, Roumeliotaki T, Vafeiadi M, Urquiza J, Fernandez-Barres S, Heude B, Basagana X, Casas M, Fossati S, Grazuleviciene R, Andrusaityte S, Uppal K, McEachan RRC, Papadopoulou E, Robinson O, Haug LS, Wright J, Vos MB, Keun HC, Vrijheid M, Berhane KT, McConnell R, Chatzi L, Prenatal Exposure to Perfluoroalkyl Substances Associated With Increased Susceptibility to Liver Injury in Children, Hepatology 72(5) (2020) 1758–1770. PubMed PMC
Katz TA, Grimm SL, Kaushal A, Dong J, Trevino LS, Jangid RK, Gaitan AV, Bertocchio JP, Guan Y, Robertson MJ, Cabrera RM, Finegold MJ, Foulds CE, Coarfa C, Walker CL, Hepatic Tumor Formation in Adult Mice Developmentally Exposed to Organotin, Environ. Health Perspect 128 (1) (2020) 17010. PubMed PMC
Franco ME, Fernandez-Luna MT, Ramirez AJ, Lavado R, Metabolomic-based assessment reveals dysregulation of lipid profiles in human liver cells exposed to environmental obesogens, Toxicol. Appl. Pharmacol 398 (2020), 115009. PubMed
Sun L, Ling Y, Jiang J, Wang D, Wang J, Li J, Wang X, Wang H, Differential mechanisms regarding triclosan vs. bisphenol A and fluorene-9-bisphenol induced zebrafish lipid-metabolism disorders by RNA-Seq, Chemosphere 251 (2020), 126318. PubMed
Qin J, Ru S, Wang W, Hao L, Ru Y, Wang J, Zhang X, Long-term bisphenol S exposure aggravates non-alcoholic fatty liver by regulating lipid metabolism and inducing endoplasmic reticulum stress response with activation of unfolded protein response in male zebrafish, Environ. Pollut 263 (2020), 114535. PubMed
Huff M, da Silveira WA, Carnevali O, Renaud L, Hardiman G, Systems Analysis of the Liver Transcriptome in Adult Male Zebrafish Exposed to the Plasticizer (2-Ethylhexyl) Phthalate (DEHP), Sci. Rep 8 (1) (2018) 2118. PubMed PMC
Yueh MF, He F, Chen C, Vu C, Tripathi A, Knight R, Karin M, Chen S, Tukey RH, Triclosan leads to dysregulation of the metabolic regulator FGF21 exacerbating high fat diet-induced nonalcoholic fatty liver disease, PNAS 117 (49) (2020) 31259–31266. PubMed PMC
Shi H, Jan J, Hardesty JE, Falkner KC, Prough RA, Balamurugan AN, Mokshagundam SP, Chari ST, Cave MC, Polychlorinated biphenyl exposures differentially regulate hepatic metabolism and pancreatic function: Implications for nonalcoholic steatohepatitis and diabetes, Toxicol. Appl. Pharmacol 363 (2019) 22–33. PubMed PMC
Go GY, Lee SJ, Jo A, Lee JR, Kang JS, Yang M, Bae GU, Bisphenol A and estradiol impede myoblast differentiation through down-regulating Akt signaling pathway, Toxicol. Lett 292 (2018) 12–19. PubMed
Mullainadhan V, Viswanathan MP, Karundevi B, Effect of Bisphenol-A (BPA) on insulin signal transduction and GLUT4 translocation in gastrocnemius muscle of adult male albino rat, Int. J. Biochem. Cell Biol 90 (2017) 38–47. PubMed
Li B, Guo J, Xi Z, Xu J, Zuo Z, Wang C, Tributyltin in male mice disrupts glucose homeostasis as well as recovery after exposure: mechanism analysis, Arch. Toxicol 91 (10) (2017) 3261–3269. PubMed
Chiu K, Warner G, Nowak RA, Flaws JA, Mei W, The Impact of Environmental Chemicals on the Gut Microbiome, Toxicological sciences : an official journal of the Society of Toxicology (176(2)) (2020) 253–284. PubMed PMC
Rosenfeld CS, Gut Dysbiosis in Animals Due to Environmental Chemical Exposures, Front. Cell. Infect. Microbiol 7 (2017) 396. PubMed PMC
Claus SP, Guillou H, Ellero-Simatos S, The gut microbiota: a major player in the toxicity of environmental pollutants? npj Biofilms Microbiomes 2 (2016) 16003. PubMed PMC
Liu KH, Owens JA, Saeedi B, Cohen CE, Bellissimo MP, Naudin C, Darby T, Druzak S, Maner-Smith K, Orr M, Hu X, Fernandes J, Camacho MC, Hunter-Chang S, VanInsberghe D, Ma C, Ganesh T, Yeligar SM, Uppal K, Go Y-M, Alvarez JA, Vos MB, Ziegler TR, Woodworth MH, Kraft CS, Jones RM, Ortlund E, Neish AS, Jones DP, Microbial metabolite delta-valerobetaine is a diet-dependent obesogen, Nature Metabolism 3 (12) (2021) 1694–1705. PubMed PMC
Fader KA, Nault R, Doskey CM, Fling RR, Zacharewski TR, 2,3,7,8-Tetrachlorodibenzo-p-dioxin abolishes circadian regulation of hepatic metabolic activity in mice, Sci. Rep 9 (1) (2019) 6514. PubMed PMC
Jin Y, Zeng Z, Wu Y, Zhang S, Fu Z, Oral Exposure of Mice to Carbendazim Induces Hepatic Lipid Metabolism Disorder and Gut Microbiota Dysbiosis, Toxicological sciences : an official journal of the Society of Toxicology 147 (1) (2015) 116–126. PubMed
Wang C, Xu C-X, Krager SL, Bottum KM, Liao D-F, Tischkau SA, Aryl Hydrocarbon Receptor Deficiency Enhances Insulin Sensitivity and Reduces PPAR-α Pathway Activity in Mice, Environ. Health Perspect 119 (12) (2011) 1739–1744. PubMed PMC
Wang C, Zhang ZM, Xu CX, Tischkau SA, Interplay between Dioxin-mediated signaling and circadian clock: a possible determinant in metabolic homeostasis, Int. J. Mol. Sci 15 (7) (2014) 11700–11712. PubMed PMC
Regnier SM, Kirkley AG, Ye H, El-Hashani E, Zhang X, Neel BA, Kamau W, Thomas CC, Williams AK, Hayes ET, Massad NL, Johnson DN, Huang L, Zhang C, Sargis RM, Dietary exposure to the endocrine disruptor tolylfluanid promotes global metabolic dysfunction in male mice, Endocrinology 156 (3) (2015) 896–910. PubMed PMC
Kopp R, Martínez IO, Legradi J, Legler J, Exposure to endocrine disrupting chemicals perturbs lipid metabolism and circadian rhythms, J Environ Sci (China) 62 (2017) 133–137. PubMed
Loganathan N, Salehi A, Chalmers JA, Belsham DD, Bisphenol A Alters Bmal1, Per2, and Rev-Erba mRNA and Requires Bmal1 to Increase Neuropeptide Y Expression in Hypothalamic Neurons, Endocrinology 160 (1) (2019) 181–192. PubMed PMC
Bottalico LN, Weljie AM, Cross-species physiological interactions of endocrine disrupting chemicals with the circadian clock, Gen. Comp. Endocrinol 301 (2021), 113650. PubMed PMC
Nesan D, Feighan KM, Antle MC, Kurrasch DM, Gestational low-dose BPA exposure impacts suprachiasmatic nucleus neurogenesis and circadian activity with transgenerational effects, Sci. Adv 7 (22) (2021). PubMed PMC
Yin X, Liu Y, Zeb R, Chen F, Chen H, Wang KJ, The intergenerational toxic effects on offspring of medaka fish Oryzias melastigma from parental benzo[a] pyrene exposure via interference of the circadian rhythm, Environmental pollution (Barking, Essex 267 (2020) (1987), 115437. PubMed
Bansal A, Henao-Mejia J, Simmons RA, Immune System: An Emerging Player in Mediating Effects of Endocrine Disruptors on Metabolic Health, Endocrinology 159 (1) (2018) 32–45. PubMed PMC
Thompson PA, Khatami M, Baglole CJ, Sun J, Harris SA, Moon EY, Al-Mulla F, Al-Temaimi R, Brown DG, Colacci A, Mondello C, Raju J, Ryan EP, Woodrick J, Scovassi AI, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Salem HK, Amedei A, Hamid RA, Lowe L, Guarnieri T, Bisson WH, Environmental immune disruptors, inflammation and cancer risk, Carcinogenesis 36 (Suppl 1) (2015) S232–S253. PubMed PMC
Petriello MC, Brandon JA, Hoffman J, Wang C, Tripathi H, Abdel-Latif A, Ye X, Li X, Yang L, Lee E, Soman S, Barney J, Wahlang B, Hennig B, Morris AJ, Dioxin-like PCB 126 Increases Systemic Inflammation and Accelerates Atherosclerosis in Lean LDL Receptor-Deficient Mice, Toxicological sciences : an official journal of the Society of Toxicology 162 (2) (2018) 548–558. PubMed PMC
Snedeker SM, Hay AG, Do interactions between gut ecology and environmental chemicals contribute to obesity and diabetes? Environ. Health Perspect 120 (3) (2012) 332–339. PubMed PMC
Winer DA, Winer S, Dranse HJ, Lam TK, Immunologic impact of the intestine in metabolic disease, J Clin Invest 127 (1) (2017) 33–42. PubMed PMC
Čolak E, Pap D, The role of oxidative stress in the development of obesity and obesity-related metabolic disorders, Journal of Medical Biochemistry 40 (1) (2021) 1–9. PubMed PMC
Li X, Fang P, Mai J, Choi ET, Wang H, Yang X-F, Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers, Journal of Hematology & Oncology 6 (1) (2013) 19. PubMed PMC
Javadov S, Kozlov AV, Camara AKS, Mitochondria in Health and Diseases, Cells 9 (5) (2020) 1177. PubMed PMC
Marroqui L, Tuduri E, Alonso-Magdalena P, Quesada I, Nadal A, Dos Santos RS, Mitochondria as target of endocrine-disrupting chemicals: implications for type 2 diabetes, The Journal of endocrinology 239 (2) (2018) R27–R45. PubMed
Bucher S, Le Guillou D, Allard J, Pinon G, Begriche K, Tête A, Sergent O, Lagadic-Gossmann D, Fromenty B, Possible Involvement of Mitochondrial Dysfunction and Oxidative Stress in a Cellular Model of NAFLD Progression Induced by Benzo[a]pyrene/Ethanol CoExposure, Oxid. Med. Cell. Longevity 2018 (2018) 4396403. PubMed PMC
Zhou Z, Goodrich JM, Strakovsky RS, Mitochondrial Epigenetics and Environmental Health: Making a Case for Endocrine Disrupting Chemicals, Toxicol. Sci 178 (1) (2020) 16–25. PubMed PMC
Suter MA, Chen A, Burdine MS, Choudhury M, Harris RA, Lane RH, Friedman JE, Grove KL, Tackett AJ, Aagaard KM, A maternal high-fat diet modulates fetal SIRT1 histone and protein deacetylase activity in nonhuman primates, FASEB journal : official publication of the Federation of American Societies for Experimental Biology 26 (12) (2012) 5106–5114. PubMed PMC
Kratz EM, Sołkiewicz K, Kubis-Kubiak A, Piwowar A, Sirtuins as Important Factors in Pathological States and the Role of Their Molecular Activity Modulators, Int. J. Mol. Sci 22 (2) (2021) 630. PubMed PMC
Imai S, Armstrong CM, Kaeberlein M, Guarente L, Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase, Nature 403 (6771) (2000) 795–800. PubMed
Chalkiadaki A, Guarente L, Sirtuins mediate mammalian metabolic responses to nutrient availability, Nat. Rev. Endocrinol 8 (5) (2012) 287–296. PubMed
Kurylowicz A, In Search of New Therapeutic Targets in Obesity Treatment: Sirtuins, Int. J. Mol. Sci 17 (4) (2016) 572. PubMed PMC
Kendrick AA, Choudhury M, Rahman SM, McCurdy CE, Friederich M, Van Hove JL, Watson PA, Birdsey N, Bao J, Gius D, Sack MN, Jing E, Kahn CR, Friedman JE, Jonscher KR, Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation, Biochem. J 433 (3) (2011) 505–514. PubMed PMC
Zhang J, Choudhury M, The plasticizer BBP selectively inhibits epigenetic regulator sirtuin during differentiation of C3H10T1/2 stem cell line, Toxicol. In Vitro 39 (2017) 75–83. PubMed
Zhang J, Ali HI, Bedi YS, Choudhury M, The plasticizer BBP selectively inhibits epigenetic regulator sirtuins, Toxicology 338 (2015) 130–141. PubMed
Adriani W, Della Seta D, Dessi-Fulgheri F, Farabollini F, Laviola G, Altered profiles of spontaneous novelty seeking, impulsive behavior, and response to D-amphetamine in rats perinatally exposed to Bisphenol A, Environ. Health Perspect 111 (4) (2003) 395–401. PubMed PMC
Rodríguez-Carrillo A, Mustieles V, Pérez-Lobato R, Molina-Molina JM, Reina-Pérez I, Vela-Soria F, Rubio S, Olea N, Fernández MF, Bisphenol A and cognitive function in school-age boys: Is BPA predominantly related to behavior? NeuroToxicology 74 (March) (2019) 162–171. PubMed
Leyrolle Q, Cserjesi R, Mulders MDGH, Zamariola G, Hiel S, Gianfrancesco MA, Rodriguez J, Portheault D, Amadieu C, Leclercq S, Bindels LB, Neyrinck AM, Cani PD, Karkkainen O, Haninheva K, Lanthier N, Trefois P, Paquot N, Cnop M, Thissen JP, Klein O, Luminet O, Delzenne NM, Specific gut microbial, biological, and psychiatric profiling related to binge eating disorders: A cross-sectional study in obese patients, Clinical Nutrition 85 (2020) 162–169. PubMed
Krentzel AA, Willett JA, Johnson AG, Meitzen J, Estrogen receptor alpha, G-protein coupled estrogen receptor 1, and aromatase: Developmental, sex, and region-specific differences across the rat caudate–putamen, nucleus accumbens core and shell, Journal of Comparative Neurology 529 (4) (2021) 786–801. PubMed PMC
Wise LM, Hernández-Saavedra D, Boas SM, Pan YX, Juraska JM, Perinatal High-Fat Diet and Bisphenol A: Effects on Behavior and Gene Expression in the Medial Prefrontal Cortex, Dev. Neurosci 41 (1–2) (2019) 1–16. PubMed PMC
Fowler N, Russell N, Sisk CL, Johnson AW, Klump KL, The Binge Eating-Prone/Binge Eating-Resistant Animal Model: A Valuable Tool for Examining Neurobiological Underpinnings of Binge Eating, in: Avena NM, Avena NM (Eds.), Animal Models of Eating Disorders, New York, NY, 2021, pp. 7–24.
Griffin MD, Pereira SR, DeBari MK, Abbott RD, Mechanisms of action, chemical characteristics, and model systems of obesogens, BMC Biomed Eng 2 (2020) 6. PubMed PMC
Ribeiro CM, Beserra BTS, Silva NG, Lima CL, Rocha PRS, Coelho MS, Neves F.d.A.R., Amato AA, Exposure to endocrine-disrupting chemicals and anthropometric measures of obesity: a systematic review and meta-analysis, BMJ Open 10(6) (2020) e033509. PubMed PMC
Perng W, Cantoral A, Soria-Contreras DC, Betanzos-Robledo L, Kordas K, Liu Y, Mora AM, Corvalan C, Pereira A, Cardoso MA, Chavarro JE, Breton CV, Meeker JD, Harley KG, Eskenazi B, Peterson KE, Tellez-Rojo MM, Exposure to obesogenic endocrine disrupting chemicals and obesity among youth of Latino or Hispanic origin in the United States and Latin America: A lifecourse perspective, Obes Rev 22 Suppl 3(Suppl 3) (2021) e13245. PubMed PMC
De Long NE, Stepita RA, Taylor VH, Holloway AC, Major depressive disorder and diabetes: does serotonin bridge the gap? Curr. Diabetes Rev 11 (2) (2015) 71–78. PubMed
Verhaegen AA, Van Gaal LF, Drug-induced obesity and its metabolic consequences: a review with a focus on mechanisms and possible therapeutic options, J. Endocrinol. Invest (2017). PubMed
Solmi M, Fornaro M, Ostinelli EG, Zangani C, Croatto G, Monaco F, Krinitski D, Fusar-Poli P, Correll CU, Safety of 80 antidepressants, antipsychotics, anti-attention-deficit/hyperactivity medications and mood stabilizers in children and adolescents with psychiatric disorders: a large scale systematic meta-review of 78 adverse effects, World Psychiatry 19 (2) (2020) 214–232. PubMed PMC
Himmerich H, Minkwitz J, Kirkby KC, Weight Gain and Metabolic Changes During Treatment with Antipsychotics and Antidepressants, Endocr. Metab. Immune Disord. Drug Targets 15 (4) (2015) 252–260. PubMed
De Hert M, Dobbelaere M, Sheridan EM, Cohen D, Correll CU, Metabolic and endocrine adverse effects of second-generation antipsychotics in children and adolescents: A systematic review of randomized, placebo controlled trials and guidelines for clinical practice, European psychiatry : the journal of the Association of European Psychiatrists 26 (3) (2011) 144–158. PubMed
Martínez-Ortega JM, Funes-Godoy S, Díaz-Atienza F, Gutiérrez-Rojas L, Pérez-Costillas L, Gurpegui M, Weight gain and increase of body mass index among children and adolescents treated with antipsychotics: a critical review, Eur. Child Adolesc. Psychiatry 22 (8) (2013) 457–479. PubMed
Pan SJ, Tan YL, Yao SW, Xin Y, Yang X, Liu J, Xiong J, Fluoxetine induces lipid metabolism abnormalities by acting on the liver in patients and mice with depression, Acta Pharmacol. Sin 39 (9) (2018) 1463–1472. PubMed PMC
Flechtner-Mors M, Jenkinson CP, Alt A, Adler G, Ditschuneit HH, Metabolism in adipose tissue in response to citalopram and trimipramine treatment–an in situ microdialysis study, J. Psychiatr. Res 42 (7) (2008) 578–586. PubMed
Medici V, McClave SA, Miller KR, Common Medications Which Lead to Unintended Alterations in Weight Gain or Organ Lipotoxicity, Curr. Gastroenterol. Rep 18 (1) (2016) 2. PubMed
Coats AJS, Beta-blockers, hypertension, and weight gain: the farmer, the chicken, and the egg, Hong Kong Med J 26 (1) (2020) 6–7. PubMed
Christ-Crain M, Kola B, Lolli F, Fekete C, Seboek D, Wittmann G, Feltrin D, Igreja SC, Ajodha S, Harvey-White J, Kunos G, Muller B, Pralong F, Aubert G, Arnaldi G, Giacchetti G, Boscaro M, Grossman AB, Korbonits M, AMP-activated protein kinase mediates glucocorticoid-induced metabolic changes: a novel mechanism in Cushing’s syndrome, FASEB journal : official publication of the Federation of American Societies for Experimental Biology 22 (6) (2008) 1672–1683. PubMed
Newbold RR, Padilla-Banks E, Jefferson WN, Environmental estrogens and obesity, Mol. Cell. Endocrinol 304 (1–2) (2009) 84–89. PubMed PMC
Mackenbach JP, Damhuis RA, Been JV, The effects of smoking on health: growth of knowledge reveals even grimmer picture, Ned. Tijdschr. Geneeskd 160 (2017) D869. PubMed
Green AJ, Hoyo C, Mattingly CJ, Luo Y, Tzeng J-Y, Murphy SK, Buchwalter DB, Planchart A, Cadmium exposure increases the risk of juvenile obesity: a human and zebrafish comparative study, International Journal of Obesity 42 (7) (2018) 1285–1295. PubMed PMC
Kim J-Y, Kim S-J, Bae MA, Kim J-R, Cho K-H, Cadmium exposure exacerbates severe hyperlipidemia and fatty liver changes in zebrafish via impairment of high-density lipoproteins functionality, Toxicology in Vitro 47 (2018) 249–258 %U https://linkinghub.elsevier.com/retrieve/pii/S0887233317303582. PubMed
Bucher S, Tête A, Podechard N, Liamin M, Le Guillou D, Chevanne M, Coulouarn C, Imran M, Gallais I, Fernier M, Hamdaoui Q, Robin M-A, Sergent O, Fromenty B, Lagadic-Gossmann D, Co-exposure to benzo[a]pyrene and ethanol induces a pathological progression of liver steatosis in vitro and in vivo, Sci. Rep 8 (1) (2018) 5963. PubMed PMC
Behl M, Rao D, Aagaard K, Davidson TL, Levin ED, Slotkin TA, Srinivasan S, Wallinga D, White MF, Walker VR, Thayer KA, Holloway AC, Evaluation of the association between maternal smoking, childhood obesity, and metabolic disorders: a national toxicology program workshop review, Environ. Health Perspect 121 (2) (2013) 170–180. PubMed PMC
Sinha-Hikim AP, Sinha-Hikim I, Friedman TC, Connection of Nicotine to Diet-Induced Obesity and Non-Alcoholic Fatty Liver Disease: Cellular and Mechanistic Insights, Front. Endocrinol 8 (2017). PubMed PMC
Pinheiro CR, Moura EG, Manhães AC, Fraga MC, Claudio-Neto S, Younes-Rapozo V, Santos-Silva AP, Lotufo BM, Oliveira E, Lisboa PC, Maternal nicotine exposure during lactation alters food preference, anxiety-like behavior and the brain dopaminergic reward system in the adult rat offspring, Physiol. Behav 149 (2015) 131–141. PubMed
Lee KW, Abrahamowicz M, Leonard GT, Richer L, Perron M, Veillette S, Reischl E, Bouchard L, Gaudet D, Paus T, Pausova Z, Prenatal exposure to cigarette smoke interacts with OPRM1 to modulate dietary preference for fat, J. Psychiatry Neurosci 40 (1) (2015) 38–45. PubMed PMC
Chen HJ, Li GL, Zhang WX, Fan J, Hu L, Zhang L, Zhang J, Yan YE, Maternal nicotine exposure during pregnancy and lactation induces brown adipose tissue whitening in female offspring, Toxicol. Appl. Pharmacol 409 (2020), 115298. PubMed
Huang LZ, Winzer-Serhan UH, Nicotine regulates mRNA expression of feeding peptides in the arcuate nucleus in neonatal rat pups, Dev Neurobiol 67 (3) (2007) 363–377. PubMed
Younes-Rapozo V, Moura EG, Manhães AC, Pinheiro CR, Santos-Silva AP, de Oliveira E, Lisboa PC, Maternal nicotine exposure during lactation alters hypothalamic neuropeptides expression in the adult rat progeny, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 58 (2013) 158–168. PubMed
Somm E, Schwitzgebel VM, Vauthay DM, Camm EJ, Chen CY, Giacobino JP, Sizonenko SV, Aubert ML, Huppi PS, Prenatal nicotine exposure alters early pancreatic islet and adipose tissue development with consequences on the control of body weight and glucose metabolism later in life, Endocrinology 149 (12) (2008) 6289–6299. PubMed
Fan J, Ping J, Zhang WX, Rao YS, Liu HX, Zhang J, Yan YE, Prenatal and lactation nicotine exposure affects morphology and function of brown adipose tissue in male rat offspring, Ultrastruct. Pathol 40 (5) (2016) 288–295. PubMed
Peixoto TC, Moura EG, Soares PN, Bertasso IM, Pietrobon CB, Caramez FAH, Miranda RA, Oliveira E, Manhães AC, Lisboa PC, Nicotine exposure during breastfeeding reduces sympathetic activity in brown adipose tissue and increases in white adipose tissue in adult rats: Sex-related differences, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 140 (2020), 111328. PubMed
Ma N, Nicholson CJ, Wong M, Holloway AC, Hardy DB, Fetal and neonatal exposure to nicotine leads to augmented hepatic and circulating triglycerides in adult male offspring due to increased expression of fatty acid synthase, Toxicol. Appl. Pharmacol 275 (1) (2014) 1–11. PubMed
Blüher M, Adipose tissue dysfunction contributes to obesity related metabolic diseases, Best practice & research, Clinical endocrinology & metabolism 27 (2) (2013) 163–177. PubMed
Cameron JD, Doucet É, Adamo KB, Walker M, Tirelli A, Barnes JD, Hafizi K, Murray M, Goldfield GS, Effects of prenatal exposure to cigarettes on anthropometrics, energy intake, energy expenditure, and screen time in children, Physiol. Behav 194 (2018) 394–400. PubMed
Moschonis G, Kaliora AC, Karatzi K, Michaletos A, Lambrinou CP, Karachaliou AK, Chrousos GP, Lionis C, Manios Y, Perinatal, sociodemographic and lifestyle correlates of increased total and visceral fat mass levels in schoolchildren in Greece: the Healthy Growth Study, Public Health Nutr. 20 (4) (2017) 660–670. PubMed PMC
Oken E, Levitan EB, Gillman MW, Maternal smoking during pregnancy and child overweight: systematic review and meta-analysis, International journal of obesity (2005) 32(2) (2008) 201–10. PubMed PMC
Rayfield S, Plugge E, Systematic review and meta-analysis of the association between maternal smoking in pregnancy and childhood overweight and obesity, J. Epidemiol. Community Health 71 (2) (2017) 162–173. PubMed
Philips EM, Santos S, Trasande L, Aurrekoetxea JJ, Barros H, von Berg A, Bergström A, Bird PK, Brescianini S, Ní Chaoimh C, Charles MA, Chatzi L, Chevrier C, Chrousos GP, Costet N, Criswell R, Crozier S, Eggesbø M, Fantini MP, Farchi S, Forastiere F, van Gelder MMHJ, Georgiu V, Godfrey KM, Gori D, Hanke W, Heude B, Hryhorczuk D, Iñiguez C, Inskip H, Karvonen AM, Kenny LC, Kull I, Lawlor DA, Lehmann I, Magnus P, Manios Y, Melén E, Mommers M, Morgen CS, Moschonis G, Murray D, Nohr EA, Nybo Andersen AM, Oken E, Oostvogels AJJM, Papadopoulou E, Pekkanen J, Pizzi C, Polanska K, Porta D, Richiardi L, Rifas-Shiman SL, Roeleveld N, Rusconi F, Santos AC, Sørensen TIA, Standl M, Stoltenberg C, Sunyer J, Thiering E, Thijs C, Torrent M, Vrijkotte TGM, Wright J, Zvinchuk O, Gaillard R, Jaddoe VWV, Changes in parental smoking during pregnancy and risks of adverse birth outcomes and childhood overweight in Europe and North America: An individual participant data meta-analysis of 229,000 singleton births, PLoS Med. 17 (8) (2020), e1003182. PubMed PMC
Vrijheid M, Fossati S, Maitre L, Marquez S, Roumeliotaki T, Agier L, Andrusaityte S, Cadiou S, Casas M, de Castro M, Dedele A, Donaire-Gonzalez D, Grazuleviciene R, Haug LS, McEachan R, Meltzer HM, Papadopouplou E, Robinson O, Sakhi AK, Siroux V, Sunyer J, Schwarze PE, Tamayo-Uria I, Urquiza J, Vafeiadi M, Valentin A, Warembourg C, Wright J, Nieuwenhuijsen MJ, Thomsen C, Basagana X, Slama R, Chatzi L, Early-Life Environmental Exposures and Childhood Obesity: An Exposome-Wide Approach, Environ. Health Perspect 128 (6) (2020) 67009. PubMed PMC
Albers L, Sobotzki C, Kuß O, Ajslev T, Batista RF, Bettiol H, Brabin B, Buka SL, Cardoso VC, Clifton VL, Devereux G, Gilman SE, Grzeskowiak LE, Heinrich J, Hummel S, Jacobsen GW, Jones G, Koshy G, Morgen CS, Oken E, Paus T, Pausova Z, Rifas-Shiman SL, Sharma AJ, da Silva AA, Sørensen TI, Thiering E, Turner S, Vik T, von Kries R, Maternal smoking during pregnancy and offspring overweight: is there a dose-response relationship? An individual patient data meta-analysis, International journal of obesity (2005) 42(7) (2018) 1249–1264. PubMed PMC
Chen HJ, Li GL, Sun A, Peng DS, Zhang WX, Yan YE, Age Differences in the Relationship between Secondhand Smoke Exposure and Risk of Metabolic Syndrome: A Meta-Analysis, Int. J. Environ. Res. Public Health 16 (8) (2019). PubMed PMC
Oldereid NB, Wennerholm UB, Pinborg A, Loft A, Laivuori H, Petzold M, Romundstad LB, Söderström-Anttila V, Bergh C, The effect of paternal factors on perinatal and paediatric outcomes: a systematic review and meta-analysis, Human reproduction update 24 (3) (2018) 320–389. PubMed
Nadhiroh SR, Djokosujono K, Utari DM, The association between secondhand smoke exposure and growth outcomes of children: A systematic literature review, Tob Induc Dis 18 (2020) 12. PubMed PMC
Chaiton M, Holloway A, Population attributable risk of smoking during pregnancy on obesity in offspring, Can. J. Public Health 107 (3) (2016), e336. PubMed PMC
Harris HR, Willett WC, Michels KB, Parental smoking during pregnancy and risk of overweight and obesity in the daughter, International journal of obesity (2005) 37(10) (2013) 1356–63. PubMed PMC
Pérez-Bermejo M, Mas-Pérez I, Murillo-Llorente MT, The Role of the Bisphenol A in Diabetes and Obesity, Biomedicines 9 (6) (2021). PubMed PMC
Qiu W, Liu S, Yang F, Dong P, Yang M, Wong M, Zheng C, Metabolism disruption analysis of zebrafish larvae in response to BPA and BPA analogs based on RNA-Seq technique, Ecotoxicol. Environ. Saf 174 (2019) 181–188. PubMed
Ji Z, Liu J, Sakkiah S, Guo W, Hong H, BPA Replacement Compounds: Current Status and Perspectives, ACS Sustainable Chem. Eng 9 (6) (2021) 2433–2446.
Mesnage R, Phedonos A, Arno M, Balu S, Corton JC, Antoniou MN, Editor’s Highlight: Transcriptome Profiling Reveals Bisphenol A Alternatives Activate Estrogen Receptor Alpha in Human Breast Cancer Cells, Toxicological sciences : an official journal of the Society of Toxicology 158 (2) (2017) 431–443. PubMed PMC
Ougier E, Zeman F, Antignac JP, Rousselle C, Lange R, Kolossa-Gehring M, Apel P, Human biomonitoring initiative (HBM4EU): Human biomonitoring guidance values (HBM-GVs) derived for bisphenol A, Environ. Int 154 (2021), 106563. PubMed
Bousoumah R, Leso V, Iavicoli I, Huuskonen P, Viegas S, Porras SP, Santonen T, Frery N, Robert A, Ndaw S, Biomonitoring of occupational exposure to bisphenol A, bisphenol S and bisphenol F: A systematic review, The Science of the total environment 783 (2021), 146905. PubMed
Hines CJ, Jackson MV, Deddens JA, Clark JC, Ye X, Christianson AL, Meadows JW, Calafat AM, Urinary Bisphenol A (BPA) Concentrations among Workers in Industries that Manufacture and Use BPA in the USA, Ann Work Expo Health 61 (2) (2017) 164–182. PubMed PMC
Longo M, Zatterale F, Naderi J, Nigro C, Oriente F, Formisano P, Miele C, Beguinot F, Low-dose Bisphenol-A Promotes Epigenetic Changes at Ppargamma Promoter in Adipose Precursor Cells, Nutrients 12 (11) (2020). PubMed PMC
Huc L, Lemarié A, Guéraud F, Héliès-Toussaint C, Low concentrations of bisphenol A induce lipid accumulation mediated by the production of reactive oxygen species in the mitochondria of HepG2 cells, Toxicol. In Vitro 26 (5) (2012) 709–717. PubMed
Peyre L, Rouimi P, de Sousa G, Héliès-Toussaint C, Carré B, Barcellini S, Chagnon M-C, Rahmani R, Comparative study of bisphenol A and its analogue bisphenol S on human hepatic cells: A focus on their potential involvement in nonalcoholic fatty liver disease, Food Chem. Toxicol 70 (2014) 9–18. PubMed
Boucher JG, Husain M, Rowan-Carroll A, Williams A, Yauk CL, Atlas E, Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling, Obesity (Silver Spring) 22 (11) (2014) 2333–2343. PubMed
Martinez MA, Blanco J, Rovira J, Kumar V, Domingo JL, Schuhmacher M, Bisphenol A analogues (BPS and BPF) present a greater obesogenic capacity in 3T3-L1 cell line, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 140 (2020), 111298. PubMed
Skledar DG, Carino A, Trontelj J, Troberg J, Distrutti E, Marchiano S, Tomasic T, Zega A, Finel M, Fiorucci S, Masic LP, Endocrine activities and adipogenic effects of bisphenol AF and its main metabolite, Chemosphere 215 (2019) 870–880. PubMed
Riu A, Grimaldi M, le Maire A, Bey G, Phillips K, Boulahtouf A, Perdu E, Zalko D, Bourguet W, Balaguer P, Peroxisome proliferator-activated receptor gamma is a target for halogenated analogs of bisphenol A, Environ. Health Perspect 119 (9) (2011) 1227–1232. PubMed PMC
Ariemma F, D’Esposito V, Liguoro D, Oriente F, Cabaro S, Liotti A, Cimmino I, Longo M, Beguinot F, Formisano P, Valentino R, Low-Dose bisphenol-A impairs adipogenesis and generates dysfunctional 3T3-L1 adipocytes, PLoS ONE 11 (3) (2016) 1–16. PubMed PMC
Martella A, Silvestri C, Maradonna F, Gioacchini G, Allarà M, Radaelli G, Overby DR, Di Marzo V, Carnevali O, Bisphenol A Induces Fatty Liver by an Endocannabinoid-Mediated Positive Feedback Loop, Endocrinology 157 (5) (2016) 1751–1763. PubMed PMC
Renaud L, Silveira W.A.d., Hazard ES, Simpson J, Falcinelli S, Chung D, Carnevali O, Hardiman G, The Plasticizer Bisphenol A Perturbs the Hepatic Epigenome: A Systems Level Analysis of the miRNome, Genes 8(10) (2017). PubMed PMC
Santangeli S, Notarstefano V, Maradonna F, Giorgini E, Gioacchini G, Forner-Piquer I, Habibi HR, Carnevali O, Effects of diethylene glycol dibenzoate and Bisphenol A on the lipid metabolism of Danio rerio, Sci. Total Environ 636 (2018) 641–655. PubMed
Wang W, Zhang X, Wang Z, Qin J, Wang W, Tian H, Ru S, Bisphenol S induces obesogenic effects through deregulating lipid metabolism in zebrafish (Danio rerio) larvae, Chemosphere 199 (2018) 286–296. PubMed
Riu A, McCollum CW, Pinto CL, Grimaldi M, Hillenweck A, Perdu E, Zalko D, Bernard L, Laudet V, Balaguer P, Bondesson M, Gustafsson J-A, Halogenated Bisphenol-A Analogs Act as Obesogens in Zebrafish Larvae (Danio rerio), Toxicol. Sci (2014). PubMed PMC
Tian S, Yan S, Meng Z, Huang S, Sun W, Jia M, Teng M, Zhou Z, Zhu W, New insights into bisphenols induced obesity in zebrafish (Danio rerio): Activation of cannabinoid receptor CB1, J. Hazard. Mater 418 (2021), 126100. PubMed
Rochester JR, Bolden AL, Bisphenol S and F: A Systematic Review and Comparison of the Hormonal Activity of Bisphenol A Substitutes, Environ. Health Perspect 123 (7) (2015) 643–650. PubMed PMC
Alonso-Magdalena P, Garcia-Arevalo M, Quesada I, Nadal A, Bisphenol-A treatment during pregnancy in mice: a new window of susceptibility for the development of diabetes in mothers later in life, Endocrinology 156 (5) (2015) 1659–1670. PubMed
Wassenaar PNH, Trasande L, Legler J, Systematic Review and Meta-Analysis of Early-Life Exposure to Bisphenol A and Obesity-Related Outcomes in Rodents, Environ. Health Perspect 125 (10) (2017), 106001. PubMed PMC
Angle BM, Do RP, Ponzi D, Stahlhut RW, Drury BE, Nagel SC, Welshons WV, Besch-Williford CL, Palanza P, Parmigiani S, vom Saal FS, Taylor JA, Metabolic disruption in male mice due to fetal exposure to low but not high doses of bisphenol A (BPA): Evidence for effects on body weight, food intake, adipocytes, leptin, adiponectin, insulin and glucose regulation, Reprod. Toxicol 42 (2013) 256–268. PubMed PMC
Rubin BS, Paranjpe M, DaFonte T, Schaeberle C, Soto AM, Obin M, Greenberg AS, Perinatal BPA exposure alters body weight and composition in a dose specific and sex specific manner: The addition of peripubertal exposure exacerbates adverse effects in female mice, Reprod. Toxicol 68 (2017) 130–144. PubMed PMC
Somm E, Schwitzgebel VM, Toulotte A, Cederroth CR, Combescure C, Nef S, Aubert ML, Huppi PS, Perinatal exposure to bisphenol a alters early adipogenesis in the rat, Environ. Health Perspect 117 (10) (2009) 1549–1555. PubMed PMC
Rubin BS, Soto AM, Bisphenol A: Perinatal exposure and body weight, Mol. Cell. Endocrinol 304 (1–2) (2009) 55–62. PubMed PMC
Desai M, Ferrini MG, Han G, Jellyman JK, Ross MG, In vivo maternal and in vitro BPA exposure effects on hypothalamic neurogenesis and appetite regulators, Environ. Res 164 (2018) 45–52. PubMed PMC
MacKay H, Patterson ZR, Abizaid A, Perinatal Exposure to Low-Dose Bisphenol-A Disrupts the Structural and Functional Development of the Hypothalamic Feeding Circuitry, Endocrinology 158 (4) (2017) 768–777. PubMed
Stoker C, Andreoli MF, Kass L, Bosquiazzo VL, Rossetti MF, Canesini G, Luque EH, Ramos JG, Perinatal exposure to bisphenol A (BPA) impairs neuroendocrine mechanisms regulating food intake and kisspetin system in adult male rats, Evidences of metabolic disruptor hypothesis, Mol Cell Endocrinol 499 (2020), 110614. PubMed
Yang M, Chen M, Wang J, Xu M, Sun J, Ding L, Lv X, Ma Q, Bi Y, Liu R, Hong J, Ning G, Bisphenol A promotes adiposity and inflammation in a nonmonotonic dose-response way in five-week old male and female C57BL/6J mice fed a low-calorie diet, Endocrinology (2016) en20151926. PubMed
Ivry Del Moral L, Le Corre L, Poirier H, Niot I, Truntzer T, Merlin JF, Rouimi P, Besnard P, Rahmani R, Chagnon MC, Obesogen effects after perinatal exposure of 4,4’-sulfonyldiphenol (Bisphenol S) in C57BL/6 mice, Toxicology 357–358 (2016) 11–20. PubMed
Ribeiro CM, Beserra BTS, Silva NG, Lima CL, Rocha PRS, Coelho MS, Neves FAR, Amato AA, Exposure to endocrine-disrupting chemicals and anthropometric measures of obesity: a systematic review and meta-analysis, BMJ Open 10 (6) (2020), e033509. PubMed PMC
Song Y, Hauser R, Hu FB, Franke AA, Liu S, Sun Q, Urinary concentrations of bisphenol A and phthalate metabolites and weight change: a prospective investigation in US women, International journal of obesity (2005) 38(12) (2014) 1532–7. PubMed PMC
Hao M, Ding L, Xuan L, Wang T, Li M, Zhao Z, Lu J, Xu Y, Chen Y, Wang W, Bi Y, Xu M, Ning G, Urinary bisphenol A concentration and the risk of central obesity in Chinese adults: A prospective study, J. Diabetes 10 (6) (2018) 442–448. PubMed
Braun JM, Li N, Arbuckle TE, Dodds L, Massarelli I, Fraser WD, Lanphear BP, Muckle G, Association between gestational urinary bisphenol a concentrations and adiposity in young children: The MIREC study, Environ. Res 172 (2019) 454–461. PubMed PMC
Hoepner LA, Whyatt RM, Widen EM, Hassoun A, Oberfield SE, Mueller NT, Diaz D, Calafat AM, Perera FP, Rundle AG, Bisphenol A and Adiposity in an Inner-City Birth Cohort, Environ. Health Perspect 124 (10) (2016) 1644–1650. PubMed PMC
Agay-Shay K, Martinez D, Valvi D, Garcia-Esteban R, Basagana X, Robinson O, Casas M, Sunyer J, Vrijheid M, Exposure to Endocrine-Disrupting Chemicals during Pregnancy and Weight at 7 Years of Age: A Multi-pollutant Approach, Environ. Health Perspect 123 (10) (2015) 1030–1037. PubMed PMC
Vafeiadi M, Roumeliotaki T, Myridakis A, Chalkiadaki G, Fthenou E, Dermitzaki E, Karachaliou M, Sarri K, Vassilaki M, Stephanou EG, Kogevinas M, Chatzi L, Association of early life exposure to bisphenol A with obesity and cardiometabolic traits in childhood, Environ. Res 146 (2016) 379–387. PubMed
Yang TC, Peterson KE, Meeker JD, Sánchez BN, Zhang Z, Cantoral A, Solano M, Tellez-Rojo MM, Bisphenol A and phthalates in utero and in childhood: association with child BMI z-score and adiposity, Environ. Res 156 (2017) 326–333. PubMed PMC
Buckley JP, Herring AH, Wolff MS, Calafat AM, Engel SM, Prenatal exposure to environmental phenols and childhood fat mass in the Mount Sinai Children’s Environmental Health Study, Environ. Int 91 (2016) 350–356. PubMed PMC
Harley KG, Aguilar Schall R, Chevrier J, Tyler K, Aguirre H, Bradman A, Holland NT, Lustig RH, Calafat AM, Eskenazi B, Prenatal and postnatal bisphenol A exposure and body mass index in childhood in the CHAMACOS cohort, Environ Health Perspect 121(4) (2013) 514–20, 520e1-6. PubMed PMC
Ryan KK, Haller AM, Sorrell JE, Woods SC, Jandacek RJ, Seeley RJ, Perinatal exposure to bisphenol-A and the development of metabolic syndrome in CD-1 mice, Endocrinology 151 (6) (2010) 2603–2612. PubMed PMC
Rolland M, Lyon-Caen S, Sakhi AK, Pin I, Sabaredzovic A, Thomsen C, Slama R, Philippat C, Exposure to phenols during pregnancy and the first year of life in a new type of couple-child cohort relying on repeated urine biospecimens, Environ. Int 139 (2020), 105678. PubMed
Petersen JH, Breindahl T, Plasticizers in total diet samples, baby food and infant formulae, Food Addit. Contam 17 (2) (2000) 133–141. PubMed
Genco M, Anderson-Shaw L, Sargis RM, Unwitting Accomplices: Endocrine Disruptors Confounding Clinical Care, The Journal of clinical endocrinology and metabolism 105 (10) (2020). PubMed PMC
Bowman JD, Choudhury M, Phthalates in neonatal health: friend or foe? J Dev Orig Health Dis 7 (6) (2016) 652–664. PubMed
Zhang J, Powell CA, Kay MK, Park MH, Meruvu S, Sonkar R, Choudhury M, A moderate physiological dose of benzyl butyl phthalate exacerbates the high fat diet-induced diabesity in male mice, Toxicol. Res (2020). PubMed PMC
Rajagopal G, Bhaskaran RS, Karundevi B, Developmental exposure to DEHP alters hepatic glucose uptake and transcriptional regulation of GLUT2 in rat male offspring, Toxicology 413 (2019) 56–64. PubMed
Hao C, Cheng X, Guo J, Xia H, Ma X, Perinatal exposure to diethyl-hexylphthalate induces obesity in mice, Front Biosci (Elite Ed) 5 (2013) 725–733. PubMed
Schaedlich K, Gebauer S, Hunger L, Beier L-S, Koch HM, Wabitsch M, Fischer B, Ernst J, DEHP deregulates adipokine levels and impairs fatty acid storage in human SGBS-adipocytes, Sci. Rep 8 (1) (2018) 3447. PubMed PMC
Biemann R, Navarrete Santos A, Navarrete Santos A, Riemann D, Knelangen J, Bluher M, Koch H, Fischer B, Endocrine disrupting chemicals affect the adipogenic differentiation of mesenchymal stem cells in distinct ontogenetic windows, Biochem. Biophys. Res. Commun 417 (2) (2012) 747–752. PubMed
Klöting N, Hesselbarth N, Gericke M, Kunath A, Biemann R, Chakaroun R, Kosacka J, Kovacs P, Kern M, Stumvoll M, Fischer B, Rolle-Kampczyk U, Feltens R, Otto W, Wissenbach DK, von Bergen M, Blüher M, Di-(2-Ethylhexyl)-Phthalate (DEHP) Causes Impaired Adipocyte Function and Alters Serum Metabolites, PLoS ONE 10 (12) (2015), e0143190. PubMed PMC
Chiu CY, Sun SC, Chiang CK, Wang CC, Chan DC, Chen HJ, Liu SH, Yang RS, Plasticizer di(2-ethylhexyl)phthalate interferes with osteoblastogenesis and adipogenesis in a mouse model, Journal of orthopaedic research : official publication of the Orthopaedic Research Society 36 (4) (2018) 1124–1134. PubMed
Feige JN, Gelman L, Rossi D, Zoete V, Metivier R, Tudor C, Anghel SI, Grosdidier A, Lathion C, Engelborghs Y, Michielin O, Wahli W, Desvergne B, The endocrine disruptor monoethyl-hexyl-phthalate is a selective peroxisome proliferator-activated receptor gamma modulator that promotes adipogenesis, J. Biol. Chem 282 (26) (2007) 19152–19166. PubMed
Hurst CH, Waxman DJ, Activation of PPARalpha and PPARgamma by environmental phthalate monoesters, Toxicological sciences : an official journal of the Society of Toxicology 74 (2) (2003) 297–308. PubMed
Hatch EE, Association of urinary phthalate metabolite concentrations with body mass index and waist circumference: a cross-sectional study of NHANES data, 1999–2002, Environ. Health 7 (2008) 27. PubMed PMC
Desvergne B, Feige JN, Casals-Casas C, PPAR-mediated activity of phthalates: A link to the obesity epidemic? Mol. Cell. Endocrinol 304 (1–2) (2009) 43–48. PubMed
Ellero-Simatos S, Claus SP, Benelli C, Forest C, Letourneur F, Cagnard N, Beaune PH, de Waziers I, Combined Transcriptomic–1H NMR Metabonomic Study Reveals That Monoethylhexyl Phthalate Stimulates Adipogenesis and Glyceroneogenesis in Human Adipocytes, J. Proteome Res 10 (12) (2011) 5493–5502. PubMed PMC
Buerger AN, Schmidt J, Chase A, Paixao C, Patel TN, Brumback BA, Kane AS, Martyniuk CJ, Bisesi JH, Examining the responses of the zebrafish (Danio rerio) gastrointestinal system to the suspected obesogen diethylhexyl phthalate, Environmental Pollution (Barking, Essex 245 (2019) (1987) 1086–1094. PubMed
Buerger AN, Dillon DT, Schmidt J, Yang T, Zubcevic J, Martyniuk CJ, Bisesi JH, Gastrointestinal dysbiosis following diethylhexyl phthalate exposure in zebrafish (Danio rerio): Altered microbial diversity, functionality, and network connectivity, Environmental Pollution (Barking, Essex: 1987) 265(Pt B) (2020) 114496. PubMed
Jacobs HM, Sant KE, Basnet A, Williams LM, Moss JB, Timme-Laragy AR, Embryonic exposure to Mono(2-ethylhexyl) phthalate (MEHP) disrupts pancreatic organogenesis in zebrafish (Danio rerio), Chemosphere 195 (2018) 498–507. PubMed PMC
Tête A, Gallais I, Imran M, Legoff L, Martin-Chouly C, Sparfel L, Bescher M, Sergent O, Podechard N, Lagadic-Gossmann D, MEHP/ethanol co-exposure favors the death of steatotic hepatocytes, possibly through CYP4A and ADH involvement, Food Chem. Toxicol 146 (2020), 111798. PubMed
Chen H, Zhang W, Rui B-B, Yang S-M, Xu W-P, Wei W, Di(2-ethylhexyl) phthalate exacerbates non-alcoholic fatty liver in rats and its potential mechanisms, Environ. Toxicol. Pharmacol 42 (2016) 38–44. PubMed
Zhang W, Shen X-Y, Zhang W-W, Chen H, Xu W-P, Wei W, The effects of di 2-ethyl hexyl phthalate (DEHP) on cellular lipid accumulation in HepG2 cells and its potential mechanisms in the molecular level, Toxicol. Mech. Methods 27 (4) (2017) 245–252. PubMed
Zhang Y, Wang S, Zhao T, Yang L, Guo S, Shi Y, Zhang X, Zhou L, Ye L, Mono-2-ethylhexyl phthalate (MEHP) promoted lipid accumulation via JAK2/STAT5 and aggravated oxidative stress in BRL-3A cells, Ecotoxicol. Environ. Saf 184 (2019), 109611. PubMed
Guo W, Han J, Wu S, Shi X, Wang Q, Zhou B, Bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate Affects Lipid Metabolism in Zebrafish Larvae via DNA Methylation Modification, Environ. Sci. Technol 54 (1) (2020) 355–363. PubMed
Wassenaar PNH, Legler J, Systematic review and meta-analysis of early life exposure to di(2-ethylhexyl) phthalate and obesity related outcomes in rodents, Chemosphere 188 (2017) 174–181. PubMed
Schmidt J-S, Schaedlich K, Fiandanese N, Pocar P, Fischer B, Effects of di(2-ethylhexyl) phthalate (DEHP) on female fertility and adipogenesis in C3H/N mice, Environ. Health Perspect 120 (8) (2012) 1123–1129. PubMed PMC
Lv Z, Cheng J, Huang S, Zhang Y, Wu S, Qiu Y, Geng Y, Zhang Q, Huang G, Ma Q, Xie X, Zhou S, Wu T, Ke Y, DEHP induces obesity and hypothyroidism through both central and peripheral pathways in C3H/He mice, Obesity (Silver Spring) 24 (2) (2016) 368–378. PubMed
Hao C, Cheng X, Xia H, Ma X, The endocrine disruptor mono-(2-ethylhexyl) phthalate promotes adipocyte differentiation and induces obesity in mice, Biosci. Rep 32 (6) (2012) 619–629. PubMed PMC
Moody L, Kougias D, Jung PM, Digan I, Hong A, Gorski A, Chen H, Juraska J, Pan Y-X, Perinatal phthalate and high-fat diet exposure induce sex-specific changes in adipocyte size and DNA methylation, The Journal of nutritional biochemistry 65 (2019) 15–25. PubMed PMC
Majeed KA, Ur Rehman H, Yousaf MS, Zaneb H, Rabbani I, Tahir SK, Rashid MA, Sub-chronic exposure to low concentration of dibutyl phthalate affects anthropometric parameters and markers of obesity in rats, Environ. Sci. Pollut. Res. Int 24 (32) (2017) 25462–25467. PubMed
Harley KG, Berger K, Rauch S, Kogut K, Claus Henn B, Calafat AM, Huen K, Eskenazi B, Holland N, Association of prenatal urinary phthalate metabolite concentrations and childhood BMI and obesity, Pediatr. Res 82 (3) (2017) 405–415. PubMed PMC
Buckley JP, Engel SM, Braun JM, Whyatt RM, Daniels JL, Mendez MA, Richardson DB, Xu Y, Calafat AM, Wolff MS, Lanphear BP, Herring AH, Rundle AG, Prenatal Phthalate Exposures and Body Mass Index Among 4- to 7-Year-old Children: A Pooled Analysis, Epidemiology (Cambridge, Mass.) 27 (3) (2016) 449–458. PubMed PMC
Kim JH, Park H, Lee J, Cho G, Choi S, Choi G, Kim SY, Eun S-H, Suh E, Kim SK, Kim H-J, Kim G-H, Lee JJ, Kim YD, Eom S, Kim S, Moon H-B, Park J, Choi K, Kim S, Kim S, Association of diethylhexyl phthalate with obesity-related markers and body mass change from birth to 3 months of age, J. Epidemiol. Community Health 70 (5) (2016) 466–472. PubMed PMC
Valvi D, Casas M, Romaguera D, Monfort N, Ventura R, Martinez D, Sunyer J, Vrijheid M, Prenatal Phthalate Exposure and Childhood Growth and Blood Pressure: Evidence from the Spanish INMA-Sabadell Birth Cohort Study, Environ. Health Perspect 123 (10) (2015) 1022–1029. PubMed PMC
Botton J, Philippat C, Calafat AM, Carles S, Charles M-A, Slama R, E.m.-c.c.s. g. the, Phthalate pregnancy exposure and male offspring growth from the intrauterine period to five years of age, Environ. Res 151 (2016) 601–609. PubMed PMC
Hou JW, Lin CL, Tsai YA, Chang CH, Liao KW, Yu CJ, Yang W, Lee MJ, Huang PC, Sun CW, Wang YH, Lin FR, Wu WC, Lee MC, Pan WH, Chen BH, Wu MT, Chen CC, Wang SL, Lee CC, Hsiung CA, Chen ML, The effects of phthalate and nonylphenol exposure on body size and secondary sexual characteristics during puberty, Int. J. Hyg. Environ. Health 218 (7) (2015) 603–615. PubMed
Sol CM, Santos S, Duijts L, Asimakopoulos AG, Martinez-Moral M-P, Kannan K, Philips EM, Trasande L, Jaddoe VWV, Fetal exposure to phthalates and bisphenols and childhood general and organ fat, A population-based prospective cohort study, International Journal of Obesity 44 (11) (2020) 2225–2235. PubMed
Maresca MM, Hoepner LA, Hassoun A, Oberfield SE, Mooney SJ, Calafat AM, Ramirez J, Freyer G, Perera FP, Whyatt RM, Rundle AG, Prenatal Exposure to Phthalates and Childhood Body Size in an Urban Cohort, Environ. Health Perspect 124 (4) (2016) 514–520. PubMed PMC
Buckley JP, Engel SM, Mendez MA, Richardson DB, Daniels JL, Calafat AM, Wolff MS, Herring AH, Prenatal Phthalate Exposures and Childhood Fat Mass in a New York City Cohort, Environ. Health Perspect 124 (4) (2016) 507–513. PubMed PMC
Berger K, Hyland C, Ames JL, Mora AM, Huen K, Eskenazi B, Holland N, Harley KG, Prenatal Exposure to Mixtures of Phthalates, Parabens, and Other Phenols and Obesity in Five-Year-Olds in the CHAMACOS Cohort, Int. J. Environ. Res. Public Health 18 (4) (2021). PubMed PMC
Shoaff J, Papandonatos GD, Calafat AM, Ye X, Chen A, Lanphear BP, Yolton K, Braun JM, Early-Life Phthalate Exposure and Adiposity at 8 Years of Age, Environ. Health Perspect 125 (9) (2017), 097008. PubMed PMC
Brauer M, Freedman G, Frostad J, van Donkelaar A, Martin RV, Dentener F, van Dingenen R, Estep K, Amini H, Apte JS, Balakrishnan K, Barregard L, Broday D, Feigin V, Ghosh S, Hopke PK, Knibbs LD, Kokubo Y, Liu Y, Ma S, Morawska L, Sangrador JL, Shaddick G, Anderson HR, Vos T, Forouzanfar MH, Burnett RT, Cohen A, Ambient Air Pollution Exposure Estimation for the Global Burden of Disease 2013, Environ. Sci. Technol 50 (1) (2016) 79–88. PubMed
G.B.D.R.F. Collaborators, Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017, Lancet 392(10159) (2018) 1923–1994. PubMed PMC
Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, Balakrishnan K, Brunekreef B, Dandona L, Dandona R, Feigin V, Freedman G, Hubbell B, Jobling A, Kan H, Knibbs L, Liu Y, Martin R, Morawska L, Pope CA 3rd, Shin H, Straif K, Shaddick G, Thomas M, van Dingenen R, van Donkelaar A, Vos T, Murray CJL, Forouzanfar MH, Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015, Lancet 389 (10082) (2017) 1907–1918. PubMed PMC
Bailey MJ, Naik NN, Wild LE, Patterson WB, Alderete TL, Exposure to air pollutants and the gut microbiota: a potential link between exposure, obesity, and type 2 diabetes, Gut Microbes 11 (5) (2020) 1188–1202. PubMed PMC
Rajagopalan S, Brook RD, Air pollution and type 2 diabetes: mechanistic insights, Diabetes 61 (12) (2012) 3037–3045. PubMed PMC
Brook RD, Xu X, Bard RL, Dvonch JT, Morishita M, Kaciroti N, Sun Q, Harkema J, Rajagopalan S, Reduced metabolic insulin sensitivity following subacute exposures to low levels of ambient fine particulate matter air pollution, The Science of the total environment 448 (2013) 66–71. PubMed PMC
Sun Q, Yue P, Deiuliis JA, Lumeng CN, Kampfrath T, Mikolaj MB, Cai Y, Ostrowski MC, Lu B, Parthasarathy S, Ambient air pollution exaggerates adipose inflammation and insulin resistance in a mouse model of diet-induced obesity, Circulation 119 (2009). PubMed PMC
Wang Y, Eliot MN, Kuchel GA, Schwartz J, Coull BA, Mittleman MA, Lipsitz LA, Wellenius GA, Long-term exposure to ambient air pollution and serum leptin in older adults: results from the MOBILIZE Boston study, J. Occup. Environ. Med 56 (9) (2014) e73–e77. PubMed PMC
Wu W, Jin Y, Carlsten C, Inflammatory health effects of indoor and outdoor particulate matter, J. Allergy Clin. Immunol 141 (3) (2018) 833–844. PubMed
Xu Z, Xu X, Zhong M, Hotchkiss IP, Lewandowski RP, Wagner JG, Bramble LA, Yang Y, Wang A, Harkema JR, Lippmann M, Rajagopalan S, Chen LC, Sun Q, Ambient particulate air pollution induces oxidative stress and alterations of mitochondria and gene expression in brown and white adipose tissues, Part. Fibre Toxicol 8 (2011) 20. PubMed PMC
Haberzettl P, O’Toole TE, Bhatnagar A, Conklin DJ, Exposure to Fine Particulate Air Pollution Causes Vascular Insulin Resistance by Inducing Pulmonary Oxidative Stress, Environ. Health Perspect 124 (12) (2016) 1830–1839. PubMed PMC
Calderon-Garciduenas L, Franco-Lira M, D’Angiulli A, Rodriguez-Diaz J, Blaurock-Busch E, Busch Y, Chao CK, Thompson C, Mukherjee PS, Torres-Jardon R, Perry G, Mexico City normal weight children exposed to high concentrations of ambient PM2.5 show high blood leptin and endothelin-1, vitamin D deficiency, and food reward hormone dysregulation versus low pollution controls. Relevance for obesity and Alzheimer disease, Environ. Res 140 (2015) 579–592. PubMed
Irigaray P, Newby JA, Lacomme S, Belpomme D, Overweight/obesity and cancer genesis: more than a biological link, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 61 (10) (2007) 665–678. PubMed
Irigaray P, Ogier V, Jacquenet S, Notet V, Sibille P, Mejean L, Bihain BE, Yen FT, Benzo[a]pyrene impairs beta-adrenergic stimulation of adipose tissue lipolysis and causes weight gain in mice, A novel molecular mechanism of toxicity for a common food pollutant, The FEBS journal 273 (7) (2006) 1362–1372. PubMed
Ortiz L, Nakamura B, Li X, Blumberg B, Luderer U, In utero exposure to benzo [a]pyrene increases adiposity and causes hepatic steatosis in female mice, and glutathione deficiency is protective, Toxicol. Lett 223 (2) (2013) 260–267. PubMed PMC
Yin F, Gupta R, Vergnes L, Driscoll WS, Ricks J, Ramanathan G, Stewart JA, Shih DM, Faull KF, Beaven SW, Lusis AJ, Reue K, Rosenfeld ME, Araujo JA, Diesel Exhaust Induces Mitochondrial Dysfunction, Hyperlipidemia, and Liver Steatosis, Arterioscler. Thromb. Vasc. Biol 39 (9) (2019) 1776–1786. PubMed PMC
Xu X, Yavar Z, Verdin M, Ying Z, Mihai G, Kampfrath T, Wang A, Zhong M, Lippmann M, Chen LC, Rajagopalan S, Sun Q, Effect of early particulate air pollution exposure on obesity in mice: role of p47phox, Arterioscler. Thromb. Vasc. Biol 30 (12) (2010) 2518–2527. PubMed PMC
Wu G, Brown J, Zamora ML, Miller A, Satterfield MC, Meininger CJ, Steinhauser CB, Johnson GA, Burghardt RC, Bazer FW, Li Y, Johnson NM, Molina MJ, Zhang R, Adverse organogenesis and predisposed long-term metabolic syndrome from prenatal exposure to fine particulate matter, PNAS 116 (24) (2019) 11590–11595. PubMed PMC
Pan K, Jiang S, Du X, Zeng X, Zhang J, Song L, Zhou J, Kan H, Sun Q, Xie Y, Zhao J, AMPK activation attenuates inflammatory response to reduce ambient PM2.5-induced metabolic disorders in healthy and diabetic mice, Ecotoxicol. Environ. Saf 179 (2019) 290–300. PubMed
Reyes-Caballero H, Rao X, Sun Q, Warmoes MO, Lin P, Sussan TE, Park B, Fan TW, Maiseyeu A, Rajagopalan S, Girnun GD, Biswal S, Air pollution-derived particulate matter dysregulates hepatic Krebs cycle, glucose and lipid metabolism in mice, Sci. Rep 9 (1) (2019) 17423. PubMed PMC
Li R, Wang Y, Hou B, Lam SM, Zhang W, Chen R, Shui G, Sun Q, Qiang G, Liu C, Lipidomics insight into chronic exposure to ambient air pollution in mice, Environmental pollution (Barking, Essex 262 (2020) (1987), 114668. PubMed
Jiang M, Li D, Piao J, Li J, Sun H, Chen L, Chen S, Pi J, Zhang R, Chen R, Leng S, Chen W, Zheng Y, Real-ambient exposure to air pollution exaggerates excessive growth of adipose tissue modulated by Nrf2 signal, The Science of the total environment 730 (2020), 138652. PubMed
Bolton JL, Smith SH, Huff NC, Gilmour MI, Foster WM, Auten RL, Bilbo SD, Prenatal air pollution exposure induces neuroinflammation and predisposes offspring to weight gain in adulthood in a sex-specific manner, FASEB J. (2012). PubMed
Goettems-Fiorin PB, Grochanke BS, Baldissera FG, Dos Santos AB, Homem de Bittencourt PI Jr., Ludwig MS, Rhoden CR, Heck TG, Fine particulate matter potentiates type 2 diabetes development in high-fat diet-treated mice: stress response and extracellular to intracellular HSP70 ratio analysis, J Physiol Biochem 72(4) (2016) 643–656. PubMed
Pardo M, Kuperman Y, Levin L, Rudich A, Haim Y, Schauer JJ, Chen A, Rudich Y, Exposure to air pollution interacts with obesogenic nutrition to induce tissue-specific response patterns, Environmental pollution (Barking, Essex 239 (2018) (1987) 532–543. PubMed
Liu C, Bai Y, Xu X, Sun L, Wang A, Wang TY, Maurya SK, Periasamy M, Morishita M, Harkema J, Ying Z, Sun Q, Rajagopalan S, Exaggerated effects of particulate matter air pollution in genetic type II diabetes mellitus, Part. Fibre Toxicol 11 (2014) 27. PubMed PMC
Tang H, Cheng Z, Li N, Mao S, Ma R, He H, Niu Z, Chen X, Xiang H, The short- and long-term associations of particulate matter with inflammation and blood coagulation markers: A meta-analysis, Environmental pollution (Barking, Essex 267 (2020) (1987), 115630. PubMed PMC
Clementi EA, Talusan A, Vaidyanathan S, Veerappan A, Mikhail M, Ostrofsky D, Crowley G, Kim JS, Kwon S, Nolan A, Metabolic Syndrome and Air Pollution: A Narrative Review of Their Cardiopulmonary Effects, Toxics 7 (1) (2019). PubMed PMC
Wei Y, Zhang JJ, Li Z, Gow A, Chung KF, Hu M, Sun Z, Zeng L, Zhu T, Jia G, Li X, Duarte M, Tang X, Chronic exposure to air pollution particles increases the risk of obesity and metabolic syndrome: findings from a natural experiment in Beijing, FASEB journal : official publication of the Federation of American Societies for Experimental Biology 30 (6) (2016) 2115–2122. PubMed PMC
Liu C, Xu X, Bai Y, Wang TY, Rao X, Wang A, Sun L, Ying Z, Gushchina L, Maiseyeu A, Morishita M, Sun Q, Harkema JR, Rajagopalan S, Air pollution-mediated susceptibility to inflammation and insulin resistance: influence of CCR2 pathways in mice, Environ. Health Perspect 122 (1) (2014) 17–26. PubMed PMC
Xu MX, Ge CX, Qin YT, Gu TT, Lou DS, Li Q, Hu LF, Feng J, Huang P, Tan J, Prolonged PM2.5 exposure elevates risk of oxidative stress-driven nonalcoholic fatty liver disease by triggering increase of dyslipidemia, Free Radic Biol Med 130 (2019) 542–556. PubMed
Liu C, Ying Z, Harkema J, Sun Q, Rajagopalan S, Epidemiological and experimental links between air pollution and type 2 diabetes, Toxicol. Pathol 41 (2) (2013) 361–373. PubMed PMC
Alderete TL, Jones RB, Chen Z, Kim JS, Habre R, Lurmann F, Gilliland FD, Goran MI, Exposure to traffic-related air pollution and the composition of the gut microbiota in overweight and obese adolescents, Environ. Res 161 (2018) 472–478. PubMed PMC
Andrysík Z, Vondráček J, Marvanová S, Ciganek M, Neča J, Pěnčíková K, Mahadevan B, Topinka J, Baird WM, Kozubík A, Machala M, Activation of the aryl hydrocarbon receptor is the major toxic mode of action of an organic extract of a reference urban dust particulate matter mixture: the role of polycyclic aromatic hydrocarbons, Mutat. Res 714 (1–2) (2011) 53–62. PubMed
Metidji A, Omenetti S, Crotta S, Li Y, Nye E, Ross E, Li V, Maradana MR, Schiering C, Stockinger B, The Environmental Sensor AHR Protects from Inflammatory Damage by Maintaining Intestinal Stem Cell Homeostasis and Barrier Integrity, Immunity 49(2) (2018) 353–362 e5. PubMed PMC
Campolim CM, Weissmann L, Ferreira CKO, Zordao OP, Dornellas APS, de Castro G, Zanotto TM, Boico VF, Quaresma PGF, Lima RPA, Donato J Jr., Veras MM, Saldiva PHN, Kim YB, Prada PO, Short-term exposure to air pollution (PM2.5) induces hypothalamic inflammation, and long-term leads to leptin resistance and obesity via Tlr4/Ikbke in mice, Sci. Rep 10 (1) (2020) 10160. PubMed PMC
Li R, Sun Q, Lam SM, Chen R, Zhu J, Gu W, Zhang L, Tian H, Zhang K, Chen LC, Sun Q, Shui G, Liu C, Sex-dependent effects of ambient PM2.5 pollution on insulin sensitivity and hepatic lipid metabolism in mice, Part. Fibre Toxicol 17 (1) (2020) 14. PubMed PMC
Seo MY, Kim SH, Park MJ, Air pollution and childhood obesity, Clin Exp Pediatr 63 (10) (2020) 382–388. PubMed PMC
Alderete TL, Habre R, Toledo-Corral CM, Berhane K, Chen Z, Lurmann FW, Weigensberg MJ, Goran MI, Gilliland FD, Longitudinal Associations Between Ambient Air Pollution With Insulin Sensitivity, beta-Cell Function, and Adiposity in Los Angeles Latino Children, Diabetes 66 (7) (2017) 1789–1796. PubMed PMC
Rundle A, Hoepner L, Hassoun A, Oberfield S, Freyer G, Holmes D, Reyes M, Quinn J, Camann D, Perera F, Whyatt R, Association of childhood obesity with maternal exposure to ambient air polycyclic aromatic hydrocarbons during pregnancy, Am. J. Epidemiol 175 (2012). PubMed PMC
Jerrett M, McConnell R, Wolch J, Chang R, Lam C, Dunton G, Gilliland F, Lurmann F, Islam T, Berhane K, Traffic-related air pollution and obesity formation in children: a longitudinal, multilevel analysis, Environ Health 13 (2014). PubMed PMC
McConnell R, Gilliland FD, Goran M, Allayee H, Hricko A, Mittelman S, Does near-roadway air pollution contribute to childhood obesity? Pediatric obesity (2015). PubMed PMC
Starling AP, Moore BF, Thomas DSK, Peel JL, Zhang W, Adgate JL, Magzamen S, Martenies SE, Allshouse WB, Dabelea D, Prenatal exposure to traffic and ambient air pollution and infant weight and adiposity: The Healthy Start study, Environ. Res 182 (2020), 109130. PubMed PMC
Rundle AG, Gallagher D, Herbstman JB, Goldsmith J, Holmes D, Hassoun A, Oberfield S, Miller RL, Andrews H, Widen EM, Hoepner LA, Perera F, Prenatal exposure to airborne polycyclic aromatic hydrocarbons and childhood growth trajectories from age 5–14 years, Environ. Res 177 (2019) 108595. PubMed PMC
Kim JS, Alderete TL, Chen Z, Lurmann F, Rappaport E, Habre R, Berhane K, Gilliland FD, Longitudinal associations of in utero and early life near-roadway air pollution with trajectories of childhood body mass index, Environmental Health 17 (1) (2018) 64. PubMed PMC
de Bont J, Casas M, Barrera-Gomez J, Cirach M, Rivas I, Valvi D, Alvarez M, Dadvand P, Sunyer J, Vrijheid M, Ambient air pollution and overweight and obesity in school-aged children in Barcelona, Spain, Environ. Int 125 (2019) 58–64. PubMed PMC
Kim JS, Chen Z, Alderete TL, Toledo-Corral C, Lurmann F, Berhane K, Gilliland FD, Associations of air pollution, obesity and cardiometabolic health in young adults: The Meta-AIR study, Environ. Int 133 (Pt A) (2019), 105180. PubMed PMC
Chen Z, Newgard CB, Kim JS, O II, Alderete TL, Thomas DC, Berhane K, Breton C, Chatzi L, Bastain TM, McConnell R, Avol E, Lurmann F, Muehlbauer MJ, Hauser ER, Gilliland FD, Near-roadway air pollution exposure and altered fatty acid oxidation among adolescents and young adults - The interplay with obesity, Environ Int 130 (2019) 104935. PubMed PMC
Guo Q, Xue T, Jia C, Wang B, Cao S, Zhao X, Zhang Q, Zhao L, Zhang JJ, Duan X, Association between exposure to fine particulate matter and obesity in children: A national representative cross-sectional study in China, Environ. Int 143 (2020), 105950. PubMed
Parasin N, Amnuaylojaroen T, Saokaew S, Effect of Air Pollution on Obesity in Children, A Systematic Review and Meta-Analysis, Children (Basel) 8 (5) (2021). PubMed PMC
Frondelius K, Oudin A, Malmqvist E, Traffic-Related Air Pollution and Child BMI-A Study of Prenatal Exposure to Nitrogen Oxides and Body Mass Index in Children at the Age of Four Years in Malmo, Sweden, Int. J. Environ. Res. Public Health 15 (10) (2018). PubMed PMC
Wang Z, Zhao L, Huang Q, Hong A, Yu C, Xiao Q, Zou B, Ji S, Zhang L, Zou K, Ning Y, Zhang J, Jia P, Traffic-related environmental factors and childhood obesity: A systematic review and meta-analysis, Obes. Rev (2020). PubMed PMC
Fioravanti S, Cesaroni G, Badaloni C, Michelozzi P, Forastiere F, Porta D, Traffic-related air pollution and childhood obesity in an Italian birth cohort, Environ. Res 160 (2018). PubMed
Zhang K, Wang H, He W, Chen G, Lu P, Xu R, Yu P, Ye T, Guo S, Li S, Xie Y, Hao Z, Wang H, Guo Y, The association between ambient air pollution and blood lipids: A longitudinal study in Shijiazhuang, China, The Science of the total environment 752 (2021), 141648. PubMed
Zhang N, Wang L, Zhang M, Nazroo J, Air quality and obesity at older ages in China: The role of duration, severity and pollutants, PLoS ONE 14 (12) (2019), e0226279. PubMed PMC
Zhang X, Zhao H, Chow WH, Bixby M, Durand C, Markham C, Zhang K, Population-Based Study of Traffic-Related Air Pollution and Obesity in Mexican Americans, Obesity (Silver Spring) 28 (2) (2020) 412–420. PubMed
Lee S, Park H, Kim S, Lee EK, Lee J, Hong YS, Ha E, Fine particulate matter and incidence of metabolic syndrome in non-CVD patients: A nationwide population-based cohort study, Int. J. Hyg. Environ. Health 222 (3) (2019) 533–540. PubMed
Huang S, Zhang X, Huang J, Lu X, Liu F, Gu D, Ambient air pollution and body weight status in adults: A systematic review and meta-analysis, Environmental pollution (Barking, Essex : 1987) 265(Pt A) (2020) 114999. PubMed
Wolf K, Popp A, Schneider A, Breitner S, Hampel R, Rathmann W, Herder C, Roden M, Koenig W, Meisinger C, Peters A, K.O.-S. Group, Association Between Long-term Exposure to Air Pollution and Biomarkers Related to Insulin Resistance, Subclinical Inflammation, and Adipokines, Diabetes 65 (11) (2016) 3314–3326. PubMed
Mattos Y, Stotz WB, Romero MS, Bravo M, Fillmann G, Castro IB, Butyltin contamination in Northern Chilean coast: Is there a potential risk for consumers? The Science of the total environment 595 (2017) 209–217. PubMed
Lagadic L, Katsiadaki I, Biever R, Guiney PD, Karouna-Renier N, Schwarz T, Meador JP, Tributyltin: Advancing the Science on Assessing Endocrine Disruption with an Unconventional Endocrine-Disrupting Compound, Rev. Environ. Contam. Toxicol 245 (2018) 65–127. PubMed
Golub M, Doherty J, Triphenyltin as a potential human endocrine disruptor, J. Toxicol. Environ. Health B. Crit. Rev 7 (2004) 281–295. PubMed
Fromme H, Mattulat A, Lahrz T, Ruden H, Occurrence of organotin compounds in house dust in Berlin (Germany), Chemosphere 58 (10) (2005) 1377–1383. PubMed
Kannan K, Takahashi S, Fujiwara N, Mizukawa H, Tanabe S, Organotin compounds, including butyltins and octyltins, in house dust from Albany, New York, USA, Arch Environ Contam Toxicol 58 (4) (2010) 901–907. PubMed
Chamorro-García R, Shoucri BM, Willner S, Käch H, Janesick A, Blumberg B, Effects of Perinatal Exposure to Dibutyltin Chloride on Fat and Glucose Metabolism in Mice, and Molecular Mechanisms, in Vitro, Environ. Health Perspect 126 (5) (2018), 057006. PubMed PMC
Milton FA, Lacerda MG, Sinoti SBP, Mesquita PG, Prakasan D, Coelho MS, de Lima CL, Martini AG, Pazzine GT, Borin MF, Amato AA, Neves FAR, Dibutyltin Compounds Effects on PPARγ/RXRα Activity, Adipogenesis, and Inflammation in Mammalians Cells, Frontiers in pharmacology 8 (2017) 507. PubMed PMC
le Maire A, Grimaldi M, Roecklin D, Dagnino S, Vivat-Hannah V, Balaguer P, Bourguet W, Activation of RXR-PPAR heterodimers by organotin environmental endocrine disruptors, EMBO Rep. 10 (4) (2009) 367–373. PubMed PMC
Delfosse V, Huet T, Harrus D, Granell M, Bourguet M, Gardia-Parège C, Chiavarina B, Grimaldi M, Le Mével S, Blanc P, Huang D, Gruszczyk J, Demeneix B, Cianférani S, Fini JB, Balaguer P, Bourguet W, Mechanistic insights into the synergistic activation of the RXR-PXR heterodimer by endocrine disruptor mixtures, PNAS 118 (1) (2021). PubMed PMC
Inadera H, Shimomura A, Environmental chemical tributyltin augments adipocyte differentiation, Toxicol. Lett 159 (3) (2005) 226–234. PubMed
Li X, Ycaza J, Blumberg B, The environmental obesogen tributyltin chloride acts via peroxisome proliferator activated receptor gamma to induce adipogenesis in murine 3T3-L1 preadipocytes, The Journal of Steroid Biochemistry and Molecular Biology 127 (1–2) (2011) 9–15. PubMed PMC
Kirchner S, Kieu T, Chow C, Casey S, Blumberg B, Prenatal exposure to the environmental obesogen tributyltin predisposes multipotent stem cells to become adipocytes, Molecular endocrinology (Baltimore, Md.) 24 (3) (2010) 526–539. PubMed PMC
Yanik SC, Baker AH, Mann KK, Schlezinger JJ, Organotins are potent activators of PPARgamma and adipocyte differentiation in bone marrow multipotent mesenchymal stromal cells, Toxicological sciences : an official journal of the Society of Toxicology 122 (2) (2011) 476–488. PubMed PMC
Stossi F, Dandekar RD, Johnson H, Lavere P, Foulds CE, Mancini MG, Mancini MA, Tributyltin chloride (TBT) induces RXRA down-regulation and lipid accumulation in human liver cells, PLoS ONE 14 (11) (2019) e0224405. PubMed PMC
Flynn EJ, Trent CM, Rawls JF, Ontogeny and nutritional control of adipogenesis in zebrafish (Danio rerio), J. Lipid Res 50 (8) (2009) 1641–1652. PubMed PMC
Imrie D, Sadler KC, White adipose tissue development in zebrafish is regulated by both developmental time and fish size, Dev. Dyn 239 (11) (2010) 3013–3023. PubMed PMC
Tingaud-Sequeira A, Ouadah N, Babin PJ, Zebrafish obesogenic test: a tool for screening molecules that target adiposity, J. Lipid Res 52 (9) (2011) 1765–1772. PubMed PMC
den Broeder MJ, Moester MJB, Kamstra JH, Cenijn PH, Davidoiu V, Kamminga LM, Ariese F, de Boer JF, Legler J, Altered Adipogenesis in Zebrafish Larvae Following High Fat Diet and Chemical Exposure Is Visualised by Stimulated Raman Scattering Microscopy, Int. J. Mol. Sci 18 (4) (2017) 894. PubMed PMC
Zhang J, Sun P, Yang F, Kong T, Zhang R, Tributyltin disrupts feeding and energy metabolism in the goldfish (Carassius auratus), Chemosphere 152 (2016) 221–228. PubMed
Meador JP, Sommers FC, Cooper KA, Yanagida G, Tributyltin and the obesogen metabolic syndrome in a salmonid, Environ. Res 111 (1) (2011) 50–56. PubMed
Chen K, Iwasaki N, Qiu X, Xu H, Takai Y, Tashiro K, Shimasaki Y, Oshima Y, Obesogenic and developmental effects of TBT on the gene expression of juvenile Japanese medaka (Oryzias latipes), Aquatic toxicology (Amsterdam, Netherlands) 237 (2021), 105907. PubMed
Capitão AMF, Lopes-Marques MS, Ishii Y, Ruivo R, Fonseca ESS, Páscoa I, Jorge RP, Barbosa MAG, Hiromori Y, Miyagi T, Nakanishi T, Santos MM, Castro LFC, Evolutionary Exploitation of Vertebrate Peroxisome Proliferator-Activated Receptor γ by Organotins, Environ. Sci. Technol 52 (23) (2018) 13951–13959. PubMed
Ouadah-Boussouf N, Babin PJ, Pharmacological evaluation of the mechanisms involved in increased adiposity in zebrafish triggered by the environmental contaminant tributyltin, Toxicol. Appl. Pharmacol 294 (2016) 32–42. PubMed
Grun F, Endocrine-disrupting organotin compounds are potent inducers of adipogenesis in vertebrates, Mol. Endocrinol 20 (2006) 2141–2155. PubMed
Bo E, Viglietti-Panzica C, Panzica GC, Acute exposure to tributyltin induces c-fos activation in the hypothalamic arcuate nucleus of adult male mice, Neurotoxicology 32 (2) (2011) 277–280. PubMed
Penza M, Jeremic M, Marrazzo E, Maggi A, Ciana P, Rando G, Grigolato PG, Di Lorenzo D, The environmental chemical tributyltin chloride (TBT) shows both estrogenic and adipogenic activities in mice which might depend on the exposure dose, Toxicol. Appl. Pharmacol 255 (1) (2011) 65–75. PubMed
Zuo Z, Chen S, Wu T, Zhang J, Su Y, Chen Y, Wang C, Tributyltin causes obesity and hepatic steatosis in male mice, Environ. Toxicol 26 (1) (2011) 79–85. PubMed
He K, Zhang J, Chen Z, Effect of tributyltin on the food intake and brain neuropeptide expression in rats, Endokrynol Pol 65 (6) (2014) 485–490. PubMed
Bo E, Farinetti A, Marraudino M, Sterchele D, Eva C, Gotti S, Panzica G, Adult exposure to tributyltin affects hypothalamic neuropeptide Y, Y1 receptor distribution, and circulating leptin in mice, Andrology 4 (4) (2016) 723–734. PubMed
Rantakokko P, Main KM, Wohlfart-Veje C, Kiviranta H, Airaksinen R, Vartiainen T, Skakkebaek NE, Toppari J, Virtanen HE, Association of placenta organotin concentrations with growth and ponderal index in 110 newborn boys from Finland during the first 18 months of life: a cohort study, Environ Health 13 (1) (2014) 45. PubMed PMC
Liu B, Sun Y, Lehmler HJ, Bao W, Association between urinary tin concentration and diabetes in nationally representative sample of US adults, J. Diabetes 10 (12) (2018) 977–983. PubMed PMC
Lehmler HJ, Gadogbe M, Liu B, Bao W, Environmental tin exposure in a nationally representative sample of U.S. adults and children: The National Health and Nutrition Examination Survey 2011–2014, Environmental pollution (Barking, Essex 240 (2018) (1987) 599–606. PubMed PMC
National Toxicology Program (NTP), NTP research report on organotin and total tin levels in Danish women of reproductive age., NTP Research Report Series, National Toxicology Program. Research Report 2, Research Triangle Park, NC, 2016. PubMed
Gadogbe M, Bao W, Wels BR, Dai SY, Santillan DA, Santillan MK, Lehmler HJ, Levels of tin and organotin compounds in human urine samples from Iowa, United States, Journal of environmental science and health, Part A, Toxic/hazardous substances & environmental engineering 54 (9) (2019) 884–890. PubMed PMC
Xue J, Zartarian V, Moya J, Freeman N, Beamer P, Black K, Tulve N, Shalat S, A meta-analysis of children’s hand-to-mouth frequency data for estimating nondietary ingestion exposure, Risk analysis : an official publication of the Society for Risk Analysis 27 (2) (2007) 411–420. PubMed
Hoffman K, Butt CM, Chen A, Limkakeng AT, Stapleton HM, High Exposure to Organophosphate Flame Retardants in Infants: Associations with Baby Products, Environ. Sci. Technol 49 (24) (2015) 14554–14559. PubMed
Wong KH, Durrani TS, Exposures to Endocrine Disrupting Chemicals in Consumer Products-A Guide for Pediatricians, Curr Probl Pediatr Adolesc Health Care 47 (5) (2017) 107–118. PubMed
Percy Z, La Guardia MJ, Xu Y, Hale RC, Dietrich KN, Lanphear BP, Yolton K, Vuong AM, Cecil KM, Braun JM, Xie C, Chen A, Concentrations and loadings of organophosphate and replacement brominated flame retardants in house dust from the home study during the PBDE phase-out, Chemosphere 239 (2020), 124701. PubMed PMC
Zota AR, Linderholm L, Park JS, Petreas M, Guo T, Privalsky ML, Zoeller RT, Woodruff TJ, Temporal comparison of PBDEs, OH-PBDEs, PCBs, and OH-PCBs in the serum of second trimester pregnant women recruited from San Francisco General Hospital, California, Environ. Sci. Technol 47 (20) (2013) 11776–11784. PubMed PMC
Adgent MA, Hoffman K, Goldman BD, Sjödin A, Daniels JL, Brominated flame retardants in breast milk and behavioural and cognitive development at 36 months, Paediatr. Perinat. Epidemiol 28 (1) (2014) 48–57. PubMed PMC
Leonetti C, Butt CM, Hoffman K, Hammel SC, Miranda ML, Stapleton HM, Brominated flame retardants in placental tissues: associations with infant sex and thyroid hormone endpoints, Environ Health 15 (1) (2016) 113. PubMed PMC
van der Veen I, de Boer J, Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis, Chemosphere 88 (10) (2012) 1119–1153. PubMed
Blum A, Behl M, Birnbaum LS, Diamond ML, Phillips A, Singla V, Sipes NS, Stapleton HM, Venier M, Organophosphate Ester Flame Retardants: Are They a Regrettable Substitution for Polybrominated Diphenyl Ethers? Environ. Sci. Technol. Lett 6 (11) (2019) 638–649. PubMed PMC
Meeker JD, Cooper EM, Stapleton HM, Hauser R, Urinary metabolites of organophosphate flame retardants: temporal variability and correlations with house dust concentrations, Environ. Health Perspect 121 (5) (2013) 580–585. PubMed PMC
Dishaw LV, Macaulay LJ, Roberts SC, Stapleton HM, Exposures, mechanisms, and impacts of endocrine-active flame retardants, Curr. Opin. Pharmacol 19 (2014) 125–133. PubMed PMC
Hoffman K, Butt CM, Webster TF, Preston EV, Hammel SC, Makey C, Lorenzo AM, Cooper EM, Carignan C, Meeker JD, Hauser R, Soubry A, Murphy SK, Price TM, Hoyo C, Mendelsohn E, Congleton J, Daniels JL, Stapleton HM, Temporal Trends in Exposure to Organophosphate Flame Retardants in the United States, Environ. Sci. Technol. Lett 4 (3) (2017) 112–118. PubMed PMC
Hoffman K, Daniels JL, Stapleton HM, Urinary metabolites of organophosphate flame retardants and their variability in pregnant women, Environ. Int 63 (2014) 169–172. PubMed PMC
Carignan CC, McClean MD, Cooper EM, Watkins DJ, Fraser AJ, Heiger-Bernays W, Stapleton HM, Webster TF, Predictors of tris(1,3-dichloro-2-propyl) phosphate metabolite in the urine of office workers, Environ. Int 55 (2013) 56–61. PubMed PMC
Bastos Sales L, Kamstra JH, Cenijn PH, van Rijt LS, Hamers T, Legler J, Effects of endocrine disrupting chemicals on in vitro global DNA methylation and adipocyte differentiation, Toxicol. In Vitro 27 (6) (2013) 1634–1643. PubMed
Wen Q, Xie X, Zhao C, Ren Q, Zhang X, Wei D, Emanuelli B, Du Y, The brominated flame retardant PBDE 99 promotes adipogenesis via regulating mitotic clonal expansion and PPARγ expression, Sci. Total Environ 670 (2019) 67–77. PubMed
Kamstra JH, Hruba E, Blumberg B, Janesick A, Mandrup S, Hamers T, Legler J, Transcriptional and epigenetic mechanisms underlying enhanced in vitro adipocyte differentiation by the brominated flame retardant BDE-47, Environ. Sci. Technol 48 (7) (2014) 4110–4119. PubMed PMC
Yang C, Wong CM, Wei J, Chung ACK, Cai Z, The brominated flame retardant BDE 47 upregulates purine metabolism and mitochondrial respiration to promote adipocyte differentiation, Sci. Total Environ 644 (2018) 1312–1322. PubMed
Karandrea S, Yin H, Liang X, Heart EA, BDE-47 and BDE-85 stimulate insulin secretion in INS-1 832/13 pancreatic β-cells through the thyroid receptor and Akt, Environ. Toxicol. Pharmacol 56 (May) (2017) 29–34. PubMed
Gao H, Li P, Liu L, Yang K, Xiao B, Zhou G, Tian Z, Luo C, Xia T, Dong L, Zhao Q, Wang A, Zhang S, Perigestational low-dose BDE-47 exposure alters maternal serum metabolome and results in sex-specific weight gain in adult offspring, Chemosphere 233 (2019) 174–182. PubMed
Suvorov A, Battista MC, Takser L, Perinatal exposure to low-dose 2,2’,4,4’-tetrabromodiphenyl ether affects growth in rat offspring: what is the role of IGF-1? Toxicology 260 (1–3) (2009) 126–131. PubMed
Abrha A, Suvorov A, Transcriptomic Analysis of Gonadal Adipose Tissue in Male Mice Exposed Perinatally to 2,2’,4,4’-Tetrabromodiphenyl Ether (BDE-47), Toxics 6 (2) (2018) 21. PubMed PMC
Wang D, Zhu W, Chen L, Yan J, Teng M, Zhou Z, Neonatal triphenyl phosphate and its metabolite diphenyl phosphate exposure induce sex- and dose-dependent metabolic disruptions in adult mice, Environ. Pollut 237 (2018) 10–17. PubMed
Yanagisawa R, Koike E, Win-Shwe TT, Takano H, Decabromodiphenyl ether exacerbates hyperglycemia in diet-induced obese mice, Toxicology 412 (November 2018) (2019) 12–18. PubMed
Zhang Z, Li S, Liu L, Wang L, Xiao X, Sun Z, Wang X, Wang C, Wang M, Li L, Xu Q, Gao W, Wang SL, Environmental exposure to BDE47 is associated with increased diabetes prevalence: Evidence from community-based case-control studies and an animal experiment, Sci. Rep 6 (May) (2016) 1–9. PubMed PMC
Scoville DK, Li CY, Wang D, Dempsey JL, Raftery D, Mani S, Gu H, Cui JY, Polybrominated diphenyl ethers and gut microbiome modulate metabolic syndrome-related aqueous metabolites in mice, Drug Metab. Dispos 47 (8) (2019) 928–940. PubMed PMC
Drage DS, Heffernan AL, Cunningham TK, Aylward LL, Mueller JF, Sathyapalan T, Atkin SL, Serum measures of hexabromocyclododecane (HBCDD) and polyborminated diphenyl ethers (PBDEs) in reproductive-aged women in the United Kingdom, Environ. Res 177 (July) (2019) 108631. PubMed
Cordier S, Anassour-Laouan-Sidi E, Lemire M, Costet N, Lucas M, Ayotte P, Association between exposure to persistent organic pollutants and mercury, and glucose metabolism in two Canadian Indigenous populations, Environ. Res 184 (February) (2020). PubMed
Erkin-Cakmak A, Harley KG, Chevrier J, Bradman A, Kogut K, Huen K, Eskenazi B, In utero and childhood polybrominated diphenyl ether exposures and body mass at age 7 years: the CHAMACOS study, Environ. Health Perspect 123 (6) (2015) 636–642. PubMed PMC
Guo J, Miao W, Wu C, Zhang J, Qi X, Yu H, Chang X, Zhang Y, Zhou Z, Umbilical cord serum PBDE concentrations and child adiposity measures at 7 years, Ecotoxicol. Environ. Saf 203 (July) (2020) 111009. PubMed
Vuong AM, Braun JM, Wang Z, Yolton K, Xie C, Sjodin A, Webster GM, Lanphear BP, Chen A, Exposure to polybrominated diphenyl ethers (PBDEs) during childhood and adiposity measures at age 8years, Environ. Int 123 (2019) 148–155. PubMed PMC
Cano-Sancho G, Smith A, La Merrill MA, Triphenyl phosphate enhances adipogenic differentiation, glucose uptake and lipolysis via endocrine and noradrenergic mechanisms, Toxicol. In Vitro 40 (2017) 280–288. PubMed PMC
Hao Z, Zhang Z, Lu D, Ding B, Shu L, Zhang Q, Wang C, Organophosphorus Flame Retardants Impair Intracellular Lipid Metabolic Function in Human Hepatocellular Cells, Chem. Res. Toxicol 32 (6) (2019) 1250–1258. PubMed
Walley SN, Roepke TA, Perinatal exposure to endocrine disrupting compounds and the control of feeding behavior — An overview, Hormones and Behavior 101 (November 2017) (2018) 22–28. PubMed PMC
Vail GM, Roepke TA, Organophosphate Flame Retardants Excite Arcuate Melanocortin Circuitry and Increase Neuronal Sensitivity to Ghrelin in Adult Mice, Endocrinology 161 (11) (2020) 1–19. PubMed PMC
Kim S, Rabhi N, Blum BC, Hekman R, Wynne K, Emili A, Farmer S, Schlezinger JJ, Triphenyl phosphate is a selective PPARγ modulator that does not induce brite adipogenesis in vitro and in vivo, Arch. Toxicol 94 (9) (2020) 3087–3103. PubMed PMC
Du Z, Zhang Y, Wang G, Peng J, Wang Z, Gao S, TPhP exposure disturbs carbohydrate metabolism, lipid metabolism, and the DNA damage repair system in zebrafish liver, Sci. Rep 6 (February) (2016) 1–10. PubMed PMC
Farhat A, Buick JK, Williams A, Yauk CL, O’Brien JM, Crump D, Williams KL, Chiu S, Kennedy SW, Tris(1,3-dichloro-2-propyl) phosphate perturbs the expression of genes involved in immune response and lipid and steroid metabolism in chicken embryos, Toxicol. Appl. Pharmacol 275 (2) (2014) 104–112. PubMed
Wang C, Le Y, Lu D, Zhao M, Dou X, Zhang Q, Triphenyl phosphate causes a sexually dimorphic metabolism dysfunction associated with disordered adiponectin receptors in pubertal mice, J. Hazard. Mater 388 (2020) 121732. PubMed
Morris PJ, Medina-Cleghorn D, Heslin A, King SM, Orr J, Mulvihill MM, Krauss RM, Nomura DK, Organophosphorus flame retardants inhibit specific liver carboxylesterases and cause serum hypertriglyceridemia, ACS Chem. Biol 9 (5) (2014) 1097–1103. PubMed PMC
Wade MG, Kawata A, Rigden M, Caldwell D, Holloway AC, Toxicity of Flame Retardant Isopropylated Triphenyl Phosphate: Liver, Adrenal, and Metabolic Effects, International journal of toxicology 38 (4) (2019) 279–290. PubMed
Krumm EA, Patel VJ, Tillery TS, Yasrebi A, Shen J, Guo GL, Marco SM, Buckley BT, Roepke TA, Organophosphate Flame-Retardants Alter Adult Mouse Homeostasis and Gene Expression in a Sex-Dependent Manner Potentially Through Interactions With ERα, Toxicol. Sci 162 (1) (2018) 212–224. PubMed PMC
Vail GM, Walley SN, Yasrebi A, Maeng A, Conde K, Roepke TA, The interactions of diet-induced obesity and organophosphate flame retardant exposure on energy homeostasis in adult male and female mice, Journal of Toxicology and Environmental Health, Part A 83 (11–12) (2020) 438–455. PubMed PMC
Yan S, Wang D, Teng M, Meng Z, Yan J, Li R, Jia M, Tian S, Zhou Z, Zhu W, Perinatal exposure to 2-Ethylhexyl Diphenyl Phosphate (EHDPHP) affected the metabolic homeostasis of male mouse offspring: Unexpected findings help to explain dose- and diet-specific phenomena, Journal of hazardous materials 388 (September 2019) (2020) 122034–122034. PubMed
Patisaul HB, Roberts SC, Mabrey N, McCaffrey KA, Gear RB, Braun J, Belcher SM, Stapleton HM, Accumulation and endocrine disrupting effects of the flame retardant mixture Firemaster(R) 550 in rats: an exploratory assessment, J. Biochem. Mol. Toxicol 27 (2) (2013) 124–136. PubMed PMC
Witchey SK, Al Samara L, Horman BM, Stapleton HM, Patisaul HB, Perinatal exposure to FireMaster® 550 (FM550), brominated or organophosphate flame retardants produces sex and compound specific effects on adult Wistar rat socioemotional behavior, Hormones and Behavior 126(September) (2020) 104853–104853. PubMed PMC
Wang D, Yan S, Yan J, Teng M, Meng Z, Li R, Zhou Z, Zhu W, Effects of triphenyl phosphate exposure during fetal development on obesity and metabolic dysfunctions in adult mice: Impaired lipid metabolism and intestinal dysbiosis, Environ. Pollut 246 (2019) 630–638. PubMed
Philbrook NA, Restivo VE, Belanger CL, Winn LM, Gestational triphenyl phosphate exposure in C57Bl/6 mice perturbs expression of insulin-like growth factor signaling genes in maternal and fetal liver, Birth defects research 110 (6) (2018) 483–494. PubMed
Walley SN, Krumm EA, Yasrebi A, Kwiecinski J, Wright V, Baker C, Roepke TA, Maternal organophosphate flame-retardant exposure alters offspring energy and glucose homeostasis in a sexually dimorphic manner in mice, J. Appl. Toxicol (2020) 1–15. PubMed PMC
Luo D, Liu W, Tao Y, Wang L, Yu M, Hu L, Zhou A, Covaci A, Xia W, Li Y, Xu S, Mei S, Prenatal Exposure to Organophosphate Flame Retardants and the Risk of Low Birth Weight: A Nested Case-Control Study in China, Environ. Sci. Technol 54 (6) (2020) 3375–3385. PubMed
Boyle M, Buckley JP, Quirós-Alcalá L, Associations between urinary organophosphate ester metabolites and measures of adiposity among U.S. children and adults: NHANES 2013–2014, Environment International 127(March) (2019) 754–763. PubMed PMC
Kuiper JR, Stapleton HM, Wills-Karp M, Wang X, Burd I, Buckley JP, Predictors and reproducibility of urinary organophosphate ester metabolite concentrations during pregnancy and associations with birth outcomes in an urban population, Environmental health : a global access science source 19 (1) (2020) 55. PubMed PMC
Crawford KA, Hawley N, Calafat AM, Jayatilaka NK, Froehlich RJ, Has P, Gallagher LG, Savitz DA, Braun JM, Werner EF, Romano ME, Maternal urinary concentrations of organophosphate ester metabolites: associations with gestational weight gain, early life anthropometry, and infant eating behaviors among mothers-infant pairs in Rhode Island, Environmental health : a global access science source 19 (1) (2020) 97. PubMed PMC
Pinos H, Carrillo B, Merchán A, Biosca-Brull J, Pérez-Fernández C, Colomina MT, Sánchez-Santed F, Martín-Sánchez F, Collado P, Arias JL, Conejo NM, Relationship between Prenatal or Postnatal Exposure to Pesticides and Obesity: A Systematic Review, Int. J. Environ. Res. Public Health 18 (13) (2021). PubMed PMC
Heindel JJ, Skalla LA, Joubert BR, Dilworth CH, Gray KA, Review of developmental origins of health and disease publications in environmental epidemiology, Reprod. Toxicol 68 (2017) 34–48. PubMed
Ren XM, Kuo Y, Blumberg B, Agrochemicals and obesity, Mol. Cell. Endocrinol 515 (2020), 110926. PubMed PMC
van den Berg H, Global status of DDT and its alternatives for use in vector control to prevent disease, Environ. Health Perspect 117 (11) (2009) 1656–1663. PubMed PMC
Enayati A, Hemingway J, Malaria management: past, present, and future, Annu. Rev. Entomol 55 (2010) 569–591. PubMed
A.f.T.S.a.D.R. (ATSDR), Toxicological profile for DDT, DDE, and DDD, in: D.o.H.a.H. Services; (Ed.) Atlanta, GA, 2002.
Chapados NA, Casimiro C, Robidoux MA, Haman F, Batal M, Blais JM, Imbeault P, Increased proliferative effect of organochlorine compounds on human preadipocytes, Mol. Cell. Biochem 365 (1–2) (2012) 275–278. PubMed
Ibrahim MM, Fjaere E, Lock EJ, Naville D, Amlund H, Meugnier E, Le Magueresse Battistoni B, Froyland L, Madsen L, Jessen N, Lund S, Vidal H, Ruzzin J, Chronic consumption of farmed salmon containing persistent organic pollutants causes insulin resistance and obesity in mice, PLoS ONE 6 (9) (2011), e25170. PubMed PMC
Mangum LH, Howell GE 3rd, Chambers JE, Exposure to p, p’-DDE enhances differentiation of 3T3-L1 preadipocytes in a model of sub-optimal differentiation, Toxicol. Lett 238 (2) (2015) 65–71. PubMed PMC
Kim J, Sun Q, Yue Y, Yoon KS, Whang KY, Marshall Clark J, Park Y, 4,4’-Dichlorodiphenyltrichloroethane (DDT) and 4,4’-dichlorodiphenyldichloroethylene (DDE) promote adipogenesis in 3T3-L1 adipocyte cell culture, Pestic. Biochem. Physiol 131 (2016) 40–45. PubMed
Moreno-Aliaga MJ, Matsumura F, Effects of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)-ethane (p, p’-DDT) on 3T3-L1 and 3T3-F442A adipocyte differentiation, Biochem. Pharmacol 63 (5) (2002) 997–1007. PubMed
Strong AL, Shi Z, Strong MJ, Miller DF, Rusch DB, Buechlein AM, Flemington EK, McLachlan JA, Nephew KP, Burow ME, Bunnell BA, Effects of the endocrine-disrupting chemical DDT on self-renewal and differentiation of human mesenchymal stem cells, Environ. Health Perspect 123 (1) (2015) 42–48. PubMed PMC
Howell G 3rd, Mangum L, Exposure to bioaccumulative organochlorine compounds alters adipogenesis, fatty acid uptake, and adipokine production in NIH3T3-L1 cells, Toxicol. In Vitro 25 (1) (2011) 394–402. PubMed PMC
Taxvig C, Dreisig K, Boberg J, Nellemann C, Schelde AB, Pedersen D, Boergesen M, Mandrup S, Vinggaard AM, Differential effects of environmental chemicals and food contaminants on adipogenesis, biomarker release and PPARgamma activation, Mol. Cell. Endocrinol 361 (1–2) (2012) 106–115. PubMed
La Merrill M, Karey E, Moshier E, Lindtner C, La Frano MR, Newman JW, Buettner C, Perinatal exposure of mice to the pesticide DDT impairs energy expenditure and metabolism in adult female offspring, PLoS ONE 9 (7) (2014), e103337. PubMed PMC
Cano-Sancho G, Salmon AG, La Merrill MA, Association between Exposure to p, p’-DDT and Its Metabolite p, p’-DDE with Obesity: Integrated Systematic Review and Meta-Analysis, Environ. Health Perspect 125 (9) (2017), 096002. PubMed PMC
Mustieles V, Arrebola JP, How polluted is your fat? What the study of adipose tissue can contribute to environmental epidemiology, J Epidemiol Community Health 74 (5) (2020) 401–407. PubMed
Dhooge W, Den Hond E, Koppen G, Bruckers L, Nelen V, Van De Mieroop E, Bilau M, Croes K, Baeyens W, Schoeters G, Van Larebeke N, Internal exposure to pollutants and body size in Flemish adolescents and adults: associations and dose-response relationships, Environ. Int 36 (4) (2010) 330–337. PubMed
Arrebola JP, Ocana-Riola R, Arrebola-Moreno AL, Fernandez-Rodriguez M, Martin-Olmedo P, Fernandez MF, Olea N, Associations of accumulated exposure to persistent organic pollutants with serum lipids and obesity in an adult cohort from Southern Spain, Environmental pollution (Barking, Essex 195 (2014) (1987) 9–15. PubMed
Arrebola JP, Cuellar M, Claure E, Quevedo M, Antelo SR, Mutch E, Ramirez E, Fernandez MF, Olea N, Mercado LA, Concentrations of organochlorine pesticides and polychlorinated biphenyls in human serum and adipose tissue from Bolivia, Environ. Res 112 (2012) 40–47. PubMed
Elobeid MA, Padilla MA, Brock DW, Ruden DM, Allison DB, Endocrine disruptors and obesity: an examination of selected persistent organic pollutants in the NHANES 1999–2002 data, Int. J. Environ. Res. Public Health 7 (7) (2010) 2988–3005. PubMed PMC
Roos V, Ronn M, Salihovic S, Lind L, van Bavel B, Kullberg J, Johansson L, Ahlstrom H, Lind PM, Circulating levels of persistent organic pollutants in relation to visceral and subcutaneous adipose tissue by abdominal MRI, Obesity (Silver Spring) 21 (2) (2013) 413–418. PubMed
Ronn M, Lind L, van Bavel B, Salihovic S, Michaelsson K, Lind PM, Circulating levels of persistent organic pollutants associate in divergent ways to fat mass measured by DXA in humans, Chemosphere 85 (3) (2011) 335–343. PubMed
Ben Hassine S, Hammami B, Ben Ameur W, El Megdiche Y, Barhoumi B, El Abidi R, Driss MR, Concentrations of organochlorine pesticides and polychlorinated biphenyls in human serum and their relation with age, gender, and BMI for the general population of Bizerte, Tunisia, Environ. Sci. Pollut. Res. Int 21 (10) (2014) 6303–6313. PubMed
Zong G, Grandjean P, Wu H, Sun Q, Circulating persistent organic pollutants and body fat distribution: Evidence from NHANES 1999–2004, Obesity (Silver Spring) 23 (9) (2015) 1903–1910. PubMed PMC
Dirinck E, Jorens PG, Covaci A, Geens T, Roosens L, Neels H, Mertens I, Van Gaal L, Obesity and persistent organic pollutants: possible obesogenic effect of organochlorine pesticides and polychlorinated biphenyls, Obesity (Silver Spring) 19 (4) (2011) 709–714. PubMed
Wolff MS, Anderson HA, Britton JA, Rothman N, Pharmacokinetic variability and modern epidemiology–the example of dichlorodiphenyltrichloroethane, body mass index, and birth cohort, Cancer Epidemiol Biomarkers Prev 16 (10) (2007) 1925–1930. PubMed
Lee DH, Lind L, Jacobs DR Jr., Salihovic S, van Bavel B, Lind PM, Associations of persistent organic pollutants with abdominal obesity in the elderly: The Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study, Environ. Int 40 (2012) 170–178. PubMed
Lee DH, Steffes MW, Sjodin A, Jones RS, Needham LL, Jacobs DR Jr., Low dose organochlorine pesticides and polychlorinated biphenyls predict obesity, dyslipidemia, and insulin resistance among people free of diabetes, PLoS ONE 6 (1) (2011), e15977. PubMed PMC
Plouffe L, Bosson-Rieutort D, Madaniyazi L, Iwai-Shimada M, Nakai K, Tatsuta N, Nakayama SF, Verner M-A, Estimated postnatal p, p’-DDT and p, p’-DDE levels and body mass index at 42 months of age in a longitudinal study of Japanese children, Environmental Health 19 (1) (2020) 49. PubMed PMC
Valvi D, Mendez MA, Martinez D, Grimalt JO, Torrent M, Sunyer J, Vrijheid M, Prenatal concentrations of polychlorinated biphenyls, DDE, and DDT and overweight in children: a prospective birth cohort study, Environ. Health Perspect 120 (3) (2012) 451–457. PubMed PMC
Coker E, Chevrier J, Rauch S, Bradman A, Obida M, Crause M, Bornman R, Eskenazi B, Association between prenatal exposure to multiple insecticides and child body weight and body composition in the VHEMBE South African birth cohort, Environ. Int 113 (2018) 122–132. PubMed PMC
Warner M, Rauch S, Coker ES, Harley K, Kogut K, Sjödin A, Eskenazi B, Obesity in relation to serum persistent organic pollutant concentrations in CHAMACOS women, Environmental Epidemiology 2 (4) (2018) e032. PubMed PMC
Heggeseth B, Harley K, Warner M, Jewell N, Eskenazi B, Detecting Associations between Early-Life DDT Exposures and Childhood Growth Patterns: A Novel Statistical Approach, PLoS ONE 10 (6) (2015) e0131443. PubMed PMC
Delvaux I, Van Cauwenberghe J, Den Hond E, Schoeters G, Govarts E, Nelen V, Baeyens W, Van Larebeke N, Sioen I, Prenatal exposure to environmental contaminants and body composition at age 7–9 years, Environ. Res 132 (2014) 24–32. PubMed
Iszatt N, Stigum H, Verner M-A, White RA, Govarts E, Murinova LP, Schoeters G, Trnovec T, Legler J, Pelé F, Botton J, Chevrier C, Wittsiepe J, Ranft U, Vandentorren S, Kasper-Sonnenberg M, Klümper C, Weisglas-Kuperus N, Polder A, Eggesbø M, Obelix, Prenatal and Postnatal Exposure to Persistent Organic Pollutants and Infant Growth: A Pooled Analysis of Seven European Birth Cohorts, Environ. Health Perspect 123 (7) (2015) 730–736. PubMed PMC
Vafeiadi M, Georgiou V, Chalkiadaki G, Rantakokko P, Kiviranta H, Karachaliou M, Fthenou E, Venihaki M, Sarri K, Vassilaki M, Kyrtopoulos SA, Oken E, Kogevinas M, Chatzi L, Association of Prenatal Exposure to Persistent Organic Pollutants with Obesity and Cardiometabolic Traits in Early Childhood: The Rhea Mother-Child Cohort (Crete, Greece), Environ. Health Perspect 123 (10) (2015) 1015–1021. PubMed PMC
La Merrill MA, Krigbaum NY, Cirillo PM, Cohn BA, Association between maternal exposure to the pesticide dichlorodiphenyltrichloroethane (DDT) and risk of obesity in middle age, International journal of obesity (2005) 44(8) (2020) 1723–1732. PubMed PMC
Cirillo PM, La Merrill MA, Krigbaum NY, Cohn BA, Grandmaternal Perinatal Serum DDT in Relation to Granddaughter Early Menarche and Adult Obesity: Three Generations in the Child Health and Development Studies Cohort, Cancer Epidemiol. Biomark. Prev 8 (2021) 1480–1488. PubMed PMC
Cupul-Uicab LA, Klebanoff MA, Brock JW, Longnecker MP, Prenatal Exposure to Persistent Organochlorines and Childhood Obesity in the U.S. Collaborative Perinatal Project, Environ. Health Perspect 121 (9) (2013) 1103–1109. PubMed PMC
Garced S, Torres-Sanchez L, Cebrian ME, Claudio L, Lopez-Carrillo L, Prenatal dichlorodiphenyldichloroethylene (DDE) exposure and child growth during the first year of life, Environ. Res 113 (2012) 58–62. PubMed PMC
Hoyer BB, Ramlau-Hansen CH, Vrijheid M, Valvi D, Pedersen HS, Zviezdai V, Jonsson BA, Lindh CH, Bonde JP, Toft G, Anthropometry in 5- to 9-Year-Old Greenlandic and Ukrainian Children in Relation to Prenatal Exposure to Perfluorinated Alkyl Substances, Environ. Health Perspect 123 (8) (2015) 841–846. PubMed PMC
Lauritzen HB, Larose TL, Oien T, Sandanger TM, Odland JO, van de Bor M, Jacobsen GW, Prenatal exposure to persistent organic pollutants and child overweight/obesity at 5-year follow-up: a prospective cohort study, Environ Health 17 (1) (2018) 9. PubMed PMC
Lee HA, Park SH, Hong YS, Ha EH, Park H, The Effect of Exposure to Persistent Organic Pollutants on Metabolic Health among KOREAN Children during a 1-Year Follow-Up, Int. J. Environ. Res. Public Health 13 (3) (2016). PubMed PMC
Karlsen M, Grandjean P, Weihe P, Steuerwald U, Oulhote Y, Valvi D, Early-life exposures to persistent organic pollutants in relation to overweight in preschool children, Reprod. Toxicol 68 (2017) 145–153. PubMed PMC
Verhulst SL, Nelen V, Hond ED, Koppen G, Beunckens C, Vael C, Schoeters G, Desager K, Intrauterine exposure to environmental pollutants and body mass index during the first 3 years of life, Environ. Health Perspect 117 (1) (2009) 122–126. PubMed PMC
Mendez MA, Garcia-Esteban R, Guxens M, Vrijheid M, Kogevinas M, Goni F, Fochs S, Sunyer J, Prenatal organochlorine compound exposure, rapid weight gain, and overweight in infancy, Environ. Health Perspect 119 (2) (2011) 272–278. PubMed PMC
Jusko TA, Koepsell TD, Baker RJ, Greenfield TA, Willman EJ, Charles MJ, Teplin SW, Checkoway H, Hertz-Picciotto I, Maternal DDT exposures in relation to fetal and 5-year growth, Epidemiology (Cambridge, Mass.) 17 (6) (2006) 692–700. PubMed PMC
Artacho-Cordón F, Fernández-Rodríguez M, Garde C, Salamanca E, Iribarne-Durán LM, Torné P, Expósito J, Papay-Ramírez L, Fernández MF, Olea N, Arrebola JP, Serum and adipose tissue as matrices for assessment of exposure to persistent organic pollutants in breast cancer patients, Environ. Res 142 (2015) 633–643. PubMed
Karmaus W, Zhu X, Maternal concentration of polychlorinated biphenyls and dichlorodiphenyl dichlorethylene and birth weight in Michigan fish eaters: a cohort study, Environ Health 3 (1) (2004) 1. PubMed PMC
Brodie AE, Azarenko VA, Hu CY, Inhibition of increases of transcription factor mRNAs during differentiation of primary rat adipocytes by in vivo 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) treatment, Toxicol. Lett 90 (2–3) (1997) 91–95. PubMed
Cimafranca MA, Hanlon PR, Jefcoate CR, TCDD administration after the pro-adipogenic differentiation stimulus inhibits PPARgamma through a MEK-dependent process but less effectively suppresses adipogenesis, Toxicol. Appl. Pharmacol 196 (1) (2004) 156–168. PubMed
Nagashima H, Matsumura F, 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-induced down-regulation of glucose transporting activities in mouse 3T3-L1 preadipocyte, Journal of environmental science and health, Part. B, Pesticides, food contaminants, and agricultural wastes 37 (1) (2002) 1–14. PubMed
Gadupudi G, Gourronc FA, Ludewig G, Robertson LW, Klingelhutz AJ, PCB126 inhibits adipogenesis of human preadipocytes, Toxicol. In Vitro 29 (1) (2015) 132–141. PubMed PMC
Gourronc FA, Perdew GH, Robertson LW, Klingelhutz AJ, PCB126 blocks the thermogenic beiging response of adipocytes, Environ. Sci. Pollut. Res. Int 27 (9) (2020) 8897–8904. PubMed PMC
Arsenescu V, Arsenescu RI, King V, Swanson H, Cassis LA, Polychlorinated Biphenyl-77 Induces Adipocyte Differentiation and Proinflammatory Adipokines and Promotes Obesity and Atherosclerosis, Environ. Health Perspect 116 (6) (2008) 761–768. PubMed PMC
Zhang L, Hatzakis E, Nichols RG, Hao R, Correll J, Smith PB, Chiaro CR, Perdew GH, Patterson AD, Metabolomics Reveals that Aryl Hydrocarbon Receptor Activation by Environmental Chemicals Induces Systemic Metabolic Dysfunction in Mice, Environ. Sci. Technol 49 (13) (2015) 8067–8077. PubMed PMC
Korecka A, Dona A, Lahiri S, Tett AJ, Al-Asmakh M, Braniste V, D’Arienzo R, Abbaspour A, Reichardt N, Fujii-Kuriyama Y, Rafter J, Narbad A, Holmes E, Nicholson J, Arulampalam V, Pettersson S, Bidirectional communication between the Aryl hydrocarbon Receptor (AhR) and the microbiome tunes host metabolism, npj Biofilms Microbiomes 2 (2016) 16014. PubMed PMC
Brawner KM, Yeramilli VA, Duck LW, Van Der Pol W, Smythies LE, Morrow CD, Elson CO, Martin CA, Depletion of dietary aryl hydrocarbon receptor ligands alters microbiota composition and function, Sci. Rep 9 (1) (2019) 14724. PubMed PMC
Girer NG, Tomlinson CR, Elferink CJ, The Aryl Hydrocarbon Receptor in Energy Balance: The Road from Dioxin-Induced Wasting Syndrome to Combating Obesity with Ahr Ligands, Int. J. Mol. Sci 22 (1) (2020). PubMed PMC
Duval C, Teixeira-Clerc F, Leblanc AF, Touch S, Emond C, Guerre-Millo M, Lotersztajn S, Barouki R, Aggerbeck M, Coumoul X, Chronic Exposure to Low Doses of Dioxin Promotes Liver Fibrosis Development in the C57BL/6J Diet-Induced Obesity Mouse Model, Environ. Health Perspect 125 (3) (2017) 428–436. PubMed PMC
Weber LW, Lebofsky M, Stahl BU, Gorski JR, Muzi G, Rozman K, Reduced activities of key enzymes of gluconeogenesis as possible cause of acute toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in rats, Toxicology 66 (2) (1991) 133–144. PubMed
Rojas IY, Moyer BJ, Ringelberg CS, Wilkins OM, Pooler DB, Ness DB, Coker S, Tosteson TD, Lewis LD, Chamberlin MD, Tomlinson C, Kynurenine-Induced Aryl Hydrocarbon Receptor Signaling in Mice Causes Body Mass Gain, Liver Steatosis, and Hyperglycemia, Obesity (Silver Spring) 29 (2) (2021) 337–349. PubMed PMC
Hoyeck MP, Merhi RC, Blair HL, Spencer CD, Payant MA, Martin Alfonso DI, Zhang M, Matteo G, Chee MJ, Bruin JE, Female mice exposed to low doses of dioxin during pregnancy and lactation have increased susceptibility to diet-induced obesity and diabetes, Molecular metabolism 42 (2020), 101104. PubMed PMC
Brulport A, Le Corre L, Chagnon M-C, Chronic exposure of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces an obesogenic effect in C57BL/6J mice fed a high fat diet, Toxicology 390 (2017) 43–52. PubMed
Merrill ML, Kuruvilla BS, Pomp D, Birnbaum LS, Threadgill DW, Dietary Fat Alters Body Composition, Mammary Development, and Cytochrome P450 Induction after Maternal TCDD Exposure in DBA/2J Mice with Low-Responsive Aryl Hydrocarbon Receptors, Environ. Health Perspect 117 (9) (2009) 1414–1419. PubMed PMC
Eskenazi B, Warner M, Brambilla P, Signorini S, Ames J, Mocarelli P, The Seveso accident: A look at 40 years of health research and beyond, Environ. Int 121 (Pt 1) (2018) 71–84. PubMed PMC
Goodman M, Narayan KM, Flanders D, Chang ET, Adami HO, Boffetta P, Mandel JS, Dose-response relationship between serum 2,3,7,8-tetrachlorodibenzo-p-dioxin and diabetes mellitus: a meta-analysis, Am. J. Epidemiol 181 (6) (2015) 374–384. PubMed PMC
Taylor KW, Novak RF, Anderson HA, Birnbaum LS, Blystone C, Devito M, Jacobs D, Köhrle J, Lee DH, Rylander L, Rignell-Hydbom A, Tornero-Velez R, Turyk ME, Boyles AL, Thayer KA, Lind L, Evaluation of the association between persistent organic pollutants (POPs) and diabetes in epidemiological studies: a national toxicology program workshop review, Environ. Health Perspect 121 (7) (2013) 774–783. PubMed PMC
de Cock M, van de Bor M, Obesogenic effects of endocrine disruptors, what do we know from animal and human studies? Environ. Int 70 (2014) 15–24. PubMed
Tang-Péronard JL, Andersen HR, Jensen TK, Heitmann BL, Endocrine-disrupting chemicals and obesity development in humans: A review, Obes. Rev 12 (8) (2011) 622–636. PubMed
De Silva AO, Armitage JM, Bruton TA, Dassuncao C, Heiger-Bernays W, Hu XC, Kärrman A, Kelly B, Ng C, Robuck A, Sun M, Webster TF, Sunderland EM, PFAS Exposure Pathways for Humans and Wildlife: A Synthesis of Current Knowledge and Key Gaps in Understanding, Environ. Toxicol. Chem 40 (3) (2021) 631–657. PubMed PMC
Blake BE, Fenton SE, Early life exposure to per- and polyfluoroalkyl substances (PFAS) and latent health outcomes: A review including the placenta as a target tissue and possible driver of peri- and postnatal effects, Toxicology 443 (2020) 152565. PubMed PMC
Fromme H, Tittlemier SA, Völkel W, Wilhelm M, Twardella D, Perfluorinated compounds–exposure assessment for the general population in Western countries, Int. J. Hyg. Environ. Health 212 (3) (2009) 239–270. PubMed
Inoue K, Okada F, Ito R, Kato S, Sasaki S, Nakajima S, Uno A, Saijo Y, Sata F, Yoshimura Y, Kishi R, Nakazawa H, Perfluorooctane sulfonate (PFOS) and related perfluorinated compounds in human maternal and cord blood samples: assessment of PFOS exposure in a susceptible population during pregnancy, Environ. Health Perspect 112 (11) (2004) 1204–1207. PubMed PMC
Gützkow KB, Haug LS, Thomsen C, Sabaredzovic A, Becher G, Brunborg G, Placental transfer of perfluorinated compounds is selective–a Norwegian Mother and Child sub-cohort study, Int. J. Hyg. Environ. Health 215 (2) (2012) 216–219. PubMed
Fisher M, Arbuckle TE, Liang CL, LeBlanc A, Gaudreau E, Foster WG, Haines D, Davis K, Fraser WD, Concentrations of persistent organic pollutants in maternal and cord blood from the maternal-infant research on environmental chemicals (MIREC) cohort study, Environ Health 15 (1) (2016) 59. PubMed PMC
Qi W, Clark JM, Timme-Laragy AR, Park Y, Perfluorobutanesulfonic acid (PFBS) potentiates adipogenesis of 3T3-L1 adipocytes, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 120 (2018) 340–345. PubMed PMC
Watkins AM, Wood CR, Lin MT, Abbott BD, The effects of perfluorinated chemicals on adipocyte differentiation in vitro, Mol. Cell. Endocrinol 400 (2015) 90–101. PubMed
Qiu T, Chen M, Sun X, Cao J, Feng C, Li D, Wu W, Jiang L, Yao X, Perfluorooctane sulfonate-induced insulin resistance is mediated by protein kinase B pathway, Biochem. Biophys. Res. Commun 477 (4) (2016) 781–785. PubMed
Sant KE, Annunziato K, Conlin S, Teicher G, Chen P, Venezia O, Downes GB, Park Y, Timme-Laragy AR, Developmental exposures to perfluorooctanesulfonic acid (PFOS) impact embryonic nutrition, pancreatic morphology, and adiposity in the zebrafish, Danio rerio, Environmental pollution (Barking, Essex 275 (2021) (1987), 116644. PubMed PMC
Du Y, Shi X, Liu C, Yu K, Zhou B, Chronic effects of water-borne PFOS exposure on growth, survival and hepatotoxicity in zebrafish: a partial life-cycle test, Chemosphere 74 (5) (2009) 723–729. PubMed
Rosen MB, Abbott BD, Wolf DC, Corton JC, Wood CR, Schmid JE, Das KP, Zehr RD, Blair ET, Lau C, Gene profiling in the livers of wild-type and PPARalpha-null mice exposed to perfluorooctanoic acid, Toxicol. Pathol 36 (4) (2008) 592–607. PubMed
Rosen MB, Schmid JE, Das KP, Wood CR, Zehr RD, Lau C, Gene expression profiling in the liver and lung of perfluorooctane sulfonate-exposed mouse fetuses: comparison to changes induced by exposure to perfluorooctanoic acid, Reprod. Toxicol 27 (3–4) (2009) 278–288. PubMed
Kudo N, Kawashima Y, Fish oil-feeding prevents perfluorooctanoic acid-induced fatty liver in mice, Toxicol. Appl. Pharmacol 145 (2) (1997) 285–293. PubMed
Marques E, Pfohl M, Auclair A, Jamwal R, Barlock BJ, Sammoura FM, Goedken M, Akhlaghi F, Slitt AL, Perfluorooctanesulfonic acid (PFOS) administration shifts the hepatic proteome and augments dietary outcomes related to hepatic steatosis in mice, Toxicol. Appl. Pharmacol 408 (2020), 115250. PubMed PMC
Wang L, Wang Y, Liang Y, Li J, Liu Y, Zhang J, Zhang A, Fu J, Jiang G, PFOS induced lipid metabolism disturbances in BALB/c mice through inhibition of low density lipoproteins excretion, Sci. Rep 4 (2014) 4582. PubMed PMC
Shabalina IG, Kramarova TV, Mattsson CL, Petrovic N, Rahman Qazi M, Csikasz RI, Chang SC, Butenhoff J, DePierre JW, Cannon B, Nedergaard J, The Environmental Pollutants Perfluorooctane Sulfonate and Perfluorooctanoic Acid Upregulate Uncoupling Protein 1 (UCP1) in Brown-Fat Mitochondria Through a UCP1-Dependent Reduction in Food Intake, Toxicological sciences : an official journal of the Society of, Toxicology 146 (2) (2015) 334–343. PubMed
Hines EP, White SS, Stanko JP, Gibbs-Flournoy EA, Lau C, Fenton SE, Phenotypic dichotomy following developmental exposure to perfluorooctanoic acid (PFOA) in female CD-1 mice: Low doses induce elevated serum leptin and insulin, and overweight in mid-life, Mol. Cell. Endocrinol 304 (1–2) (2009) 97–105. PubMed
Tian YP, Zeng XW, Bloom MS, Lin S, Wang SQ, Yim SHL, Yang M, Chu C, Gurram N, Hu LW, Liu KK, Yang BY, Feng D, Liu RQ, Nian M, Dong GH, Isomers of perfluoroalkyl substances and overweight status among Chinese by sex status: Isomers of C8 Health Project in China, Environ. Int 124 (2019) 130–138. PubMed
Chen A, Jandarov R, Zhou L, Calafat AM, Zhang G, Urbina EM, Sarac J, Augustin DH, Caric T, Bockor L, Petranovic MZ, Novokmet N, Missoni S, Rudan P, Deka R, Association of perfluoroalkyl substances exposure with cardiometabolic traits in an island population of the eastern Adriatic coast of Croatia, The Science of the total environment 683 (2019) 29–36. PubMed PMC
Christensen KY, Raymond M, Meiman J, Perfluoroalkyl substances and metabolic syndrome, Int. J. Hyg. Environ. Health 222 (1) (2019) 147–153. PubMed
He X, Liu Y, Xu B, Gu L, Tang W, PFOA is associated with diabetes and metabolic alteration in US men: National Health and Nutrition Examination Survey 2003–2012, The Science of the total environment 625 (2018) 566–574. PubMed
Harris MH, Rifas-Shiman SL, Calafat AM, Ye X, Mora AM, Webster TF, Oken E, Sagiv SK, Predictors of Per- and Polyfluoroalkyl Substance (PFAS) Plasma Concentrations in 6–10 Year Old American Children, Environ. Sci. Technol 51 (9) (2017) 5193–5204. PubMed PMC
Scinicariello F, Buser MC, Abadin HG, Attanasio R, Perfluoroalkyl substances and anthropomorphic measures in children (ages 3–11 years), NHANES 2013–2014, Environ. Res 186 (2020), 109518. PubMed PMC
Averina M, Brox J, Huber S, Furberg AS, Exposure to perfluoroalkyl substances (PFAS) and dyslipidemia, hypertension and obesity in adolescents, Environ Res, The Fit Futures study, 2021, p. 110740. PubMed
Kingsley SL, Walker DI, Calafat AM, Chen A, Papandonatos GD, Xu Y, Jones DP, Lanphear BP, Pennell KD, Braun JM, Metabolomics of childhood exposure to perfluoroalkyl substances: a cross-sectional study, Metabolomics : Official journal of the Metabolomic Society 15 (7) (2019) 95. PubMed PMC
Alderete TL, Jin R, Walker DI, Valvi D, Chen Z, Jones DP, Peng C, Gilliland FD, Berhane K, Conti DV, Goran MI, Chatzi L, Perfluoroalkyl substances, metabolomic profiling, and alterations in glucose homeostasis among overweight and obese Hispanic children: A proof-of-concept analysis, Environ. Int 126 (2019) 445–453. PubMed PMC
Liu G, Dhana K, Furtado JD, Rood J, Zong G, Liang L, Qi L, Bray GA, DeJonge L, Coull B, Grandjean P, Sun Q, Perfluoroalkyl substances and changes in body weight and resting metabolic rate in response to weight-loss diets: A prospective study, PLoS Med. 15 (2) (2018), e1002502. PubMed PMC
Cardenas A, Hauser R, Gold DR, Kleinman KP, Hivert MF, Fleisch AF, Lin PD, Calafat AM, Webster TF, Horton ES, Oken E, Association of Perfluoroalkyl and Polyfluoroalkyl Substances With Adiposity, JAMA network open 1 (4) (2018), e181493. PubMed PMC
Domazet SL, Grontved A, Timmermann AG, Nielsen F, Jensen TK, Longitudinal Associations of Exposure to Perfluoroalkylated Substances in Childhood and Adolescence and Indicators of Adiposity and Glucose Metabolism 6 and 12 Years Later: The European Youth Heart Study, Diabetes Care 39 (10) (2016) 1745–1751. PubMed
Johnson PI, Sutton P, Atchley DS, Koustas E, Lam J, Sen S, Robinson KA, Axelrad DA, Woodruff TJ, The Navigation Guide - evidence-based medicine meets environmental health: systematic review of human evidence for PFOA effects on fetal growth, Environ. Health Perspect 122 (10) (2014) 1028–1039. PubMed PMC
Cao T, Qu A, Li Z, Wang W, Liu R, Wang X, Nie Y, Sun S, Zhang X, Liu X, The relationship between maternal perfluoroalkylated substances exposure and low birth weight of offspring: a systematic review and meta-analysis, Environ. Sci. Pollut. Res. Int (2021). PubMed
Starling AP, Adgate JL, Hamman RF, Kechris K, Calafat AM, Ye X, Dabelea D, Perfluoroalkyl Substances during Pregnancy and Offspring Weight and Adiposity at Birth: Examining Mediation by Maternal Fasting Glucose in the Healthy Start Study, Environ. Health Perspect 125 (6) (2017), 067016. PubMed PMC
Kobayashi S, Azumi K, Goudarzi H, Araki A, Miyashita C, Kobayashi S, Itoh S, Sasaki S, Ishizuka M, Nakazawa H, Ikeno T, Kishi R, Effects of prenatal perfluoroalkyl acid exposure on cord blood IGF2/H19 methylation and ponderal index: The Hokkaido Study, J. Eposure Sci. Environ. Epidemiol 27 (3) (2017) 251–259. PubMed
Mitro SD, Sagiv SK, Rifas-Shiman SL, Calafat AM, Fleisch AF, Jaacks LM, Williams PL, Oken E, James-Todd TM, Per- and Polyfluoroalkyl Substance Exposure, Gestational Weight Gain, and Postpartum Weight Changes in Project Viva, Obesity (Silver Spring) 28 (10) (2020) 1984–1992. PubMed PMC
Romano ME, Gallagher LG, Eliot MN, Calafat AM, Chen A, Yolton K, Lanphear B, Braun JM, Per- and polyfluoroalkyl substance mixtures and gestational weight gain among mothers in the Health Outcomes and Measures of the Environment study, Int. J. Hyg. Environ. Health 231 (2021), 113660. PubMed PMC
Marks KJ, Jeddy Z, Flanders WD, Northstone K, Fraser A, Calafat AM, Kato K, Hartman TJ, Maternal serum concentrations of perfluoroalkyl substances during pregnancy and gestational weight gain: The Avon Longitudinal Study of Parents and Children, Reprod. Toxicol 90 (2019) 8–14. PubMed PMC
Jaacks LM, Boyd Barr D, Sundaram R, Grewal J, Zhang C, Buck Louis GM, Pre-Pregnancy Maternal Exposure to Persistent Organic Pollutants and Gestational Weight Gain: A Prospective Cohort Study, Int. J. Environ. Res. Public Health 13 (9) (2016). PubMed PMC
Ashley-Martin J, Dodds L, Arbuckle TE, Morisset AS, Fisher M, Bouchard MF, Shapiro GD, Ettinger AS, Monnier P, Dallaire R, Taback S, Fraser W, Maternal and Neonatal Levels of Perfluoroalkyl Substances in Relation to Gestational Weight Gain, Int. J. Environ. Res. Public Health 13 (1) (2016). PubMed PMC
Starling AP, Brinton JT, Glueck DH, Shapiro AL, Harrod CS, Lynch AM, Siega-Riz AM, Dabelea D, Associations of maternal BMI and gestational weight gain with neonatal adiposity in the Healthy Start study, Am. J. Clin. Nutr 101 (2) (2015) 302–309. PubMed PMC
Chen Z, Yang T, Walker DI, Thomas DC, Qiu C, Chatzi L, Alderete TL, Kim JS, Conti DV, Breton CV, Liang D, Hauser ER, Jones DP, Gilliland FD, Dysregulated lipid and fatty acid metabolism link perfluoroalkyl substances exposure and impaired glucose metabolism in young adults, Environ. Int 145 (2020), 106091. PubMed PMC
Braun JM, Chen A, Romano ME, Calafat AM, Webster GM, Yolton K, Lanphear BP, Prenatal perfluoroalkyl substance exposure and child adiposity at 8 years of age: The HOME study, Obesity (Silver Spring) 24 (1) (2016) 231–237. PubMed PMC
Liu P, Yang F, Wang Y, Yuan Z, Perfluorooctanoic Acid (PFOA) Exposure in Early Life Increases Risk of Childhood Adiposity: A Meta-Analysis of Prospective Cohort Studies, Int. J. Environ. Res. Public Health 15 (10) (2018). PubMed PMC
Halldorsson TI, Rytter D, Haug LS, Bech BH, Danielsen I, Becher G, Henriksen TB, Olsen SF, Prenatal Exposure to Perfluorooctanoate and Risk of Overweight at 20 Years of Age: A Prospective Cohort Study, Environ. Health Perspect (2012). PubMed PMC
Bloom MS, Commodore S, Ferguson PL, Neelon B, Pearce JL, Baumer A, Newman RB, Grobman W, Tita A, Roberts J, Skupski D, Palomares K, Nageotte M, Kannan K, Zhang C, Wapner R, Vena JE, Hunt KJ, Association between gestational PFAS exposure and Children’s adiposity in a diverse population, Environ. Res 203 (2022), 111820. PubMed PMC
Barry V, Darrow LA, Klein M, Winquist A, Steenland K, Early life perfluorooctanoic acid (PFOA) exposure and overweight and obesity risk in adulthood in a community with elevated exposure, Environ. Res 132 (2014) 62–69. PubMed
Andersen CS, Fei C, Gamborg M, Nohr EA, Sorensen TI, Olsen J, Prenatal exposures to perfluorinated chemicals and anthropometry at 7 years of age, Am. J. Epidemiol 178 (6) (2013) 921–927. PubMed
Mérillon JM, Ramawat KG , Sweeteners: Pharmacology, Biotechnology, and Applications, Switzerland: Springer; (2018).
Kumar NS, Sharma A, Kishore DK, K., Food Safety and Human Health, London: Academic Press; (2019).
Gardiner C, Wylie-Rossett J, Gidding SS, Steffen LM, Johnson RK, Reader D, Lichtenstein AH, Non-nutritive sweeteners: current use and health perspectives: a scientific statement from the American Heart association and the American Diabetes Association, Diabetes Care 35 (2012) 1798–1808. PubMed PMC
Moriconi E, Feraco A, Marzolla V, Infante M, Lombardo M, Fabbri A, Caprio M, ‘Neuroendocrine and Metabolic Effects of Low-Calorie and Non-Calorie Sweeteners, Front. Endocrinol 11 (2020) 444. PubMed PMC
Liauchonak I, Qirri B, Dawoud F, Riat Y, Szewczuk MR, Non-nuitritive sweeteners and their implication on the development of metabolic syndrome, Nutrients 11 (2019) 644. PubMed PMC
Rother KI, Conway EM, Sylvetsky AC, How non-nutritive sweeteners influence hormones and health, Trends Endocrinol. Metab 29 (7) (2018). PubMed
Azad MB, Archibald A, Tomczyk MM, Head A, Cheung KG, Souza RJ, Becker AB, Mandhane PJ, Turvey SE, Moraes TJ, Sears MR, Subbarao P, Dolinsky VW, Nonnutritive sweetener consumption during pregnancy, adiposity, and adipocyte differentiation in offspring: evidence from humans, mice, and cells, International Journal of Obesity 44 (2020) 2137–2148. PubMed
Rosales-Gomez CA, Martinez-Carrillo BE, Resendiz-Albor AA, Ramirez-Duran N, Valdes-Ramos R, Mondragon-Velasquez T, Escoto-Herrera JA, Chronic Consumption of Sweeteners and Its Effect on Glycaemia, Cytokines, Hormones, and Lymphocytes of GALT in CD1 Mice, Biomed Res. Int (2018) 1–15. PubMed PMC
Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, Israeli D, Zmora N, Gilad S, Weinberger A, Kuperman Y, Harmelin A, Kolodkin-Gal I, Shapiro H, Halpern Z, Segal E, Elinav E, Artificial sweeteners induce glucose intolerance by altering the gut microbiota, Nature 514 (7521) (2014) 181–186. PubMed
Kundu N, Domingues CC, Patel J, Aljishi M, Ahmadi N, Fakhri M, Sylvetsky AC, Sen S, Sucralose promotes accumulation of reactive oxygen species (ROS) and adipogenesis in mesenchymal stromal cells, Stem Cell Res. Ther 11 (1) (2020). PubMed PMC
Palkowska-Gozdzik E, Bigos A, Rosolowska-Huszcz D, ‘Type of sweet flavour carrier affects thyroid axis activity in male rats’, Eur. J. Nutr 57 (2018) 773–782. PubMed PMC
Romo-Romo A, Aguilar-Salinas CA, Lopez-Carrasco MG, Guillen-Pineda LE, Brito-Cordova GX, Gomez-Diaz RA, Gomez-Perez FJ, Almeda-Valdes P, ‘Sucralose Consumption over 2 Weeks in Healthy Subjects Does Not Modify Fasting Plasma Concentrations of Appetite-Regulating Hormones: A Randomized Clinical Trial’, Journal of the Academy of, Nutrition and Dietetics 120 (8) (2020) 1295–1304. PubMed
Dalenberg JR, Patel BP, Denis R, Vinke PC, Luquet S, Small DM, Short-Term Consumption of Sucralose with, but Not without, Carbohydrate Impairs Neural and Metabolic Sensitivity to Sugar in Humans, Cell Metab. 31 (2020) 493–502. PubMed PMC
Azeez OH, Alkass SY, Persike DS, Long-Term Saccharin Consumption and Increased Risk of Obesity, Diabetes, Hepatic Dysfunction, and Renal Impairment in Rats, Med. Lith 55 (10) (2019) 1–15. PubMed PMC
Y.J. Zhao X, Chen K, Song L, Sun B, Wei X, Effects of saccharin supplementation on body weight, sweet receptor mRNA expression and appetite signals regulation in post-weanling rats, Peptides 107 (2018) 32–38. PubMed
Reiss R, Chang ET, Richardson RJ, Goodman M, A review of epidemiologic studies of low-level exposures to organophosphorus insecticides in non-occupational populations, Crit. Rev. Toxicol 45 (7) (2015) 531–641. PubMed
Blanco J, Guardia-Escote L, Mulero M, Basaure P, Biosca-Brull J, Cabré M, Colomina MT, Domingo JL, Sánchez DJ, Obesogenic effects of chlorpyrifos and its metabolites during the differentiation of 3T3-L1 preadipocytes, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 137 (2020), 111171. PubMed
Meggs WJ, Brewer KL, Weight gain associated with chronic exposure to chlorpyrifos in rats, J. Med. Toxicol 3 (3) (2007) 89–93. PubMed PMC
Peris-Sampedro F, Cabré M, Basaure P, Reverte I, Domingo JL, Teresa Colomina M, Adulthood dietary exposure to a common pesticide leads to an obese-like phenotype and a diabetic profile in apoE3 mice, Environ. Res 142 (2015) 169–176. PubMed
Guardia-Escote L, Blanco J, Basaure P, Biosca-Brull J, Verkaik-Schakel RN, Cabré M, Peris-Sampedro F, Pérez-Fernández C, Sánchez-Santed F, Plösch T, Domingo JL, Colomina MT, Sex and Exposure to Postnatal Chlorpyrifos Influence the Epigenetics of Feeding-Related Genes in a Transgenic APOE Mouse Model: Long-Term Implications on Body Weight after a High-Fat Diet, Int. J. Environ. Res. Public Health 18 (1) (2020) 184. PubMed PMC
Basaure P, Guardia-Escote L, Biosca-Brull J, Blanco J, Cabré M, Peris-Sampedro F, Sánchez-Santed F, Domingo JL, Colomina MT, Exposure to chlorpyrifos at different ages triggers APOE genotype-specific responses in social behavior, body weight and hypothalamic gene expression, Environ. Res 178 (2019), 108684. PubMed
Fang B, Li JW, Zhang M, Ren FZ, Pang GF, Chronic chlorpyrifos exposure elicits diet-specific effects on metabolism and the gut microbiome in rats, Food Chem. Toxicol 111 (2018) 144–152. PubMed
Liang Y, Zhan J, Liu D, Luo M, Han J, Liu X, Liu C, Cheng Z, Zhou Z, Wang P, Organophosphorus pesticide chlorpyrifos intake promotes obesity and insulin resistance through impacting gut and gut microbiota, Microbiome 7 (1) (2019) 19. PubMed PMC
Zhang Y, Jia Q, Hu C, Han M, Guo Q, Li S, Bo C, Zhang Y, Qi X, Sai L, Peng C, Effects of chlorpyrifos exposure on liver inflammation and intestinal flora structure in mice, Toxicol Res (Camb) 10 (1) (2021) 141–149. PubMed PMC
Samarghandian S, Foadoddin M, Zardast M, Mehrpour O, Sadighara P, Roshanravan B, Farkhondeh T, The impact of age-related sub-chronic exposure to chlorpyrifos on metabolic indexes in male rats, Environ. Sci. Pollut. Res. Int 27 (18) (2020) 22390–22399. PubMed
Lassiter TL, Brimijoin S, Rats gain excess weight after developmental exposure to the organophosphorothionate pesticide, chlorpyrifos, Neurotoxicol. Teratol 30 (2) (2008) 125–130. PubMed
Park Y, Kim Y, Kim J, Yoon KS, Clark J, Lee J, Imidacloprid, a neonicotinoid insecticide, potentiates adipogenesis in 3T3-L1 adipocytes, J. Agric. Food Chem 61 (1) (2013) 255–259. PubMed
Sun Q, Xiao X, Kim Y, Kim D, Yoon KS, Clark JM, Park Y, Imidacloprid Promotes High Fat Diet-Induced Adiposity and Insulin Resistance in Male C57BL/6J Mice, J. Agric. Food. Chem 64 (49) (2016) 9293–9306. PubMed PMC
Sun Q, Qi W, Xiao X, Yang SH, Kim D, Yoon KS, Clark JM, Park Y, Imidacloprid Promotes High Fat Diet-Induced Adiposity in Female C57BL/6J Mice and Enhances Adipogenesis in 3T3-L1 Adipocytes via the AMPKalpha-Mediated Pathway, J. Agric. Food Chem 65 (31) (2017) 6572–6581. PubMed PMC
Ndonwi EN, Atogho-Tiedeu B, Lontchi-Yimagou E, Shinkafi TS, Nanfa D, Balti EV, Katte JC, Mbanya A, Matsha T, Mbanya JC, Shakir A, Sobngwi E, Metabolic effects of exposure to pesticides during gestation in female Wistar rats and their offspring: a risk factor for diabetes? Toxicological research 36 (3) (2020) 249–256. PubMed PMC
Xiao X, Sun Q, Kim Y, Yang SH, Qi W, Kim D, Yoon KS, Clark JM, Park Y, Exposure to permethrin promotes high fat diet-induced weight gain and insulin resistance in male C57BL/6J mice, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 111 (2018) 405–416. PubMed PMC
Xiao X, Qi W, Clark JM, Park Y, Permethrin potentiates adipogenesis via intracellular calcium and endoplasmic reticulum stress-mediated mechanisms in 3T3-L1 adipocytes, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 109 (Pt 1) (2017) 123–129. PubMed
Kim J, Park Y, Yoon KS, Clark JM, Park Y, Permethrin alters adipogenesis in 3T3-L1 adipocytes and causes insulin resistance in C2C12 myotubes, J. Biochem. Mol. Toxicol 28 (9) (2014) 418–424. PubMed
Sargis RM, Neel BA, Brock CO, Lin Y, Hickey AT, Carlton DA, Brady MJ, The novel endocrine disruptor tolylfluanid impairs insulin signaling in primary rodent and human adipocytes through a reduction in insulin receptor substrate-1 levels, BBA 2012 (1822) 952–960. PubMed PMC
Chen Y, McCommis KS, Ferguson D, Hall AM, Harris CA, Finck BN, Inhibition of the Mitochondrial Pyruvate Carrier by Tolylfluanid, Endocrinology 159 (2) (2018) 609–621. PubMed PMC
Regnier SM, Kirkley AG, Ruiz D, Kamau W, Wu Q, Kannan K, Sargis RM, Diet-dependence of metabolic perturbations mediated by the endocrine disruptor tolylfluanid, Endocr Connect 7 (1) (2018) 159–168. PubMed PMC
Ruiz D, Regnier SM, Kirkley AG, Hara M, Haro F, Aldirawi H, Dybala MP, Sargis RM, Developmental exposure to the endocrine disruptor tolylfluanid induces sex-specific later-life metabolic dysfunction, Reprod. Toxicol 89 (2019) 74–82. PubMed PMC
Zinöcker MK, Lindseth IA, The Western Diet-Microbiome-Host Interaction and Its Role in Metabolic Disease, Nutrients 10 (3) (2018) 365. PubMed PMC
Lustig RH, Ultraprocessed Food: Addictive, Toxic, and Ready for Regulation, Nutrients 12 (11) (2020). PubMed PMC
Wong SK, Chin K-Y, Suhaimi FH, Fairus A, Ima-Nirwana S, Animal models of metabolic syndrome: a review, Nutrition & Metabolism 13 (1) (2016) 65. PubMed PMC
Simmons AL, Schlezinger JJ, Corkey BE, What Are We Putting in Our Food That Is Making Us Fat? Food Additives, Contaminants, and Other Putative Contributors to Obesity, Current obesity reports 3 (2) (2014) 273–285. PubMed PMC
Sharma S, Fernandes MF, Fulton S, Adaptations in brain reward circuitry underlie palatable food cravings and anxiety induced by high-fat diet withdrawal, International journal of obesity (2005) 37(9) (2013) 1183–91. PubMed
Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR, Muehlbauer MJ, Ilkayeva O, Semenkovich CF, Funai K, Hayashi DK, Lyle BJ, Martini MC, Ursell LK, Clemente JC, Van Treuren W, Walters WA, Knight R, Newgard CB, Heath AC, Gordon JI, Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in Mice, Science 341 (6150) (2013). PubMed PMC
Stanhope KL, Sugar consumption, metabolic disease and obesity: The state of the controversy, Crit. Rev. Clin. Lab. Sci 53 (1) (2016) 52–67. PubMed PMC
Lustig RH, Fructose: metabolic, hedonic, and societal parallels with ethanol, J. Am. Diet. Assoc 110 (2010) 1307–1321. PubMed
Muriel P, López-Sánchez P, Ramos-Tovar E, Fructose and the Liver, Int. J. Mol. Sci 22 (13) (2021). PubMed PMC
Schwarz JM, Noworolski SM, Erkin-Cakmak A, K. NJ, Wen MJ, Tai VW, Jones GM, Palii SP, Velasco-Alin M, Pan K, Patterson BW, Gugliucci A, Lustig RH, Mulligan K, Impact of dietary fructose restriction on liver fat, de novo lipogenesis, and insulin kinetics in children with obesity, Gastroenterology 153 (2017) 743–752. PubMed PMC
Bowen J, Noakes M, Clifton PM, Appetite hormones and energy intake in obese men after consumption of fructose, glucose and whey protein beverages, International journal of obesity (2005) 31(11) (2007) 1696–703. PubMed
Goran MI, Dumke K, Bouret SG, Kayser B, Walker RW, Blumberg B, The obesogenic effect of high fructose exposure during early development, Nature reviews. Endocrinology 9 (8) (2013) 494–500. PubMed PMC
Calafat AM, Ye X, Wong L-Y, Bishop AM, Needham LL, Urinary concentrations of four parabens in the U.S. population: NHANES 2005-2006, Environmental health perspectives 118(5) (2010) 679–685. PubMed PMC
Hu P, Chen X, Whitener RJ, Boder ET, Jones JO, Porollo A, Chen J, Zhao L, Effects of parabens on adipocyte differentiation, Toxicological sciences : an official journal of the Society of, Toxicology 131 (1) (2013) 56–70. PubMed PMC
Hu P, Overby H, Heal E, Wang S, Chen J, Shen C-L, Zhao L, Methylparaben and butylparaben alter multipotent mesenchymal stem cell fates towards adipocyte lineage, Toxicol. Appl. Pharmacol 329 (2017) 48–57. PubMed PMC
Leppert B, Strunz S, Seiwert B, Schlittenbauer L, Schlichting R, Pfeiffer C, Roder S, Bauer M, Borte M, Stangl GI, Schoneberg T, Schulz A, Karkossa I, Rolle-Kampczyk UE, Thurmann L, von Bergen M, Escher BI, Junge KM, Reemtsma T, Lehmann I, Polte T, Maternal paraben exposure triggers childhood overweight development, Nat. Commun 11 (1) (2020) 561. PubMed PMC
Hu J, Raikhel V, Gopalakrishnan K, Fernandez-Hernandez H, Lambertini L, Manservisi F, Falcioni L, Bua L, Belpoggi F, S LT, Chen J, Effect of postnatal low-dose exposure to environmental chemicals on the gut microbiome in a rodent model, Microbiome 4(1) (2016) 26. PubMed PMC
Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE, Gewirtz AT, Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome, Nature 519 (7541) (2015) 92–96. PubMed PMC
Sun Z, Tang Z, Yang X, Liu QS, Liang Y, Fiedler H, Zhang J, Zhou Q, Jiang G, Perturbation of 3-tert-butyl-4-hydroxyanisole in adipogenesis of male mice with normal and high fat diets, Sci. Total Environ 703 (2020), 135608. PubMed
Sun Z, Yang X, Liu QS, Li C, Zhou Q, Fiedler H, Liao C, Zhang J, Jiang G, Butylated hydroxyanisole isomers induce distinct adipogenesis in 3T3-L1 cells, J. Hazard. Mater 379 (2019), 120794. PubMed
Türküner MS, Özcan F, Monosodium glutamate restricts the adipogenic potential of 3T3 - L1 preadipocytes through mitotic clonal expansion, Cell Biology International 44 (3) (2020) 744–754. PubMed
Olney JW, Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate, Science 164 (3880) (1969) 719–721. PubMed
Chakraborty SP, Patho-physiological and toxicological aspects of monosodium glutamate, Toxicol. Mech. Methods 29 (6) (2019) 389–396. PubMed
Hernández Bautista RJ, Mahmoud AM, Königsberg M, López Díaz Guerrero N.e., Obesity: Pathophysiology, monosodium glutamate-induced model and anti-obesity medicinal plants, Biomed. Pharmacother 111 (2019) 503–516. PubMed
Shannon M, Green B, Willars G, Wilson J, Matthews N, Lamb J, Gillespie A, Connolly L, The endocrine disrupting potential of monosodium glutamate (MSG) on secretion of the glucagon-like peptide-1 (GLP-1) gut hormone and GLP-1 receptor interaction, Toxicol. Lett 265 (2017) 97–105. PubMed
Temkin AM, Bowers RR, Magaletta ME, Holshouser S, Maggi A, Ciana P, Guillette LJ, Bowden JA, Kucklick JR, Baatz JE, Spyropoulos DD, Effects of Crude Oil/Dispersant Mixture and Dispersant Components on PPARγ Activity in Vitro and in Vivo: Identification of Dioctyl Sodium Sulfosuccinate (DOSS; CAS #577-11-7) as a Probable Obesogen, Environ. Health Perspect 124 (1) (2016) 112–119. PubMed PMC
Temkin AM, Bowers RR, Ulmer CZ, Penta K, Bowden JA, Nyland J, Baatz JE, Spyropoulos DD, Increased adiposity, inflammation, metabolic disruption and dyslipidemia in adult male offspring of DOSS treated C57BL/6 dams, Sci. Rep 9 (1) (2019) 1530. PubMed PMC
Stoica A, Katzenellenbogen BS, Martin MB, Activation of estrogen receptor-alpha by the heavy metal cadmium, Mol. Endocrinol 14 (4) (2000) 545–553. PubMed
M.b. v, m.b. z, a. a, c. v, l. a, f. e, m. s,, The endocrine disruptor cadmium: a new player in the pathophysiology of metabolic diseases, J. Endocrinol. Invest 44 (7) (2021) 1363–1377. PubMed
Bimonte VM, Besharat ZM, Antonioni A, Cella V, Lenzi A, Ferretti E, Migliaccio S, The endocrine disruptor cadmium: a new player in the pathophysiology of metabolic diseases, J. Endocrinol. Invest 44 (7) (2021) 1363–1377. PubMed
Fransson MN, Barregard L, Sallsten G, Akerstrom M, Johanson G, Physiologically-Based Toxicokinetic Model for Cadmium Using Markov-Chain Monte Carlo Analysis of Concentrations in Blood, Urine, and Kidney Cortex from Living Kidney Donors, Toxicological Sciences 141 (2) (2014) 365–376. PubMed PMC
Jackson TW, Ryherd GL, Scheibly CM, Sasser AL, Guillette TC, Belcher SM, Gestational Cd Exposure in the CD-1 Mouse Induces Sex-Specific Hepatic Insulin Insensitivity, Obesity, and Metabolic Syndrome in Adult Female Offspring, Toxicological Sciences 178 (2) (2020) 264–280. PubMed PMC
Buha A, Đukić-Cosić D, Ćurčić M, Bulat Z, Antonijević B, Moulis J-M, Goumenou M, Wallace D, Emerging Links between Cadmium Exposure and Insulin Resistance: Human, Animal, and Cell Study Data, Toxics 8 (3) (2020) 63. PubMed PMC
Lee EJ, Moon JY, Yoo BS, Cadmium inhibits the differentiation of 3T3-L1 preadipocyte through the C/EBPα and PPARγ pathways, Drug Chem. Toxicol 35 (2) (2012) 225–231. PubMed
Karakis I, Baumfeld Y, Landau D, Gat R, Shemesh N, Yitshak-Sade M, Tirosh O, Sarov B, Novack L, Exposure to metals and morbidity at eight years follow-up in women of childbearing age, Sci. Rep (2021) 11429. PubMed PMC
Echeverría R, Vrhovnik P, Salcedo-Bellido I, Iribarne-Durán LM, Fiket Ž, Dolenec M, Martin-Olmedo P, Olea N, Arrebola JP, Levels and determinants of adipose tissue cadmium concentrations in an adult cohort from Southern Spain, The Science of the total environment 670 (2019) 1028–1036. PubMed
Kuivenhoven M, Mason K, Arsenic Toxicity, StatPearls, StatPearls Publishing. PubMed
Copyright © 2021, StatPearls Publishing LLC., Treasure Island (FL), 2021.
Hou Y, Xue P, Woods CG, Wang X, Fu J, Yarborough K, Qu W, Zhang Q, Andersen ME, Pi J, Association between arsenic suppression of adipogenesis and induction of CHOP10 via the endoplasmic reticulum stress response, Environ. Health Perspect 121 (2) (2013) 237–243. PubMed PMC
Wang ZX, Jiang CS, Liu L, Wang XH, Jin HJ, Wu Q, Chen Q, The role of Akt on arsenic trioxide suppression of 3T3-L1 preadipocyte differentiation, Cell Res. 15 (5) (2005) 379–386. PubMed
Rodriguez KF, Ungewitter EK, Crespo-Mejias Y, Liu C, Nicol B, Kissling GE, Yao H-H-C, Effects of in Utero Exposure to Arsenic during the Second Half of Gestation on Reproductive End Points and Metabolic Parameters in Female CD-1 Mice, Environ. Health Perspect 124 (3) (2016) 336–343. PubMed PMC
Rodriguez KF, Mellouk N, Ungewitter EK, Nicol B, Liu C, Brown PR, Willson CJ, Yao HHC, In utero exposure to arsenite contributes to metabolic and reproductive dysfunction in male offspring of CD-1 mice, Reprod. Toxicol 95 (2020) 95–103. PubMed PMC
Carmean CM, Kirkley AG, Landeche M, Ye H, Chellan B, Aldirawi H, Roberts AA, Parsons PJ, Sargis RM, Arsenic Exposure Decreases Adiposity During High-Fat Feeding, Obesity (Silver Spring) 28 (5) (2020) 932–941. PubMed PMC
Paul DS, Walton FS, Saunders RJ, Styblo M, Characterization of the impaired glucose homeostasis produced in C57BL/6 mice by chronic exposure to arsenic and high-fat diet, Environ. Health Perspect 119 (8) (2011) 1104–1109. PubMed PMC
Su CT, Lin HC, Choy CS, Huang YK, Huang SR, Hsueh YM, The relationship between obesity, insulin and arsenic methylation capability in Taiwan adolescents, The Science of the total environment 414 (2012) 152–158. PubMed
Eick SM, Steinmaus C, Arsenic and Obesity: a Review of Causation and Interaction, Current environmental health reports 7 (3) (2020) 343–351. PubMed PMC
Kassotis CD, Nagel SC, Stapleton HM, Unconventional oil and gas chemicals and wastewater-impacted water samples promote adipogenesis via PPARγ-dependent and independent mechanisms in 3T3-L1 cells, The Science of the total environment 640–641 (2018) 1601–1610. PubMed PMC
Peng H, Sun J, Alharbi HA, Jones PD, Giesy JP, Wiseman S, Peroxisome Proliferator-Activated Receptor γ is a Sensitive Target for Oil Sands Process-Affected Water: Effects on Adipogenesis and Identification of Ligands, Environ. Sci. Technol 50 (14) (2016) 7816–7824. PubMed
Kassotis CD, Klemp KC, Vu DC, Lin CH, Meng CX, Besch-Williford CL, Pinatti L, Zoeller RT, Drobnis EZ, Balise VD, Isiguzo CJ, Williams MA, Tillitt DE, Nagel SC, Endocrine-Disrupting Activity of Hydraulic Fracturing Chemicals and Adverse Health Outcomes After Prenatal Exposure in Male Mice, Endocrinology 156 (12) (2015) 4458–4473. PubMed
Balise VD, Cornelius-Green JN, Parmenter B, Baxter S, Kassotis CD, Rector RS, Thyfault JP, Paterlini S, Palanza P, Ruiz D, Sargis R, Nagel SC, Developmental Exposure to a Mixture of Unconventional Oil and Gas Chemicals Increased Risk-Taking Behavior, Activity and Energy Expenditure in Aged Female Mice After a Metabolic Challenge, Front Endocrinol (Lausanne) 10 (2019) 460. PubMed PMC
Benbrook CM, Trends in glyphosate herbicide use in the United States and globally, Environ. Sci. Eur 28 (1) (2016) 3. PubMed PMC
Biserni M, Mesnage R, Ferro R, Wozniak E, Xenakis T, Mein CA, Antoniou MN, Quizalofop-p-Ethyl Induces Adipogenesis in 3T3-L1 Adipocytes, Toxicological sciences : an official journal of the Society of, Toxicology 170 (2) (2019) 452–461. PubMed PMC
Martini CN, Gabrielli M, Codesido MM, del Vila MC, Glyphosate-based herbicides with different adjuvants are more potent inhibitors of 3T3-L1 fibroblast proliferation and differentiation to adipocytes than glyphosate alone, Comp. Clin. Pathol 25 (3) (2016) 607–613.
Kubsad D, Nilsson EE, King SE, Sadler-Riggleman I, Beck D, Skinner MK, Assessment of Glyphosate Induced Epigenetic Transgenerational Inheritance of Pathologies and Sperm Epimutations: Generational Toxicology, Sci. Rep 9 (1) (2019) 6372. PubMed PMC
Aggarwal V, Deng X, Tuli A, Goh KS, Diazinon-chemistry and environmental fate: a California perspective, Rev. Environ. Contam. Toxicol 223 (2013) 107–140. PubMed
Smith A, Yu X, Yin L, Diazinon exposure activated transcriptional factors CCAAT-enhancer-binding proteins α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ) and induced adipogenesis in 3T3-L1 preadipocytes, Pestic. Biochem. Physiol 150 (2018) 48–58. PubMed PMC
Kassotis CD, Hoffman K, Stapleton HM, Characterization of Adipogenic Activity of House Dust Extracts and Semi-Volatile Indoor Contaminants in 3T3-L1 Cells, Environ. Sci. Technol 51 (15) (2017) 8735–8745. PubMed PMC
Stapleton HM, Klosterhaus S, Eagle S, Fuh J, Meeker JD, Blum A, Webster TF, Detection of organophosphate flame retardants in furniture foam and U.S. house dust, Environ. Sci. Technol 43 (19) (2009) 7490–7495. PubMed PMC
Kassotis CD, Hoffman K, Völker J, Pu Y, Veiga-Lopez A, Kim SM, Schlezinger JJ, Bovolin P, Cottone E, Saraceni A, Scandiffio R, Atlas E, Leingartner K, Krager S, Tischkau SA, Ermler S, Legler J, Chappell VA, Fenton SE, Mesmar F, Bondesson M, Fernández MF, Stapleton HM, Reproducibility of Adipogenic Responses to Metabolism Disrupting Chemicals in the 3T3-L1 Pre-adipocyte Model System: An Interlaboratory Study, Toxicology 461 (2021), 152900. PubMed PMC
Ying G-G, Williams B, Kookana R, Environmental fate of alkylphenols and alkylphenol ethoxylates—a review, Environ. Int 28 (3) (2002) 215–226. PubMed
Kassotis CD, Kollitz EM, Ferguson PL, Stapleton HM, Nonionic Ethoxylated Surfactants Induce Adipogenesis in 3T3-L1 Cells, Toxicological sciences : an official journal of the Society of, Toxicology 162 (1) (2018) 124–136. PubMed PMC
Kassotis CD, LeFauve MK, Chiang YT, Knuth MM, Schkoda S, Kullman SW, Nonylphenol Polyethoxylates Enhance Adipose Deposition in Developmentally Exposed Zebrafish, Toxics 10 (2) (2022). PubMed PMC
Sun Z, Cao H, Liu QS, Liang Y, Fiedler H, Zhang J, Zhou Q, Jiang G, 4-Hexylphenol influences adipogenic differentiation and hepatic lipid accumulation in vitro, Environ. Pollut 268 (2021), 115635. PubMed
Cao XL, Dufresne G, Clement G, Bélisle S, Robichaud A, Beraldin F, Levels of bisphenol A diglycidyl ether (BADGE) and bisphenol F diglycidyl ether (BFDGE) in canned liquid infant formula products in Canada and dietary intake estimates, J. AOAC Int 92 (6) (2009) 1780–1789. PubMed
Chamorro-García R, Kirchner S, Li X, Janesick A, Casey SC, Chow C, Blumberg B, Bisphenol A Diglycidyl Ether Induces Adipogenic Differentiation of Multipotent Stromal Stem Cells through a Peroxisome Proliferator-Activated Receptor Gamma-Independent Mechanism, Environ. Health Perspect 120 (7) (2012). PubMed PMC
Boucher JG, Boudreau A, Ahmed S, Atlas E, In Vitro Effects of Bisphenol A β-D-Glucuronide (BPA-G) on Adipogenesis in Human and Murine Preadipocytes, Environ. Health Perspect 123 (12) (2015) 1287–1293. PubMed PMC
Ginsberg GL, Balk SJ, Consumer products as sources of chemical exposures to children: case study of triclosan, Curr. Opin. Pediatr 28 (2) (2016) 235–242. PubMed
Liu J, Chen D, Huang Y, Bigambo FM, Chen T, Wang X, Effect of Maternal Triclosan Exposure on Neonatal Birth Weight and Children Triclosan Exposure on Children’s BMI: A Meta-Analysis, Front. Public Health 9 (2021), 648196. PubMed PMC
Lankester J, Patel C, Cullen MR, Ley C, Parsonnet J, Urinary triclosan is associated with elevated body mass index in NHANES, PLoS ONE 8 (11) (2013), e80057. PubMed PMC
Han M, Wang Y, Tang C, Fang H, Yang D, Wu J, Wang H, Chen Y, Jiang Q, Association of triclosan and triclocarban in urine with obesity risk in Chinese school children, Environ. Int 157 (2021), 106846. PubMed
Li X, Pham HT, Janesick AS, Blumberg B, Triflumizole Is an Obesogen in Mice that Acts through Peroxisome Proliferator Activated Receptor Gamma (PPARγ), Environ. Health Perspect 120 (12) (2012) 1720–1726. PubMed PMC
Lim S, Ahn SY, Song IC, Chung MH, Jang HC, Park KS, Lee K-U, Pak YK, Lee HK, Chronic Exposure to the Herbicide, Atrazine, Causes Mitochondrial Dysfunction and Insulin Resistance, PLoS ONE 4 (4) (2009), e5186. PubMed PMC
Fildes A, Charlton J, Rudisill C, Littlejohns P, Prevost AT, Gulliford MC, Probability of an Obese Person Attaining Normal Body Weight: Cohort Study Using Electronic Health Records, Am. J. Public Health 105 (9) (2015) e54–e59. PubMed PMC
Fothergill E, Guo J, Howard L, Kerns JC, Knuth ND, Brychta R, Chen KY, Skarulis MC, Walter M, Walter PJ, Hall KD, Persistent metabolic adaptation 6 years after “The Biggest Loser” competition, Obesity (Silver Spring), 2016, p. n/a-n/a.. PubMed PMC
Brown RE, Sharma AM, Ardern CI, Mirdamadi P, Mirdamadi P, Kuk JL, Secular differences in the association between caloric intake, macronutrient intake, and physical activity with obesity, Obesity research & clinical practice 10 (3) (2015) 243–255. PubMed
Teixeira PJ, CarraÇa EV, Marques MM, Rutter H, Oppert J-M, De Bourdeaudhuij I, Lakerveld J, Brug J, Successful behavior change in obesity interventions in adults: a systematic review of self-regulation mediators, BMC Medicine 13 (2015) 84. PubMed PMC
Newbold RR, Perinatal Exposure to Endocrine Disrupting Chemicals with Estrogenic Activity and the Development of Obesity, in: Lustig RH (Ed.), Obesity Before Birth, Springer US; 2011, pp. 367–382.
Johnson SA, Painter MS, Javurek AB, Ellersieck MR, Wiedmeyer CE, Thyfault JP, Rosenfeld CS, Sex-dependent effects of developmental exposure to bisphenol A and ethinyl estradiol on metabolic parameters and voluntary physical activity, J Dev Orig Health Dis (2015) 1–14. PubMed PMC
Hales CM, Carroll MD, Fryar CD, Ogden CL, Prevalence of Obesity Among Adults and Youth: United States, 2015-2016, NCHS data brief (288) (2017) 1–8. PubMed
Jiang X, Ma H, Wang Y, Liu Y, Early life factors and type 2 diabetes mellitus, J. Diabetes Research 2013 (2013), 485082. PubMed PMC
Myers MG, Leibel RL, Seeley RJ, Schwartz MW, Obesity and Leptin Resistance: Distinguishing Cause from Effect, Trends in endocrinology and metabolism: TEM 21 (11) (2010) 643–651. PubMed PMC
Sargis RM, Heindel JJ, Padmanabhan V, Interventions to Address Environmental Metabolism-Disrupting Chemicals: Changing the Narrative to Empower Action to Restore Metabolic Health, Front. Endocrinol 10 (33) (2019). PubMed PMC
Shaikh S, Jagai JS, Ashley C, Zhou S, Sargis RM, Underutilized and Under Threat: Environmental Policy as a Tool to Address Diabetes Risk, Curr Diab Rep 18 (5) (2018) 25. PubMed PMC
Harley KG, Kogut K, Madrigal DS, Cardenas M, Vera IA, Meza-Alfaro G, She J, Gavin Q, Zahedi R, Bradman A, Eskenazi B, Parra KL, Reducing Phthalate, Paraben, and Phenol Exposure from Personal Care Products in Adolescent Girls: Findings from the HERMOSA Intervention Study, Environ. Health Perspect 124 (10) (2016) 1600–1607. PubMed PMC
Rudel RA, Gray JM, Engel CL, Rawsthorne TW, Dodson RE, Ackerman JM, Rizzo J, Nudelman JL, Brody JG, Food packaging and bisphenol A and bis(2-ethyhexyl) phthalate exposure: findings from a dietary intervention, Environ. Health Perspect 119 (7) (2011) 914–920. PubMed PMC
Sathyanarayana S, Alcedo G, Saelens BE, Zhou C, Dills RL, Yu J, Lanphear B, Unexpected results in a randomized dietary trial to reduce phthalate and bisphenol A exposures, J. Eposure Sci. Environ. Epidemiol 23 (4) (2013) 378–384. PubMed
Lai IK, Dhakal K, Gadupudi GS, Li M, Ludewig G, Robertson LW, Olivier AK, N-acetylcysteine (NAC) diminishes the severity of PCB 126-induced fatty liver in male rodents, Toxicology 302 (1) (2012) 25–33. PubMed PMC
Rezaei M, Khodayar MJ, Seydi E, Soheila A, Parsi IK, Acute, but not Chronic, Exposure to Arsenic Provokes Glucose Intolerance in Rats: Possible Roles for Oxidative Stress and the Adrenergic Pathway, Can J, Diabetes 41 (3) (2017) 273–280. PubMed
Hennig B, Ormsbee L, McClain CJ, Watkins BA, Blumberg B, Bachas LG, Sanderson W, Thompson C, Suk WA, Nutrition Can Modulate the Toxicity of Environmental Pollutants: Implications in Risk Assessment and Human Health, Environ. Health Perspect 120 (6) (2012) 771–774. PubMed PMC
Gupta P, Thompson BL, Wahlang B, Jordan CT, Zach HJ, Hennig B, Dziubla T, The environmental pollutant, polychlorinated biphenyls, and cardiovascular disease: a potential target for antioxidant nanotherapeutics, Drug Deliv, Transl. Res (2017). PubMed PMC
Amjad S, Rahman MS, Pang MG, Role of Antioxidants in Alleviating Bisphenol A Toxicity, Biomolecules 10 (8) (2020). PubMed PMC
Zwierello W, Maruszewska A, Skorka-Majewicz M, Goschorska M, Baranowska-Bosiacka I, Dec K, Styburski D, Nowakowska A, Gutowska I, The influence of polyphenols on metabolic disorders caused by compounds released from plastics - Review, Chemosphere 240 (2019), 124901. PubMed
Guo W, Huen K, Park JS, Petreas M, Crispo SS, Block G, Holland N, Vitamin C intervention may lower the levels of persistent organic pollutants in blood of healthy women - A pilot study, Food Chem. Toxicol 92 (2016) 197–204. PubMed
Mengozzi A, Carli F, Guiducci L, Parolini F, Biancalana E, Gastaldelli A, Solini A, SGLT2 inhibitors and thiazide enhance excretion of DEHP toxic metabolites in subjects with type 2 diabetes: A randomized clinical trial, Environ. Res 192 (2021), 110316. PubMed
Rameshrad M, Razavi BM, Imenshahidi M, Hosseinzadeh H, Vitis vinifera (grape) seed extract and resveratrol alleviate bisphenol-A-induced metabolic syndrome: Biochemical and molecular evidences, Phytother. Res (2019). PubMed
Fadishei M, Ghasemzadeh RM, Imenshahidi M, Mohajeri A, Razavi BM, Hosseinzadeh H, Effects of Nigella sativa oil and thymoquinone against bisphenol A-induced metabolic disorder in rats, Phytother. Res 35 (4) (2020) 2005–2024. PubMed
Elgawish RA, El-Beltagy MA, El-Sayed RM, Gaber AA, Abdelrazek HMA, Protective role of lycopene against metabolic disorders induced by chronic bisphenol A exposure in rats, Environ. Sci. Pollut. Res, Int, 2020. PubMed
Park J, Choi K, Lee J, Jung JM, Lee Y, The Effect of Korean Red Ginseng on Bisphenol A-Induced Fatty Acid Composition and Lipid Metabolism-Related Gene Expression Changes, Am. J. Chin. Med 48 (8) (2020) 1841–1848. PubMed
Sakuma S, Sumida M, Endoh Y, Kurita A, Yamaguchi A, Watanabe T, Kohda T, Tsukiyama Y, Fujimoto Y, Curcumin inhibits adipogenesis induced by benzyl butyl phthalate in 3T3-L1 cells, Toxicol. Appl. Pharmacol 329 (2017) 158–164. PubMed
Choi SI, Lee JS, Lee S, Sim WS, Kim YC, Lee OH, Potentilla rugulosa Nakai Extract Attenuates Bisphenol A-, S- and F-Induced ROS Production and Differentiation of 3T3-L1 Preadipocytes in the Absence of Dexamethasone, Antioxidants, (Basel) 9 (2(2)) (2020) 3041–3050. PubMed PMC
Zhu K, Zhao Y, Yang Y, Bai Y, Zhao T, Icariin Alleviates Bisphenol A Induced Disruption of Intestinal Epithelial Barrier by Maintaining Redox Homeostasis In Vivo and In Vitro, ACS Omega 5 (32) (2020) 20399–20408. PubMed PMC
Baralić K, Živančević K, Jorgovanović D, Javorac D, Radovanović J, Gojković T, Djordjevic AB, Ćurčić M, Mandinić Z, Bulat Z, Antonijević B, Đukić-Cosić D, Probiotic reduced the impact of phthalates and bisphenol A mixture on type 2 diabetes mellitus development: merging bioinformatics with in vivo analysis, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 112325 (2021). PubMed
Vahdati HF, Mehri S, Abnous K, Birner-Gruenberger R, Hosseinzadeh H, Protective effect of crocin on BPA-induced liver toxicity in rats through inhibition of oxidative stress and downregulation of MAPK and MAPKAP signaling pathway and miRNA-122 expression, Food Chem. Toxicol 107 (Pt A) (2017) 395–405. PubMed
Akcay NC, Omeroglu S, Dizakar SOA, Kavutcu M, Turkoglu I, Esmekaya MA, Peker TV, The effects of melatonin on possible damage that will occur on adipocytokines and liver tissue by coadministration of fructose and bisphenol a (BPA), Environ. Sci. Pollut. Res. Int (2020). PubMed
Poormoosavi SM, Najafzadehvarzi H, Behmanesh MA, Amirgholami R, Protective effects of Asparagus officinalis extract against Bisphenol A-induced toxicity in Wistar rats, Toxicol. Rep 5 (2018) 427–433. PubMed PMC
Geng S, Wang S, Zhu W, Xie C, Li X, Wu J, Zhu J, Jiang Y, Yang X, Li Y, Chen Y, Wang X, Meng Y, Zhu M, Wu R, Huang C, Zhong C, Curcumin attenuates BPA-induced insulin resistance in HepG2 cells through suppression of JNK/p38 pathways, Toxicol. Lett 272 (2017) 75–83. PubMed
Huang WC, Liao KY, Hsieh SK, Pan PH, Kuan YH, Liao SL, Chen CJ, Chen WY, Magnesium lithospermate B supplementation improved prenatal Bisphenol A exposure-induced metabolic abnormalities in male offspring, Environ. Toxicol (2021). PubMed
Jandacek RJ, Heubi JE, Buckley DD, Khoury JC, Turner WE, Sjodin A, Olson JR, Shelton C, Helms K, Bailey TD, Carter S, Tso P, Pavuk M, Reduction of the body burden of PCBs and DDE by dietary intervention in a randomized trial, J. Nutr. Biochem 25 (4) (2014) 483–488. PubMed PMC
Iida T, Nakagawa R, Hirakawa H, Matsueda T, Morita K, Hamamura K, Nakayama J, Hori Y, Guo YL, Chang FM, et al., Clinical trial of a combination of rice bran fiber and cholestyramine for promotion of fecal excretion of retained polychlorinated dibenzofuran and polychlorinated biphenyl in Yu-Cheng patients, Fukuoka Igaku Zasshi 86 (5) (1995) 226–233. PubMed
Takasuga T, Senthilkumar K, Takemori H, Ohi E, Tsuji H, Nagayama J, Impact of FEBRA (fermented brown rice with Aspergillus oryzae) intake and concentrations of PCDDs, PCDFs and PCBs in blood of humans from Japan, Chemosphere 57 (10) (2004) 1409–1426. PubMed
Geusau A, Schmaldienst S, Derfler K, Papke O, Abraham K, Severe 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) intoxication: kinetics and trials to enhance elimination in two patients, Arch. Toxicol 76 (5–6) (2002) 316–325. PubMed
Anderson JW, Baird P, Davis RH Jr., Ferreri S, Knudtson M, Koraym A, Waters V, Williams CL, Health benefits of dietary fiber, Nutr. Rev 67 (4) (2009) 188–205. PubMed
Shih MK, Tain YL, Chen YW, Hsu WH, Yeh YT, Chang SKC, Liao JX, Hou CY, Resveratrol Butyrate Esters Inhibit Obesity Caused by Perinatal Exposure to Bisphenol A in Female Offspring Rats, Molecules (Basel, Switzerland) 26 (13) (2021). PubMed PMC
Stahlhut RW, Myers JP, Taylor JA, Nadal A, Dyer JA, vom Saal FS, Experimental BPA Exposure and Glucose-Stimulated Insulin Response in Adult Men and Women, J. Endocr. Soc 2 (10) (2018) 1173–1187. PubMed PMC
Hagobian TA, Bird A, Stanelle S, Williams D, Schaffner A, Phelan S, Pilot Study on the Effect of Orally Administered Bisphenol A on Glucose and Insulin Response in Nonobese Adults, J. Endocr. Soc 3 (3) (2019) 643–654. PubMed PMC
Bae S, Hong YC, Exposure to bisphenol A from drinking canned beverages increases blood pressure: randomized crossover trial, Hypertension 65 (2) (2015) 313–319. PubMed
Kim JH, Cho YH, Hong YC, MicroRNA expression in response to bisphenol A is associated with high blood pressure, Environ. Int 141 (2020), 105791. PubMed
Miller DB, Ghio AJ, Karoly ED, Bell LN, Snow SJ, Madden MC, Soukup J, Cascio WE, Gilmour MI, Kodavanti UP, Ozone Exposure Increases Circulating Stress Hormones and Lipid Metabolites in Humans, Am. J. Respir. Crit. Care Med (2016). PubMed PMC
Li H, Cai J, Chen R, Zhao Z, Ying Z, Wang L, Chen J, Hao K, Kinney PL, Chen H, Kan H, Particulate Matter Exposure and Stress Hormone Levels: A Randomized, Double-Blind, Crossover Trial of Air Purification, Circulation 136 (7) (2017) 618–627. PubMed
Makris KC, Konstantinou C, Andrianou XD, Charisiadis P, Kyriacou A, Gribble MO, Christophi CA, A cluster-randomized crossover trial of organic diet impact on biomarkers of exposure to pesticides and biomarkers of oxidative stress/inflammation in primary school children, PLoS ONE 14 (9) (2019), e0219420. PubMed PMC
Luderer U, Eskenazi B, Hauser R, Korach KS, McHale CM, Moran F, Rieswijk L, Solomon G, Udagawa O, Zhang L, Zlatnik M, Zeise L, Smith MT, Proposed Key Characteristics of Female Reproductive Toxicants as an Approach for Organizing and Evaluating Mechanistic Data in Hazard Assessment, Environ. Health Perspect 127 (7) (2019) 75001. PubMed PMC
Arzuaga X, Smith MT, Gibbons CF, Skakkebæk NE, Yost EE, Beverly BEJ, Hotchkiss AK, Hauser R, Pagani RL, Schrader SM, Zeise L, Prins GS, Proposed Key Characteristics of Male Reproductive Toxicants as an Approach for Organizing and Evaluating Mechanistic Evidence in Human Health Hazard Assessments, Environ. Health Perspect 127 (6) (2019) 65001. PubMed PMC
Braun JM, Gray K, Challenges to studying the health effects of early life environmental chemical exposures on children’s health, PLoS Biol. 15 (12) (2017), e2002800. PubMed PMC
Lind L, Salihovic S, Lampa E, Lind PM, Mixture effects of 30 environmental contaminants on incident metabolic syndrome-A prospective study, Environ. Int 107 (2017) 8–15. PubMed
Taylor KW, Joubert BR, Braun JM, Dilworth C, Gennings C, Hauser R, Heindel JJ, Rider CV, Webster TF, Carlin DJ, Statistical Approaches for Assessing Health Effects of Environmental Chemical Mixtures in Epidemiology: Lessons from an Innovative Workshop, Environ. Health Perspect 124 (12) (2016) A227–A229. PubMed PMC
Braun JM, Gennings C, Hauser R, Webster TF, What Can Epidemiological Studies Tell Us about the Impact of Chemical Mixtures on Human Health? Environ. Health Perspect 124 (1) (2016) A6–A9. PubMed PMC
Lazarevic N, Barnett AG, Sly PD, Knibbs LD, Statistical Methodology in Studies of Prenatal Exposure to Mixtures of Endocrine-Disrupting Chemicals: A Review of Existing Approaches and New Alternatives, Environ. Health Perspect 127 (2) (2019) 26001. PubMed PMC
Santos S, Maitre L, Warembourg C, Agier L, Richiardi L, Basagaña X, Vrijheid M, Applying the exposome concept in birth cohort research: a review of statistical approaches, Eur. J. Epidemiol 35 (3) (2020) 193–204. PubMed PMC
Esteban López M, Göen T, Mol H, Nübler S, Haji-Abbas-Zarrabi K, Koch HM, Kasper-Sonnenberg M, Dvorakova D, Hajslova J, Antignac JP, Vaccher V, Elbers I, Thomsen C, Vorkamp K, Pedraza-Díaz S, Kolossa-Gehring M, Castaño A, The European human biomonitoring platform - Design and implementation of a laboratory quality assurance/quality control (QA/QC) programme for selected priority chemicals, Int. J. Hyg. Environ. Health 234 (2021), 113740. PubMed
Bonde JP, Flachs EM, Rimborg S, Glazer CH, Giwercman A, Ramlau-Hansen CH, Hougaard KS, Høyer BB, Hærvig KK, Petersen SB, Rylander L, Specht IO, Toft G, Bräuner EV, The epidemiologic evidence linking prenatal and postnatal exposure to endocrine disrupting chemicals with male reproductive disorders: a systematic review and meta-analysis, Human reproduction update 23 (1) (2016) 104–125. PubMed PMC
Williams RJ, Tse T, Harlan WR, Zarin DA, Registration of observational studies: is it time? CMAJ 182 (15) (2010) 1638–1642. PubMed PMC
Kanj A, Levine D, Overcoming obesity: Weight-loss drugs are underused, Cleve Clin J Med 87 (10) (2020) 602–604. PubMed
Hill-Briggs F, Adler NE, Berkowitz SA, Chin MH, Gary-Webb TL, Navas-Acien A, Thornton PL, Haire-Joshu D, Social Determinants of Health and Diabetes: A Scientific Review, Diabetes Care 44 (1) (2020) 258–279. PubMed PMC
Alberga AS, Edache IY, Forhan M, Russell-Mayhew S, Weight bias and health care utilization: a scoping review, Prim Health Care Res Dev 20 (2019), e116. PubMed PMC
Calafat AM, Weuve J, Ye X, Jia LT, Hu H, Ringer S, Huttner K, Hauser R, Exposure to bisphenol A and other phenols in neonatal intensive care unit premature infants, Environ. Health Perspect 117 (4) (2009) 639–644. PubMed PMC
Rubin BS, Paranjpe M, DaFonte T, Schaeberle C, Soto AM, Obin M, Greenberg AS, Perinatal BPA exposure alters body weight and composition in a dose specific and sex specific manner: the addition of peripubertal exposure exacerbates adverse effects in female mice, Reprod. Toxicol (2016). PubMed PMC
Lai KP, Chung YT, Li R, Wan HT, Wong CK, Bisphenol A alters gut microbiome: Comparative metagenomics analysis, Environmental pollution (Barking, Essex 218 (2016) (1987) 923–930. PubMed
Zhang Y, Dong T, Hu W, Wang X, Xu B, Lin Z, Hofer T, Stefanoff P, Chen Y, Wang X, Xia Y, Association between exposure to a mixture of phenols, pesticides, and phthalates and obesity: Comparison of three statistical models, Environ. Int 123 (2019) 325–336. PubMed
Philips EM, Santos S, Steegers EAP, Asimakopoulos AG, Kannan K, Trasande L, Jaddoe VWV, Maternal bisphenol and phthalate urine concentrations and weight gain during pregnancy, Environ. Int 135 (2020), 105342. PubMed PMC
Güil-Oumrait N, Valvi D, Garcia-Esteban R, Guxens M, Sunyer J, Torrent M, Casas M, Vrijheid M, Prenatal exposure to persistent organic pollutants and markers of obesity and cardiometabolic risk in Spanish adolescents, Environ. Int 151 (2021), 106469. PubMed PMC