Obesity II: Establishing causal links between chemical exposures and obesity

. 2022 May ; 199 () : 115015. [epub] 20220405

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, přehledy, Research Support, U.S. Gov't, Non-P.H.S., Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35395240

Grantová podpora
R01 ES031139 NIEHS NIH HHS - United States
P30 ES025128 NIEHS NIH HHS - United States
P30 ES030283 NIEHS NIH HHS - United States
P30 DK063720 NIDDK NIH HHS - United States
R15 ES026791 NIEHS NIH HHS - United States
P30 ES005022 NIEHS NIH HHS - United States
P01 ES028942 NIEHS NIH HHS - United States
T32 ES011564 NIEHS NIH HHS - United States
R21 ES031510 NIEHS NIH HHS - United States
R01 ES032189 NIEHS NIH HHS - United States
P20 GM103641 NIGMS NIH HHS - United States
R01 MH123544 NIMH NIH HHS - United States
P30 ES027792 NIEHS NIH HHS - United States
R01 ES028879 NIEHS NIH HHS - United States
R35 ES028373 NIEHS NIH HHS - United States
P42 ES023716 NIEHS NIH HHS - United States
P30 CA023108 NCI NIH HHS - United States
R21 ES030786 NIEHS NIH HHS - United States
P01 AT003961 NCCIH NIH HHS - United States
R01 ES023316 NIEHS NIH HHS - United States
R21 ES030884 NIEHS NIH HHS - United States
R00 ES030405 NIEHS NIH HHS - United States
R15 ES026370 NIEHS NIH HHS - United States
P30 DK020595 NIDDK NIH HHS - United States

Odkazy

PubMed 35395240
PubMed Central PMC9124454
DOI 10.1016/j.bcp.2022.115015
PII: S0006-2952(22)00109-5
Knihovny.cz E-zdroje

Obesity is a multifactorial disease with both genetic and environmental components. The prevailing view is that obesity results from an imbalance between energy intake and expenditure caused by overeating and insufficient exercise. We describe another environmental element that can alter the balance between energy intake and energy expenditure: obesogens. Obesogens are a subset of environmental chemicals that act as endocrine disruptors affecting metabolic endpoints. The obesogen hypothesis posits that exposure to endocrine disruptors and other chemicals can alter the development and function of the adipose tissue, liver, pancreas, gastrointestinal tract, and brain, thus changing the set point for control of metabolism. Obesogens can determine how much food is needed to maintain homeostasis and thereby increase the susceptibility to obesity. The most sensitive time for obesogen action is in utero and early childhood, in part via epigenetic programming that can be transmitted to future generations. This review explores the evidence supporting the obesogen hypothesis and highlights knowledge gaps that have prevented widespread acceptance as a contributor to the obesity pandemic. Critically, the obesogen hypothesis changes the narrative from curing obesity to preventing obesity.

Brody School of Medicine East Carolina University Greenville NC 27834 USA

Center for Environmental Health Sciences Mississippi State University Mississippi State MS 39762 USA

Clinical Epidemiology Department of Medical Sciences Uppsala University Hospital Uppsala University Uppsala Sweden

College of Health and Medicine Australian National University Canberra Australia

College of Pharmacy Texas A and M University College Station TX 77843 USA

Department of Animal Science School of Environmental and Biological Science Rutgers University New Brunswick NJ 08901 USA

Department of Biochemistry University of Paris INSERM T3S 75006 Paris France

Department of Cytokinetics Institute of Biophysics of the Czech Academy of Sciences Brno Czech Republic

Department of Developmental and Cell Biology University of California Irvine Irvine CA 92697 USA

Department of Endocrinology University of Bari Aldo Moro Bari Italy

Department of Environmental and Occupational Health Sciences School of Public Health SUNY Downstate Health Sciences University Brooklyn NY 11203 USA

Department of Epidemiology The University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA

Department of Life and Health Sciences University of Bordeaux INSERM Pessac France

Department of Physiology and Pharmacology Karolinska Institute Solna Sweden

Department of Preventive Medicine and Public Health University of Granada Granada Spain

Department of Systems Biology and Bioinformatics University of Paris INSERM T3S Paris France

Division of Biological Sciences The University of Missouri Columbia MO 65211 USA

Division of Endocrinology Department of Pediatrics University of California San Francisco CA 94143 USA

Division of Endocrinology Diabetes and Metabolism The University of Illinois at Chicago Chicago Il 60612 USA

Division of Gastroenterology Hepatology and Nutrition University of Louisville Louisville KY 40402 USA

Environmental Health and Disease Laboratory University of South Carolina Columbia SC 29208 USA

Health and Environment Research Lab The Azrieli Faculty of Medicine Bar Ilan University Israel

Healthy Environment and Endocrine Disruptor Strategies Commonweal Bolinas CA 92924 USA

Institute of Environmental Health Sciences and Department of Pharmacology Wayne State University Detroit MI 48202 USA

McMaster University Department of Obstetrics and Gynecology Hamilton Ontario CA USA

Norris Cotton Cancer Center Department of Molecular and Systems Biology Geisel School of Medicine at Dartmouth Lebanon NH 03756 USA

Obstetrics and Gynecology University of Cote d'Azur Cote d'Azur France

Occupational and Environmental Health Research Group University of Stirling Stirling Scotland

Occupational and Environmental Medicine Department of Medical Sciences Uppsala University Hospital Uppsala University Uppsala Sweden

Sorbonne Paris Nord University Bobigny INSERM U1124 Paris France

The Institute for Global Food Security School of Biological Sciences Queen's University Belfast Northern Ireland UK

Univ Rennes INSERM EHESP IRSET UMR_5S 1085 35000 Rennes France

Erratum v

PubMed

Zobrazit více v PubMed

Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, Mullany EC, Biryukov S, Abbafati C, Abera SF, Abraham JP, Abu-Rmeileh NM, Achoki T, AlBuhairan FS, Alemu ZA, Alfonso R, Ali MK, Ali R, Guzman NA, Ammar W, Anwari P, Banerjee A, Barquera S, Basu S, Bennett DA, Bhutta Z, Blore J, Cabral N, Nonato IC, Chang JC, Chowdhury R, Courville KJ, Criqui MH, Cundiff DK, Dabhadkar KC, Dandona L, Davis A, Dayama A, Dharmaratne SD, Ding EL, Durrani AM, Esteghamati A, Farzadfar F, Fay DF, Feigin VL, Flaxman A, Forouzanfar MH, Goto A, Green MA, Gupta R, Hafezi-Nejad N, Hankey GJ, Harewood HC, Havmoeller R, Hay S, Hernandez L, Husseini A, Idrisov BT, Ikeda N, Islami F, Jahangir E, Jassal SK, Jee SH, Jeffreys M, Jonas JB, Kabagambe EK, Khalifa SE, Kengne AP, Khader YS, Khang YH, Kim D, Kimokoti RW, Kinge JM, Kokubo Y, Kosen S, Kwan G, Lai T, Leinsalu M, Li Y, Liang X, Liu S, Logroscino G, Lotufo PA, Lu Y, Ma J, Mainoo NK, Mensah GA, Merriman TR, Mokdad AH, Moschandreas J, Naghavi M, Naheed A, Nand D, Narayan KM, Nelson EL, Neuhouser ML, Nisar MI, Ohkubo T, Oti SO, Pedroza A, Prabhakaran D, Roy N, Sampson U, Seo H, Sepanlou SG, Shibuya K, Shiri R, Shiue I, Singh GM, Singh JA, Skirbekk V, Stapelberg NJ, Sturua L, Sykes BL, Tobias M, Tran BX, Trasande L, Toyoshima H, van de Vijver S, Vasankari TJ, Veerman JL, Velasquez-Melendez G, Vlassov VV, Vollset SE, Vos T, Wang C, Wang X, Weiderpass E, Werdecker A, Wright JL, Yang YC, Yatsuya H, Yoon J, Yoon SJ, Zhao Y, Zhou M, Zhu S, Lopez AD, Murray CJ, Gakidou E, Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013, Lancet 384 (9945) (2014) 766–781. PubMed PMC

Schwartz MW, Seeley RJ, Zeltser LM, Drewnowski A, Ravussin E, Redman LM, Leibel RL, Obesity Pathogenesis: An Endocrine Society Scientific Statement, Endocr. Rev 38 (4) (2017) 267–296. PubMed PMC

Blüher M, Obesity: global epidemiology and pathogenesis, Nat. Rev. Endocrinol 15 (5) (2019) 288–298. PubMed

Williams EP, Mesidor M, Winters K, Dubbert PM, Wyatt SB, Overweight and Obesity: Prevalence, Consequences, and Causes of a Growing Public Health Problem, Current obesity reports 4 (3) (2015) 363–370. PubMed

Zoeller RT, Brown TR, Doan LL, Gore AC, Skakkebaek NE, Soto AM, Endocrine-disrupting chemicals and public health protection: a statement of principles from the Endocrine Society, Endocrinology 153 (2012). PubMed PMC

La Merrill MA, Vandenberg LN, Smith MT, Goodson W, Browne P, Patisaul HB, Guyton KZ, Kortenkamp A, Cogliano VJ, Woodruff TJ, Rieswijk L, Sone H, Korach KS, Gore AC, Zeise L, Zoeller RT, Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification, Nat. Rev. Endocrinol 16 (1) (2020) 45–57. PubMed PMC

Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT, Executive Summary to EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals, Endocr. Rev 36 (6) (2015) E1–E150. PubMed PMC

Godfray HCJ, Stephens AEA, Jepson PD, Jobling S, Johnson AC, Matthiessen P, Sumpter JP, Tyler CR, McLean AR, A restatement of the natural science evidence base on the effects of endocrine disrupting chemicals on wildlife, Proceedings. Biological sciences 286 (1897) (2019) 20182416. PubMed PMC

Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR, Lee DH, Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses, Endocr. Rev 33 (2012). PubMed PMC

Villar-Pazos S, Martinez-Pinna J, Castellano-Munoz M, Alonso-Magdalena P, Marroqui L, Quesada I, Gustafsson JA, Nadal A, Molecular mechanisms involved in the non-monotonic effect of bisphenol-a on ca2+ entry in mouse pancreatic beta-cells, Sci. Rep 7 (1) (2017) 11770. PubMed PMC

vom Saal FS, Vandenberg LN, Update on the Health Effects of Bisphenol A: Overwhelming Evidence of Harm, Endocrinology 162 (3) (2021) 1–25. PubMed PMC

Heindel JJ, Blumberg B, Environmental Obesogens: Mechanisms and Controversies, Annu. Rev. Pharmacol. Toxicol 59 (2019) 89–106. PubMed PMC

Heindel JJ, Blumberg B, Cave M, Machtinger R, Mantovani A, Mendez MA, Nadal A, Palanza P, Panzica G, Sargis R, Vandenberg LN, vom Saal FS, Metabolism disrupting chemicals and metabolic disorders, Reprod. Toxicol 68 (2017) 3–33. PubMed PMC

Darbre PD, Endocrine Disruptors and Obesity, Current obesity reports (2017). PubMed PMC

Veiga-Lopez A, Pu Y, Gingrich J, Padmanabhan V, Obesogenic Endocrine Disrupting Chemicals: Identifying Knowledge Gaps, Trends in endocrinology and metabolism: TEM 29 (9) (2018) 607–625. PubMed PMC

Chamorro-Garcia R, Blumberg B, Current Research Approaches and Challenges in the Obesogen Field, Front Endocrinol (Lausanne) 10 (2019) 167. PubMed PMC

Amato AA, Wheeler HB, Blumberg B, Obesity and endocrine-disrupting chemicals, Endocr Connect 10 (2) (2021) R87–R105. PubMed PMC

Egusquiza RJ, Blumberg B, Environmental Obesogens and Their Impact on Susceptibility to Obesity: New Mechanisms and Chemicals, Endocrinology 161 (3) (2020). PubMed PMC

Papalou O, Kandaraki EA, Papadakis G, Diamanti-Kandarakis E, Endocrine Disrupting Chemicals: An Occult Mediator of Metabolic Disease, Front Endocrinol (Lausanne) 10 (2019) 112. PubMed PMC

Heindel JJ, History of the Obesogen Field: Looking Back to Look Forward, Front. Endocrinol 10 (14) (2019). PubMed PMC

Hanson MA, Gluckman PD, Early Developmental Conditioning of Later Health and Disease, Physiology or Pathophysiology? (2014). PubMed PMC

Heindel JJ, Balbus J, Birnbaum L, Brune-Drisse MN, Grandjean P, Gray K, Landrigan PJ, Sly PD, Suk W, Cory Slechta D, Thompson C, Hanson M, Developmental Origins of Health and Disease: Integrating Environmental Influences, Endocrinology 156(10) (2015) 3416–21. PubMed PMC

Heindel JJ, Role of exposure to environmental chemicals in the developmental basis of reproductive disease and dysfunction, Semin Reprod Med 24 (3) (2006) 168–177. PubMed

Stel J, Legler J, The Role of Epigenetics in the Latent Effects of Early Life Exposure to Obesogenic Endocrine Disrupting Chemicals, Endocrinology (2015) en20151434. PubMed PMC

Martinez-Jimenez CP, Sandoval J, Epigenetic crosstalk: a molecular language in human metabolic disorders, Frontiers in bioscience (Scholar edition) 7 (2015) 46–57. PubMed

Statello L, Guo CJ, Chen LL, Huarte M, Gene regulation by long non-coding RNAs and its biological functions, Nat. Rev. Mol. Cell Biol 22 (2) (2021) 96–118. PubMed PMC

Romano G, Veneziano D, Nigita G, Nana-Sinkam SP, RNA Methylation in ncRNA: Classes, Detection, and Molecular Associations, Front Genet 9 (2018) 243. PubMed PMC

Sonkar R, Powell CA, Choudhury M, Benzyl butyl phthalate induces epigenetic stress to enhance adipogenesis in mesenchymal stem cells, Mol. Cell. Endocrinol 431 (2016) 109–122. PubMed

Zhang J, Choudhury M, Benzyl Butyl Phthalate Induced Early lncRNA H19 Regulation in C3H10T1/2 Stem Cell Line, Chem. Res. Toxicol 34 (1) (2021) 54–62. PubMed

Verbanck M, Canouil M, Leloire A, Dhennin V, Coumoul X, Yengo L, Froguel P, Poulain-Godefroy O, Low-dose exposure to bisphenols A, F and S of human primary adipocyte impacts coding and non-coding RNA profiles, PLoS ONE 12 (6) (2017), e0179583. PubMed PMC

Susiarjo M, Xin F, Bansal A, Stefaniak M, Li C, Simmons RA, Bartolomei MS, Bisphenol A exposure disrupts metabolic health across multiple generations in the mouse, Endocrinology (2015) en20142027. PubMed PMC

Joh RI, Palmieri CM, Hill IT, Motamedi M, Regulation of histone methylation by noncoding RNAs, BBA 1839 (12) (2014) 1385–1394. PubMed PMC

Squillaro T, Peluso G, Galderisi U, Di Bernardo G, Long non-coding RNAs in regulation of adipogenesis and adipose tissue function, Elife 9 (2020). PubMed PMC

Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY, Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs, Cell 129 (7) (2007) 1311–1323. PubMed PMC

Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS, Specific expression of long noncoding RNAs in the mouse brain, PNAS 105 (2) (2008) 716–721. PubMed PMC

Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A, Lawrence JB, An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles, Mol. Cell 33 (6) (2009) 717–726. PubMed PMC

Chen G, Wang Z, Wang D, Qiu C, Liu M, Chen X, Zhang Q, Yan G, Cui Q, LncRNADisease: a database for long-non-coding RNA-associated diseases, Nucleic acids research 41(Database issue) (2013) D983–6. PubMed PMC

Sun L, Goff LA, Trapnell C, Alexander R, Lo KA, Hacisuleyman E, Sauvageau M, Tazon-Vega B, Kelley DR, Hendrickson DG, Yuan B, Kellis M, Lodish HF, Rinn JL, Long noncoding RNAs regulate adipogenesis, PNAS 110 (9) (2013) 3387–3392. PubMed PMC

Zhao XY, Li S, Wang GX, Yu Q, Lin JD, A long noncoding RNA transcriptional regulatory circuit drives thermogenic adipocyte differentiation, Mol. Cell 55 (3) (2014) 372–382. PubMed PMC

Wijesinghe SN, Nicholson T, Tsintzas K, Jones SW, Involvements of long noncoding RNAs in obesity-associated inflammatory diseases, Obes. Rev 22 (4) (2021), e13156. PubMed

Woeller CF, Flores E, Pollock SJ, Phipps RP, Editor’s Highlight: Thy1 (CD90) Expression is Reduced by the Environmental Chemical Tetrabromobisphenol-A to Promote Adipogenesis Through Induction of microRNA-103, Toxicological sciences : an official journal of the Society of Toxicology 157 (2) (2017) 305–319. PubMed PMC

Skinner MK, Environmental Epigenetics and a Unified Theory of the Molecular Aspects of Evolution: A Neo-Lamarckian Concept that Facilitates Neo-Darwinian Evolution, Genome biology and evolution 7 (5) (2015) 1296–1302. PubMed PMC

Chamorro-Garcia R, Sahu M, Abbey RJ, Laude J, Pham N, Blumberg B, Transgenerational inheritance of increased fat depot size, stem cell reprogramming, and hepatic steatosis elicited by prenatal exposure to the obesogen tributyltin in mice, Environ. Health Perspect 121 (3) (2013) 359–366. PubMed PMC

Chamorro-Garcia R, Diaz-Castillo C, Shoucri BM, Kach H, Leavitt R, Shioda T, Blumberg B, Ancestral perinatal obesogen exposure results in a transgenerational thrifty phenotype in mice, Nat. Commun 8 (1) (2017) 2012. PubMed PMC

Chamorro-García R, Poupin N, Tremblay-Franco M, Canlet C, Egusquiza R, Gautier R, Jouanin I, Shoucri BM, Blumberg B, Zalko D, Transgenerational metabolomic fingerprints in mice ancestrally exposed to the obesogen TBT, Environ. Int 157 (2021), 106822. PubMed PMC

Skinner MK, Manikkam M, Tracey R, Guerrero-Bosagna C, Haque M, Nilsson EE, Ancestral dichlorodiphenyltrichloroethane (DDT) exposure promotes epigenetic transgenerational inheritance of obesity, BMC Med 11 (2013) 228. PubMed PMC

Tracey R, Manikkam M, Guerrero-Bosagna C, Skinner MK, Hydrocarbons (jet fuel JP-8) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations, Reprod. Toxicol 36 (2013) 104–116. PubMed PMC

Manikkam M, Tracey R, Guerrero-Bosagna C, Skinner MK, Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations, PLoS ONE 8 (1) (2013), e55387. PubMed PMC

King SE, Nilsson E, Beck D, Skinner MK, Adipocyte epigenetic alterations and potential therapeutic targets in transgenerationally inherited lean and obese phenotypes following ancestral exposures, Adipocyte 8 (1) (2019) 362–378. PubMed PMC

Xu Y, Wang W, Chen M, Zhou J, Huang X, Tao S, Pan B, Li Z, Xie X, Li W, Kan H, Ying Z, Developmental programming of obesity by maternal exposure to concentrated ambient PM(2.5) is maternally transmitted into the third generation in a mouse model, Part. Fibre Toxicol 16 (1) (2019) 27. PubMed PMC

Bansal A, Li C, Xin F, Duemler A, Li W, Rashid C, Bartolomei MS, Simmons RA, Transgenerational effects of maternal bisphenol: a exposure on offspring metabolic health, Journal of developmental origins of health and disease 10 (2) (2019) 164–175. PubMed PMC

Rechavi O, Houri-Ze’evi L, Anava S, Goh WSS, Kerk SY, Hannon GJ, Hobert O, Starvation-induced transgenerational inheritance of small RNAs in C. elegans, Cell 158 (2) (2014) 277–287. PubMed PMC

Tauffenberger A, Parker JA, Heritable transmission of stress resistance by high dietary glucose in Caenorhabditis elegans, PLoS Genet. 10 (5) (2014), e1004346. PubMed PMC

Zhou X, Li J, Zhang X, Zhang C, Bai J, Zhao Y, Zhu Y, Zhang J, Xiao X, Bisphenol S promotes fat storage in multiple generations of Caenorhabditis elegans in a daf-16/nhr-49 dependent manner, Comp. Biochem. Physiol. C: Toxicol. Pharmacol 109175 (2021). PubMed

Chen MY, Liu HP, Cheng J, Chiang SY, Liao WP, Lin WY, Transgenerational impact of DEHP on body weight of Drosophila, Chemosphere 221 (2019) 493–499. PubMed

Camacho J, Truong L, Kurt Z, Chen YW, Morselli M, Gutierrez G, Pellegrini M, Yang X, Allard P, The Memory of Environmental Chemical Exposure in C. elegans Is Dependent on the Jumonji Demethylases jmjd-2 and jmjd-3/utx-1, Cell reports 23 (8) (2018) 2392–2404. PubMed PMC

Ben Maamar M, Nilsson E, Sadler-Riggleman I, Beck D, McCarrey JR, Skinner MK, Developmental origins of transgenerational sperm DNA methylation epimutations following ancestral DDT exposure, Dev. Biol 445 (2) (2018) 280–293. PubMed PMC

Skinner MK, Ben Maamar M, Sadler-Riggleman I, Beck D, Nilsson E, McBirney M, Klukovich R, Xie Y, Tang C, Yan W, Alterations in sperm DNA methylation, non-coding RNA and histone retention associate with DDT-induced epigenetic transgenerational inheritance of disease, Epigenetics Chromatin 11 (1) (2018) 8. PubMed PMC

Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li R, Bock C, Li C, Gu H, Zamore PD, Meissner A, Weng Z, Hofmann HA, Friedman N, Rando OJ, Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals, Cell 143 (7) (2010) 1084–1096. PubMed PMC

Diaz-Castillo C, Chamorro-Garcia R, Shioda T, Blumberg B, Transgenerational Self-Reconstruction of Disrupted Chromatin Organization After Exposure To An Environmental Stressor in Mice, Sci. Rep 9 (1) (2019) 13057. PubMed PMC

Shao X, Wang M, Wei X, Deng S, Fu N, Peng Q, Jiang Y, Ye L, Xie J, Lin Y, Peroxisome Proliferator-Activated Receptor-γ: Master Regulator of Adipogenesis and Obesity, Curr. Stem Cell Res. Ther 11 (3) (2016) 282–289. PubMed

Gao P, Wang L, Yang N, Wen J, Zhao M, Su G, Zhang J, Weng D, Peroxisome proliferator-activated receptor gamma (PPARγ) activation and metabolism disturbance induced by bisphenol A and its replacement analog bisphenol S using in vitro macrophages and in vivo mouse models, Environ. Int 134 (2020), 105328. PubMed

Hoepner LA, Bisphenol a: A narrative review of prenatal exposure effects on adipogenesis and childhood obesity via peroxisome proliferator-activated receptor gamma, Environ. Res 173 (2019) 54–68. PubMed PMC

Wen Q, Xie X, Zhao C, Ren Q, Zhang X, Wei D, Emanuelli B, Du Y, The brominated flame retardant PBDE 99 promotes adipogenesis via regulating mitotic clonal expansion and PPARgamma expression, The Science of the total environment 670 (2019) 67–77. PubMed

Ma Y, Yang J, Wan Y, Peng Y, Ding S, Li Y, Xu B, Chen X, Xia W, Ke Y, Xu S, Low-level perfluorooctanoic acid enhances 3T3–L1 preadipocyte differentiation via altering peroxisome proliferator activated receptor gamma expression and its promoter DNA methylation, Journal of applied toxicology : JAT 38 (3) (2018) 398–407. PubMed

Lyssimachou A, Santos JG, André A, Soares J, Lima D, Guimarães L, Almeida CMR, Teixeira C, Castro LFC, Santos MM, The Mammalian “Obesogen” Tributyltin Targets Hepatic Triglyceride Accumulation and the Transcriptional Regulation of Lipid Metabolism in the Liver and Brain of Zebrafish, PLoS ONE 10 (12) (2015) e0143911. PubMed PMC

Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS, Spiegelman BM, Mortensen RM, PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro, Mol. Cell 4 (4) (1999) 611–617. PubMed

Tontonoz P, Singer S, Forman BM, Sarraf P, Fletcher JA, Fletcher CD, Brun RP, Mueller E, Altiok S, Oppenheim H, Evans RM, Spiegelman BM, Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor gamma and the retinoid X receptor, PNAS 94 (1) (1997) 237–241. PubMed PMC

Kassotis CD, Masse L, Kim S, Schlezinger JJ, Webster TF, Stapleton HM, Characterization of adipogenic chemicals in three different cell culture systems: implications for reproducibility based on cell source and handling, Sci. Rep 7 (2017) 42104. PubMed PMC

Kanayama T, Kobayashi N, Mamiya S, Nakanishi T, Nishikawa J, Organotin compounds promote adipocyte differentiation as agonists of the peroxisome proliferator-activated receptor [gamma]/retinoid X receptor pathway, Mol. Pharmacol 67 (2005) 766–774. PubMed

Grun F, Blumberg B, Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling, Endocrinology 147 (6 Suppl) (2006) S50–S55. PubMed

Shoucri BM, Hung VT, Chamorro-Garcia R, Shioda T, Blumberg B, Retinoid X receptor activation during adipogenesis of female mesenchymal stem cells programs a dysfunctional adipocyte, Endocrinology (2018). PubMed PMC

Kim S, Li A, Monti S, Schlezinger JJ, Tributyltin induces a transcriptional response without a brite adipocyte signature in adipocyte models, Arch. Toxicol 92 (9) (2018) 2859–2874. PubMed PMC

Regnier SM, El-Hashani E, Kamau W, Zhang X, Massad NL, Sargis RM, Tributyltin differentially promotes development of a phenotypically distinct adipocyte, Obesity (Silver Spring) 23 (9) (2015) 1864–1871. PubMed PMC

Fuentes N, Silveyra P, Estrogen receptor signaling mechanisms, Adv Protein Chem Struct Biol 116 (2019) 135–170. PubMed PMC

Hugo ER, Brandebourg TD, Woo JG, Loftus J, Alexander JW, Ben-Jonathan N, Bisphenol A at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes, Environ. Health Perspect 116 (12) (2008) 1642–1647. PubMed PMC

Cooke PS, Naaz A, Role of estrogens in adipocyte development and function, Exp Biol Med (Maywood) 229 (11) (2004) 1127–1135. PubMed

Dieudonne MN, Pecquery R, Leneveu MC, Giudicelli Y, Opposite effects of androgens and estrogens on adipogenesis in rat preadipocytes: evidence for sex and site-related specificities and possible involvement of insulin-like growth factor 1 receptor and peroxisome proliferator-activated receptor gamma2, Endocrinology 141 (2) (2000) 649–656. PubMed

Roncari DA, Van RL, Promotion of human adipocyte precursor replication by 17beta-estradiol in culture, J Clin Invest 62 (3) (1978) 503–508. PubMed PMC

Hatch EE, Troisi R, Palmer JR, Wise LA, Titus L, Strohsnitter WC, Ricker W, Hyer M, Hoover RN, Prenatal diethylstilbestrol exposure and risk of obesity in adult women, J Dev Orig Health Dis 6 (3) (2015) 201–207. PubMed

Lee S, Kim C, Shin H, Kho Y, Choi K, Comparison of thyroid hormone disruption potentials by bisphenols A, S, F, and Z in embryo-larval zebrafish, Chemosphere 221 (2019) 115–123. PubMed

Blouin K, Boivin A, Tchernof A, Androgens and body fat distribution, J. Steroid Biochem. Mol. Biol 108 (3–5) (2008) 272–280. PubMed

O’Reilly MW, House PJ, Tomlinson JW, Understanding androgen action in adipose tissue, J. Steroid Biochem. Mol. Biol 143 (2014) 277–284. PubMed

John K, Marino JS, Sanchez ER, Hinds TD Jr., The glucocorticoid receptor: cause of or cure for obesity?, American journal of physiology, Endocrinology and metabolism 310 (4) (2016) E249–E257. PubMed PMC

Contador D, Ezquer F, Espinosa M, Arango-Rodriguez M, Puebla C, Sobrevia L, Conget P, Dexamethasone and rosiglitazone are sufficient and necessary for producing functional adipocytes from mesenchymal stem cells, Exp Biol Med (Maywood) 240 (9) (2015) 1235–1246. PubMed PMC

Asada M, Rauch A, Shimizu H, Maruyama H, Miyaki S, Shibamori M, Kawasome H, Ishiyama H, Tuckermann J, Asahara H, DNA binding-dependent glucocorticoid receptor activity promotes adipogenesis via Kruppel-like factor 15 gene expression, Lab. Invest 91 (2) (2011) 203–215. PubMed PMC

Sargis RM, Johnson DN, Choudhury RA, Brady MJ, Environmental Endocrine Disruptors Promote Adipogenesis in the 3T3-L1 Cell Line through Glucocorticoid Receptor Activation, Obesity (Silver Spring, Md.) 18 (7) (2010) 1283–1288. PubMed PMC

Iwen KA, Schroder E, Brabant G, Thyroid hormones and the metabolic syndrome, European thyroid journal 2 (2) (2013) 83–92. PubMed PMC

Obregon MJ, Thyroid hormone and adipocyte differentiation, Thyroid 18 (2) (2008) 185–195. PubMed

Shulman AI, Mangelsdorf DJ, Retinoid x receptor heterodimers in the metabolic syndrome, The New England journal of medicine 353 (6) (2005) 604–615. PubMed

Mullur R, Liu YY, Brent GA, Thyroid hormone regulation of metabolism, Physiol. Rev 94 (2) (2014) 355–382. PubMed PMC

Gao J, Xie W, Targeting xenobiotic receptors PXR and CAR for metabolic diseases, Trends Pharmacol. Sci 33 (10) (2012) 552–558. PubMed PMC

Moreau A, Vilarem MJ, Maurel P, Pascussi JM, Xenoreceptors CAR and PXR activation and consequences on lipid metabolism, glucose homeostasis, and inflammatory response, Mol. Pharm 5 (1) (2008) 35–41. PubMed

Saito K, Kobayashi K, Mizuno Y, Fukuchi Y, Furihata T, Chiba K, Peroxisome proliferator-activated receptor alpha (PPARalpha) agonists induce constitutive androstane receptor (CAR) and cytochrome P450 2B in rat primary hepatocytes, Drug Metab. Pharmacokinet 25 (1) (2010) 108–111. PubMed

Hardesty JE, Wahlang B, Falkner KC, Shi H, Jin J, Wilkey D, Merchant M, Watson C, Prough RA, Cave MC, Hepatic signalling disruption by pollutant Polychlorinated biphenyls in steatohepatitis, Cell. Signal 53 (2019) 132–139. PubMed PMC

Lukowicz C, Ellero-Simatos S, Régnier M, Polizzi A, Lasserre F, Montagner A, Lippi Y, Jamin EL, Martin J-F, Naylies C, Canlet C, Debrauwer L, Bertrand-Michel J, Al Saati T, Théodorou V, Loiseau N, Mselli-Lakhal L, Guillou H, Gamet-Payrastre L, Metabolic Effects of a Chronic Dietary Exposure to a Low-Dose Pesticide Cocktail in Mice: Sexual Dimorphism and Role of the Constitutive Androstane Receptor, Environ. Health Perspect 126 (6) (2018) 067007. PubMed PMC

Wang H, Chen J, Hollister K, Sowers LC, Forman BM, Endogenous bile acids are ligands for the nuclear receptor FXR/BAR, Mol. Cell 3 (5) (1999) 543–553. PubMed

Jiao Y, Lu Y, Li XY, Farnesoid X receptor: a master regulator of hepatic triglyceride and glucose homeostasis, Acta Pharmacol. Sin 36 (1) (2015) 44–50. PubMed PMC

Prawitt J, Caron S, Staels B, How to modulate FXR activity to treat the Metabolic Syndrome, Drug Discov Today: Disease Mechanisms 6 (1–4) (2009) e55–e64.

Rizzo G, Disante M, Mencarelli A, Renga B, Gioiello A, Pellicciari R, Fiorucci S, The farnesoid X receptor promotes adipocyte differentiation and regulates adipose cell function in vivo, Mol. Pharmacol 70 (4) (2006) 1164–1173. PubMed

Cariou B, van Harmelen K, Duran-Sandoval D, van Dijk TH, Grefhorst A, Abdelkarim M, Caron S, Torpier G, Fruchart JC, Gonzalez FJ, Kuipers F, Staels B, The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice, J. Biol. Chem 281 (16) (2006) 11039–11049. PubMed

Bjork JA, Butenhoff JL, Wallace KB, Multiplicity of nuclear receptor activation by PFOA and PFOS in primary human and rodent hepatocytes, Toxicology 288 (1–3) (2011) 8–17. PubMed

McIntosh BE, Hogenesch JB, Bradfield CA, Mammalian Per-Arnt-Sim proteins in environmental adaptation, Annu. Rev. Physiol 72 (2010) 625–645. PubMed

Rathore K, Cekanova M, Effects of environmental carcinogen benzo(a)pyrene on canine adipose-derived mesenchymal stem cells, Res. Vet. Sci 103 (2015) 34–43. PubMed

Kim MJ, Pelloux V, Guyot E, Tordjman J, Bui L-C, Chevallier A, Forest C, Benelli C, Clément K, Barouki R, Inflammatory Pathway Genes belong to Major Targets of Persistent Organic Pollutants in Adipose Cells, Environ. Health Perspect (2012). PubMed PMC

Kanno J, Introduction to the concept of signal toxicity, J Toxicol Sci 41(Special) (2016) SP105–SP109. PubMed

e.e.e. European Association for the Study of the Liver. Electronic address, C. Clinical Practice Guideline Panel, m. Panel, E.G.B. representative, EASL Clinical Practice Guideline: Occupational liver diseases, J Hepatol 71(5) (2019) 1022–1037. PubMed

Wahlang B, Beier JI, Clair HB, Bellis-Jones HJ, Falkner KC, McClain CJ, Cave MC, Toxicant-associated Steatohepatitis, Toxicol. Pathol 41 (2) (2013) 343–360. PubMed PMC

Wahlang B, Jin J, Beier JI, Hardesty JE, Daly EF, Schnegelberger RD, Falkner KC, Prough RA, Kirpich IA, Cave MC, Mechanisms of Environmental Contributions to Fatty Liver Disease, Current environmental health reports 6 (3) (2019) 80–94. PubMed PMC

Cave M, Falkner KC, Ray M, Joshi-Barve S, Brock G, Khan R, Bon Homme M, McClain CJ, Toxicant-associated steatohepatitis in vinyl chloride workers, Hepatology 51 (2) (2010) 474–481. PubMed PMC

Wahlang B, Falkner KC, Gregory B, Ansert D, Young D, Conklin DJ, Bhatnagar A, McClain CJ, Cave M, Polychlorinated biphenyl 153 is a diet-dependent obesogen that worsens nonalcoholic fatty liver disease in male C57BL6/J mice, The Journal of Nutritional Biochemistry 24 (9) (2013) 1587–1595. PubMed PMC

Foulds CE, Trevino LS, York B, Walker CL, Endocrine-disrupting chemicals and fatty liver disease, Nat Rev Endocrinol advance online publication (2017). PubMed PMC

Wang CW, Chuang HY, Liao KW, Yu ML, Dai CY, Chang WT, Tsai CH, Chiang HC, Huang PC, Urinary thiodiglycolic acid is associated with increased risk of non-alcoholic fatty liver disease in children living near a petrochemical complex, Environ. Int 131 (2019), 104978. PubMed

Yuan TH, Chen JL, Shie RH, Yeh YP, Chen YH, Chan CC, Liver fibrosis associated with potential vinyl chloride and ethylene dichloride exposure from the petrochemical industry, The Science of the total environment 739 (2020), 139920. PubMed

Li X, Zhang C, Wang K, Lehmler HJ, Fatty liver and impaired hepatic metabolism alter the congener-specific distribution of polychlorinated biphenyls (PCBs) in mice with a liver-specific deletion of cytochrome P450 reductase, Environmental pollution (Barking, Essex : 1987) 266(Pt 1) (2020) 115233. PubMed PMC

Allard J, Le Guillou D, Begriche K, Fromenty B, Drug-induced liver injury in obesity and nonalcoholic fatty liver disease, Adv. Pharmacol 85 (2019) 75–107. PubMed

Hardesty JE, Al-Eryani L, Wahlang B, Falkner KC, Shi H, Jin J, Vivace BJ, Ceresa BP, Prough RA, Cave MC, Epidermal Growth Factor Receptor Signaling Disruption by Endocrine and Metabolic Disrupting Chemicals, Toxicological sciences : an official journal of the Society of Toxicology 162 (2) (2018) 622–634. PubMed PMC

Hardesty JE, Wahlang B, Prough RA, Head KZ, Wilkey D, Merchant M, Shi H, Jin J, Cave MC, Effect of Epidermal Growth Factor Treatment and Polychlorinated Biphenyl Exposure in a Dietary-Exposure Mouse Model of Steatohepatitis, Environ. Health Perspect 129 (3) (2021) 37010. PubMed PMC

Lim JJ, Li X, Lehmler HJ, Wang D, Gu H, Cui JY, Gut Microbiome Critically Impacts PCB-induced Changes in Metabolic Fingerprints and the Hepatic Transcriptome in Mice, Toxicological sciences : an official journal of the Society of Toxicology 177 (1) (2020) 168–187. PubMed PMC

Bassler J, Ducatman A, Elliott M, Wen S, Wahlang B, Barnett J, Cave MC, Environmental perfluoroalkyl acid exposures are associated with liver disease characterized by apoptosis and altered serum adipocytokines, Environmental pollution (Barking, Essex 247 (2019) (1987) 1055–1063. PubMed PMC

Jin R, McConnell R, Catherine C, Xu S, Walker DI, Stratakis N, Jones DP, Miller GW, Peng C, Conti DV, Vos MB, Chatzi L, Perfluoroalkyl substances and severity of nonalcoholic fatty liver in Children: An untargeted metabolomics approach, Environ. Int 134 (2020), 105220. PubMed PMC

Stratakis N, D VC, Jin R, Margetaki K, Valvi D, Siskos AP, Maitre L, Garcia E, Varo N, Zhao Y, Roumeliotaki T, Vafeiadi M, Urquiza J, Fernandez-Barres S, Heude B, Basagana X, Casas M, Fossati S, Grazuleviciene R, Andrusaityte S, Uppal K, McEachan RRC, Papadopoulou E, Robinson O, Haug LS, Wright J, Vos MB, Keun HC, Vrijheid M, Berhane KT, McConnell R, Chatzi L, Prenatal Exposure to Perfluoroalkyl Substances Associated With Increased Susceptibility to Liver Injury in Children, Hepatology 72(5) (2020) 1758–1770. PubMed PMC

Katz TA, Grimm SL, Kaushal A, Dong J, Trevino LS, Jangid RK, Gaitan AV, Bertocchio JP, Guan Y, Robertson MJ, Cabrera RM, Finegold MJ, Foulds CE, Coarfa C, Walker CL, Hepatic Tumor Formation in Adult Mice Developmentally Exposed to Organotin, Environ. Health Perspect 128 (1) (2020) 17010. PubMed PMC

Franco ME, Fernandez-Luna MT, Ramirez AJ, Lavado R, Metabolomic-based assessment reveals dysregulation of lipid profiles in human liver cells exposed to environmental obesogens, Toxicol. Appl. Pharmacol 398 (2020), 115009. PubMed

Sun L, Ling Y, Jiang J, Wang D, Wang J, Li J, Wang X, Wang H, Differential mechanisms regarding triclosan vs. bisphenol A and fluorene-9-bisphenol induced zebrafish lipid-metabolism disorders by RNA-Seq, Chemosphere 251 (2020), 126318. PubMed

Qin J, Ru S, Wang W, Hao L, Ru Y, Wang J, Zhang X, Long-term bisphenol S exposure aggravates non-alcoholic fatty liver by regulating lipid metabolism and inducing endoplasmic reticulum stress response with activation of unfolded protein response in male zebrafish, Environ. Pollut 263 (2020), 114535. PubMed

Huff M, da Silveira WA, Carnevali O, Renaud L, Hardiman G, Systems Analysis of the Liver Transcriptome in Adult Male Zebrafish Exposed to the Plasticizer (2-Ethylhexyl) Phthalate (DEHP), Sci. Rep 8 (1) (2018) 2118. PubMed PMC

Yueh MF, He F, Chen C, Vu C, Tripathi A, Knight R, Karin M, Chen S, Tukey RH, Triclosan leads to dysregulation of the metabolic regulator FGF21 exacerbating high fat diet-induced nonalcoholic fatty liver disease, PNAS 117 (49) (2020) 31259–31266. PubMed PMC

Shi H, Jan J, Hardesty JE, Falkner KC, Prough RA, Balamurugan AN, Mokshagundam SP, Chari ST, Cave MC, Polychlorinated biphenyl exposures differentially regulate hepatic metabolism and pancreatic function: Implications for nonalcoholic steatohepatitis and diabetes, Toxicol. Appl. Pharmacol 363 (2019) 22–33. PubMed PMC

Go GY, Lee SJ, Jo A, Lee JR, Kang JS, Yang M, Bae GU, Bisphenol A and estradiol impede myoblast differentiation through down-regulating Akt signaling pathway, Toxicol. Lett 292 (2018) 12–19. PubMed

Mullainadhan V, Viswanathan MP, Karundevi B, Effect of Bisphenol-A (BPA) on insulin signal transduction and GLUT4 translocation in gastrocnemius muscle of adult male albino rat, Int. J. Biochem. Cell Biol 90 (2017) 38–47. PubMed

Li B, Guo J, Xi Z, Xu J, Zuo Z, Wang C, Tributyltin in male mice disrupts glucose homeostasis as well as recovery after exposure: mechanism analysis, Arch. Toxicol 91 (10) (2017) 3261–3269. PubMed

Chiu K, Warner G, Nowak RA, Flaws JA, Mei W, The Impact of Environmental Chemicals on the Gut Microbiome, Toxicological sciences : an official journal of the Society of Toxicology (176(2)) (2020) 253–284. PubMed PMC

Rosenfeld CS, Gut Dysbiosis in Animals Due to Environmental Chemical Exposures, Front. Cell. Infect. Microbiol 7 (2017) 396. PubMed PMC

Claus SP, Guillou H, Ellero-Simatos S, The gut microbiota: a major player in the toxicity of environmental pollutants? npj Biofilms Microbiomes 2 (2016) 16003. PubMed PMC

Liu KH, Owens JA, Saeedi B, Cohen CE, Bellissimo MP, Naudin C, Darby T, Druzak S, Maner-Smith K, Orr M, Hu X, Fernandes J, Camacho MC, Hunter-Chang S, VanInsberghe D, Ma C, Ganesh T, Yeligar SM, Uppal K, Go Y-M, Alvarez JA, Vos MB, Ziegler TR, Woodworth MH, Kraft CS, Jones RM, Ortlund E, Neish AS, Jones DP, Microbial metabolite delta-valerobetaine is a diet-dependent obesogen, Nature Metabolism 3 (12) (2021) 1694–1705. PubMed PMC

Fader KA, Nault R, Doskey CM, Fling RR, Zacharewski TR, 2,3,7,8-Tetrachlorodibenzo-p-dioxin abolishes circadian regulation of hepatic metabolic activity in mice, Sci. Rep 9 (1) (2019) 6514. PubMed PMC

Jin Y, Zeng Z, Wu Y, Zhang S, Fu Z, Oral Exposure of Mice to Carbendazim Induces Hepatic Lipid Metabolism Disorder and Gut Microbiota Dysbiosis, Toxicological sciences : an official journal of the Society of Toxicology 147 (1) (2015) 116–126. PubMed

Wang C, Xu C-X, Krager SL, Bottum KM, Liao D-F, Tischkau SA, Aryl Hydrocarbon Receptor Deficiency Enhances Insulin Sensitivity and Reduces PPAR-α Pathway Activity in Mice, Environ. Health Perspect 119 (12) (2011) 1739–1744. PubMed PMC

Wang C, Zhang ZM, Xu CX, Tischkau SA, Interplay between Dioxin-mediated signaling and circadian clock: a possible determinant in metabolic homeostasis, Int. J. Mol. Sci 15 (7) (2014) 11700–11712. PubMed PMC

Regnier SM, Kirkley AG, Ye H, El-Hashani E, Zhang X, Neel BA, Kamau W, Thomas CC, Williams AK, Hayes ET, Massad NL, Johnson DN, Huang L, Zhang C, Sargis RM, Dietary exposure to the endocrine disruptor tolylfluanid promotes global metabolic dysfunction in male mice, Endocrinology 156 (3) (2015) 896–910. PubMed PMC

Kopp R, Martínez IO, Legradi J, Legler J, Exposure to endocrine disrupting chemicals perturbs lipid metabolism and circadian rhythms, J Environ Sci (China) 62 (2017) 133–137. PubMed

Loganathan N, Salehi A, Chalmers JA, Belsham DD, Bisphenol A Alters Bmal1, Per2, and Rev-Erba mRNA and Requires Bmal1 to Increase Neuropeptide Y Expression in Hypothalamic Neurons, Endocrinology 160 (1) (2019) 181–192. PubMed PMC

Bottalico LN, Weljie AM, Cross-species physiological interactions of endocrine disrupting chemicals with the circadian clock, Gen. Comp. Endocrinol 301 (2021), 113650. PubMed PMC

Nesan D, Feighan KM, Antle MC, Kurrasch DM, Gestational low-dose BPA exposure impacts suprachiasmatic nucleus neurogenesis and circadian activity with transgenerational effects, Sci. Adv 7 (22) (2021). PubMed PMC

Yin X, Liu Y, Zeb R, Chen F, Chen H, Wang KJ, The intergenerational toxic effects on offspring of medaka fish Oryzias melastigma from parental benzo[a] pyrene exposure via interference of the circadian rhythm, Environmental pollution (Barking, Essex 267 (2020) (1987), 115437. PubMed

Bansal A, Henao-Mejia J, Simmons RA, Immune System: An Emerging Player in Mediating Effects of Endocrine Disruptors on Metabolic Health, Endocrinology 159 (1) (2018) 32–45. PubMed PMC

Thompson PA, Khatami M, Baglole CJ, Sun J, Harris SA, Moon EY, Al-Mulla F, Al-Temaimi R, Brown DG, Colacci A, Mondello C, Raju J, Ryan EP, Woodrick J, Scovassi AI, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Salem HK, Amedei A, Hamid RA, Lowe L, Guarnieri T, Bisson WH, Environmental immune disruptors, inflammation and cancer risk, Carcinogenesis 36 (Suppl 1) (2015) S232–S253. PubMed PMC

Petriello MC, Brandon JA, Hoffman J, Wang C, Tripathi H, Abdel-Latif A, Ye X, Li X, Yang L, Lee E, Soman S, Barney J, Wahlang B, Hennig B, Morris AJ, Dioxin-like PCB 126 Increases Systemic Inflammation and Accelerates Atherosclerosis in Lean LDL Receptor-Deficient Mice, Toxicological sciences : an official journal of the Society of Toxicology 162 (2) (2018) 548–558. PubMed PMC

Snedeker SM, Hay AG, Do interactions between gut ecology and environmental chemicals contribute to obesity and diabetes? Environ. Health Perspect 120 (3) (2012) 332–339. PubMed PMC

Winer DA, Winer S, Dranse HJ, Lam TK, Immunologic impact of the intestine in metabolic disease, J Clin Invest 127 (1) (2017) 33–42. PubMed PMC

Čolak E, Pap D, The role of oxidative stress in the development of obesity and obesity-related metabolic disorders, Journal of Medical Biochemistry 40 (1) (2021) 1–9. PubMed PMC

Li X, Fang P, Mai J, Choi ET, Wang H, Yang X-F, Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers, Journal of Hematology & Oncology 6 (1) (2013) 19. PubMed PMC

Javadov S, Kozlov AV, Camara AKS, Mitochondria in Health and Diseases, Cells 9 (5) (2020) 1177. PubMed PMC

Marroqui L, Tuduri E, Alonso-Magdalena P, Quesada I, Nadal A, Dos Santos RS, Mitochondria as target of endocrine-disrupting chemicals: implications for type 2 diabetes, The Journal of endocrinology 239 (2) (2018) R27–R45. PubMed

Bucher S, Le Guillou D, Allard J, Pinon G, Begriche K, Tête A, Sergent O, Lagadic-Gossmann D, Fromenty B, Possible Involvement of Mitochondrial Dysfunction and Oxidative Stress in a Cellular Model of NAFLD Progression Induced by Benzo[a]pyrene/Ethanol CoExposure, Oxid. Med. Cell. Longevity 2018 (2018) 4396403. PubMed PMC

Zhou Z, Goodrich JM, Strakovsky RS, Mitochondrial Epigenetics and Environmental Health: Making a Case for Endocrine Disrupting Chemicals, Toxicol. Sci 178 (1) (2020) 16–25. PubMed PMC

Suter MA, Chen A, Burdine MS, Choudhury M, Harris RA, Lane RH, Friedman JE, Grove KL, Tackett AJ, Aagaard KM, A maternal high-fat diet modulates fetal SIRT1 histone and protein deacetylase activity in nonhuman primates, FASEB journal : official publication of the Federation of American Societies for Experimental Biology 26 (12) (2012) 5106–5114. PubMed PMC

Kratz EM, Sołkiewicz K, Kubis-Kubiak A, Piwowar A, Sirtuins as Important Factors in Pathological States and the Role of Their Molecular Activity Modulators, Int. J. Mol. Sci 22 (2) (2021) 630. PubMed PMC

Imai S, Armstrong CM, Kaeberlein M, Guarente L, Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase, Nature 403 (6771) (2000) 795–800. PubMed

Chalkiadaki A, Guarente L, Sirtuins mediate mammalian metabolic responses to nutrient availability, Nat. Rev. Endocrinol 8 (5) (2012) 287–296. PubMed

Kurylowicz A, In Search of New Therapeutic Targets in Obesity Treatment: Sirtuins, Int. J. Mol. Sci 17 (4) (2016) 572. PubMed PMC

Kendrick AA, Choudhury M, Rahman SM, McCurdy CE, Friederich M, Van Hove JL, Watson PA, Birdsey N, Bao J, Gius D, Sack MN, Jing E, Kahn CR, Friedman JE, Jonscher KR, Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation, Biochem. J 433 (3) (2011) 505–514. PubMed PMC

Zhang J, Choudhury M, The plasticizer BBP selectively inhibits epigenetic regulator sirtuin during differentiation of C3H10T1/2 stem cell line, Toxicol. In Vitro 39 (2017) 75–83. PubMed

Zhang J, Ali HI, Bedi YS, Choudhury M, The plasticizer BBP selectively inhibits epigenetic regulator sirtuins, Toxicology 338 (2015) 130–141. PubMed

Adriani W, Della Seta D, Dessi-Fulgheri F, Farabollini F, Laviola G, Altered profiles of spontaneous novelty seeking, impulsive behavior, and response to D-amphetamine in rats perinatally exposed to Bisphenol A, Environ. Health Perspect 111 (4) (2003) 395–401. PubMed PMC

Rodríguez-Carrillo A, Mustieles V, Pérez-Lobato R, Molina-Molina JM, Reina-Pérez I, Vela-Soria F, Rubio S, Olea N, Fernández MF, Bisphenol A and cognitive function in school-age boys: Is BPA predominantly related to behavior? NeuroToxicology 74 (March) (2019) 162–171. PubMed

Leyrolle Q, Cserjesi R, Mulders MDGH, Zamariola G, Hiel S, Gianfrancesco MA, Rodriguez J, Portheault D, Amadieu C, Leclercq S, Bindels LB, Neyrinck AM, Cani PD, Karkkainen O, Haninheva K, Lanthier N, Trefois P, Paquot N, Cnop M, Thissen JP, Klein O, Luminet O, Delzenne NM, Specific gut microbial, biological, and psychiatric profiling related to binge eating disorders: A cross-sectional study in obese patients, Clinical Nutrition 85 (2020) 162–169. PubMed

Krentzel AA, Willett JA, Johnson AG, Meitzen J, Estrogen receptor alpha, G-protein coupled estrogen receptor 1, and aromatase: Developmental, sex, and region-specific differences across the rat caudate–putamen, nucleus accumbens core and shell, Journal of Comparative Neurology 529 (4) (2021) 786–801. PubMed PMC

Wise LM, Hernández-Saavedra D, Boas SM, Pan YX, Juraska JM, Perinatal High-Fat Diet and Bisphenol A: Effects on Behavior and Gene Expression in the Medial Prefrontal Cortex, Dev. Neurosci 41 (1–2) (2019) 1–16. PubMed PMC

Fowler N, Russell N, Sisk CL, Johnson AW, Klump KL, The Binge Eating-Prone/Binge Eating-Resistant Animal Model: A Valuable Tool for Examining Neurobiological Underpinnings of Binge Eating, in: Avena NM, Avena NM (Eds.), Animal Models of Eating Disorders, New York, NY, 2021, pp. 7–24.

Griffin MD, Pereira SR, DeBari MK, Abbott RD, Mechanisms of action, chemical characteristics, and model systems of obesogens, BMC Biomed Eng 2 (2020) 6. PubMed PMC

Ribeiro CM, Beserra BTS, Silva NG, Lima CL, Rocha PRS, Coelho MS, Neves F.d.A.R., Amato AA, Exposure to endocrine-disrupting chemicals and anthropometric measures of obesity: a systematic review and meta-analysis, BMJ Open 10(6) (2020) e033509. PubMed PMC

Perng W, Cantoral A, Soria-Contreras DC, Betanzos-Robledo L, Kordas K, Liu Y, Mora AM, Corvalan C, Pereira A, Cardoso MA, Chavarro JE, Breton CV, Meeker JD, Harley KG, Eskenazi B, Peterson KE, Tellez-Rojo MM, Exposure to obesogenic endocrine disrupting chemicals and obesity among youth of Latino or Hispanic origin in the United States and Latin America: A lifecourse perspective, Obes Rev 22 Suppl 3(Suppl 3) (2021) e13245. PubMed PMC

De Long NE, Stepita RA, Taylor VH, Holloway AC, Major depressive disorder and diabetes: does serotonin bridge the gap? Curr. Diabetes Rev 11 (2) (2015) 71–78. PubMed

Verhaegen AA, Van Gaal LF, Drug-induced obesity and its metabolic consequences: a review with a focus on mechanisms and possible therapeutic options, J. Endocrinol. Invest (2017). PubMed

Solmi M, Fornaro M, Ostinelli EG, Zangani C, Croatto G, Monaco F, Krinitski D, Fusar-Poli P, Correll CU, Safety of 80 antidepressants, antipsychotics, anti-attention-deficit/hyperactivity medications and mood stabilizers in children and adolescents with psychiatric disorders: a large scale systematic meta-review of 78 adverse effects, World Psychiatry 19 (2) (2020) 214–232. PubMed PMC

Himmerich H, Minkwitz J, Kirkby KC, Weight Gain and Metabolic Changes During Treatment with Antipsychotics and Antidepressants, Endocr. Metab. Immune Disord. Drug Targets 15 (4) (2015) 252–260. PubMed

De Hert M, Dobbelaere M, Sheridan EM, Cohen D, Correll CU, Metabolic and endocrine adverse effects of second-generation antipsychotics in children and adolescents: A systematic review of randomized, placebo controlled trials and guidelines for clinical practice, European psychiatry : the journal of the Association of European Psychiatrists 26 (3) (2011) 144–158. PubMed

Martínez-Ortega JM, Funes-Godoy S, Díaz-Atienza F, Gutiérrez-Rojas L, Pérez-Costillas L, Gurpegui M, Weight gain and increase of body mass index among children and adolescents treated with antipsychotics: a critical review, Eur. Child Adolesc. Psychiatry 22 (8) (2013) 457–479. PubMed

Pan SJ, Tan YL, Yao SW, Xin Y, Yang X, Liu J, Xiong J, Fluoxetine induces lipid metabolism abnormalities by acting on the liver in patients and mice with depression, Acta Pharmacol. Sin 39 (9) (2018) 1463–1472. PubMed PMC

Flechtner-Mors M, Jenkinson CP, Alt A, Adler G, Ditschuneit HH, Metabolism in adipose tissue in response to citalopram and trimipramine treatment–an in situ microdialysis study, J. Psychiatr. Res 42 (7) (2008) 578–586. PubMed

Medici V, McClave SA, Miller KR, Common Medications Which Lead to Unintended Alterations in Weight Gain or Organ Lipotoxicity, Curr. Gastroenterol. Rep 18 (1) (2016) 2. PubMed

Coats AJS, Beta-blockers, hypertension, and weight gain: the farmer, the chicken, and the egg, Hong Kong Med J 26 (1) (2020) 6–7. PubMed

Christ-Crain M, Kola B, Lolli F, Fekete C, Seboek D, Wittmann G, Feltrin D, Igreja SC, Ajodha S, Harvey-White J, Kunos G, Muller B, Pralong F, Aubert G, Arnaldi G, Giacchetti G, Boscaro M, Grossman AB, Korbonits M, AMP-activated protein kinase mediates glucocorticoid-induced metabolic changes: a novel mechanism in Cushing’s syndrome, FASEB journal : official publication of the Federation of American Societies for Experimental Biology 22 (6) (2008) 1672–1683. PubMed

Newbold RR, Padilla-Banks E, Jefferson WN, Environmental estrogens and obesity, Mol. Cell. Endocrinol 304 (1–2) (2009) 84–89. PubMed PMC

Mackenbach JP, Damhuis RA, Been JV, The effects of smoking on health: growth of knowledge reveals even grimmer picture, Ned. Tijdschr. Geneeskd 160 (2017) D869. PubMed

Green AJ, Hoyo C, Mattingly CJ, Luo Y, Tzeng J-Y, Murphy SK, Buchwalter DB, Planchart A, Cadmium exposure increases the risk of juvenile obesity: a human and zebrafish comparative study, International Journal of Obesity 42 (7) (2018) 1285–1295. PubMed PMC

Kim J-Y, Kim S-J, Bae MA, Kim J-R, Cho K-H, Cadmium exposure exacerbates severe hyperlipidemia and fatty liver changes in zebrafish via impairment of high-density lipoproteins functionality, Toxicology in Vitro 47 (2018) 249–258 %U https://linkinghub.elsevier.com/retrieve/pii/S0887233317303582. PubMed

Bucher S, Tête A, Podechard N, Liamin M, Le Guillou D, Chevanne M, Coulouarn C, Imran M, Gallais I, Fernier M, Hamdaoui Q, Robin M-A, Sergent O, Fromenty B, Lagadic-Gossmann D, Co-exposure to benzo[a]pyrene and ethanol induces a pathological progression of liver steatosis in vitro and in vivo, Sci. Rep 8 (1) (2018) 5963. PubMed PMC

Behl M, Rao D, Aagaard K, Davidson TL, Levin ED, Slotkin TA, Srinivasan S, Wallinga D, White MF, Walker VR, Thayer KA, Holloway AC, Evaluation of the association between maternal smoking, childhood obesity, and metabolic disorders: a national toxicology program workshop review, Environ. Health Perspect 121 (2) (2013) 170–180. PubMed PMC

Sinha-Hikim AP, Sinha-Hikim I, Friedman TC, Connection of Nicotine to Diet-Induced Obesity and Non-Alcoholic Fatty Liver Disease: Cellular and Mechanistic Insights, Front. Endocrinol 8 (2017). PubMed PMC

Pinheiro CR, Moura EG, Manhães AC, Fraga MC, Claudio-Neto S, Younes-Rapozo V, Santos-Silva AP, Lotufo BM, Oliveira E, Lisboa PC, Maternal nicotine exposure during lactation alters food preference, anxiety-like behavior and the brain dopaminergic reward system in the adult rat offspring, Physiol. Behav 149 (2015) 131–141. PubMed

Lee KW, Abrahamowicz M, Leonard GT, Richer L, Perron M, Veillette S, Reischl E, Bouchard L, Gaudet D, Paus T, Pausova Z, Prenatal exposure to cigarette smoke interacts with OPRM1 to modulate dietary preference for fat, J. Psychiatry Neurosci 40 (1) (2015) 38–45. PubMed PMC

Chen HJ, Li GL, Zhang WX, Fan J, Hu L, Zhang L, Zhang J, Yan YE, Maternal nicotine exposure during pregnancy and lactation induces brown adipose tissue whitening in female offspring, Toxicol. Appl. Pharmacol 409 (2020), 115298. PubMed

Huang LZ, Winzer-Serhan UH, Nicotine regulates mRNA expression of feeding peptides in the arcuate nucleus in neonatal rat pups, Dev Neurobiol 67 (3) (2007) 363–377. PubMed

Younes-Rapozo V, Moura EG, Manhães AC, Pinheiro CR, Santos-Silva AP, de Oliveira E, Lisboa PC, Maternal nicotine exposure during lactation alters hypothalamic neuropeptides expression in the adult rat progeny, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 58 (2013) 158–168. PubMed

Somm E, Schwitzgebel VM, Vauthay DM, Camm EJ, Chen CY, Giacobino JP, Sizonenko SV, Aubert ML, Huppi PS, Prenatal nicotine exposure alters early pancreatic islet and adipose tissue development with consequences on the control of body weight and glucose metabolism later in life, Endocrinology 149 (12) (2008) 6289–6299. PubMed

Fan J, Ping J, Zhang WX, Rao YS, Liu HX, Zhang J, Yan YE, Prenatal and lactation nicotine exposure affects morphology and function of brown adipose tissue in male rat offspring, Ultrastruct. Pathol 40 (5) (2016) 288–295. PubMed

Peixoto TC, Moura EG, Soares PN, Bertasso IM, Pietrobon CB, Caramez FAH, Miranda RA, Oliveira E, Manhães AC, Lisboa PC, Nicotine exposure during breastfeeding reduces sympathetic activity in brown adipose tissue and increases in white adipose tissue in adult rats: Sex-related differences, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 140 (2020), 111328. PubMed

Ma N, Nicholson CJ, Wong M, Holloway AC, Hardy DB, Fetal and neonatal exposure to nicotine leads to augmented hepatic and circulating triglycerides in adult male offspring due to increased expression of fatty acid synthase, Toxicol. Appl. Pharmacol 275 (1) (2014) 1–11. PubMed

Blüher M, Adipose tissue dysfunction contributes to obesity related metabolic diseases, Best practice & research, Clinical endocrinology & metabolism 27 (2) (2013) 163–177. PubMed

Cameron JD, Doucet É, Adamo KB, Walker M, Tirelli A, Barnes JD, Hafizi K, Murray M, Goldfield GS, Effects of prenatal exposure to cigarettes on anthropometrics, energy intake, energy expenditure, and screen time in children, Physiol. Behav 194 (2018) 394–400. PubMed

Moschonis G, Kaliora AC, Karatzi K, Michaletos A, Lambrinou CP, Karachaliou AK, Chrousos GP, Lionis C, Manios Y, Perinatal, sociodemographic and lifestyle correlates of increased total and visceral fat mass levels in schoolchildren in Greece: the Healthy Growth Study, Public Health Nutr. 20 (4) (2017) 660–670. PubMed PMC

Oken E, Levitan EB, Gillman MW, Maternal smoking during pregnancy and child overweight: systematic review and meta-analysis, International journal of obesity (2005) 32(2) (2008) 201–10. PubMed PMC

Rayfield S, Plugge E, Systematic review and meta-analysis of the association between maternal smoking in pregnancy and childhood overweight and obesity, J. Epidemiol. Community Health 71 (2) (2017) 162–173. PubMed

Philips EM, Santos S, Trasande L, Aurrekoetxea JJ, Barros H, von Berg A, Bergström A, Bird PK, Brescianini S, Ní Chaoimh C, Charles MA, Chatzi L, Chevrier C, Chrousos GP, Costet N, Criswell R, Crozier S, Eggesbø M, Fantini MP, Farchi S, Forastiere F, van Gelder MMHJ, Georgiu V, Godfrey KM, Gori D, Hanke W, Heude B, Hryhorczuk D, Iñiguez C, Inskip H, Karvonen AM, Kenny LC, Kull I, Lawlor DA, Lehmann I, Magnus P, Manios Y, Melén E, Mommers M, Morgen CS, Moschonis G, Murray D, Nohr EA, Nybo Andersen AM, Oken E, Oostvogels AJJM, Papadopoulou E, Pekkanen J, Pizzi C, Polanska K, Porta D, Richiardi L, Rifas-Shiman SL, Roeleveld N, Rusconi F, Santos AC, Sørensen TIA, Standl M, Stoltenberg C, Sunyer J, Thiering E, Thijs C, Torrent M, Vrijkotte TGM, Wright J, Zvinchuk O, Gaillard R, Jaddoe VWV, Changes in parental smoking during pregnancy and risks of adverse birth outcomes and childhood overweight in Europe and North America: An individual participant data meta-analysis of 229,000 singleton births, PLoS Med. 17 (8) (2020), e1003182. PubMed PMC

Vrijheid M, Fossati S, Maitre L, Marquez S, Roumeliotaki T, Agier L, Andrusaityte S, Cadiou S, Casas M, de Castro M, Dedele A, Donaire-Gonzalez D, Grazuleviciene R, Haug LS, McEachan R, Meltzer HM, Papadopouplou E, Robinson O, Sakhi AK, Siroux V, Sunyer J, Schwarze PE, Tamayo-Uria I, Urquiza J, Vafeiadi M, Valentin A, Warembourg C, Wright J, Nieuwenhuijsen MJ, Thomsen C, Basagana X, Slama R, Chatzi L, Early-Life Environmental Exposures and Childhood Obesity: An Exposome-Wide Approach, Environ. Health Perspect 128 (6) (2020) 67009. PubMed PMC

Albers L, Sobotzki C, Kuß O, Ajslev T, Batista RF, Bettiol H, Brabin B, Buka SL, Cardoso VC, Clifton VL, Devereux G, Gilman SE, Grzeskowiak LE, Heinrich J, Hummel S, Jacobsen GW, Jones G, Koshy G, Morgen CS, Oken E, Paus T, Pausova Z, Rifas-Shiman SL, Sharma AJ, da Silva AA, Sørensen TI, Thiering E, Turner S, Vik T, von Kries R, Maternal smoking during pregnancy and offspring overweight: is there a dose-response relationship? An individual patient data meta-analysis, International journal of obesity (2005) 42(7) (2018) 1249–1264. PubMed PMC

Chen HJ, Li GL, Sun A, Peng DS, Zhang WX, Yan YE, Age Differences in the Relationship between Secondhand Smoke Exposure and Risk of Metabolic Syndrome: A Meta-Analysis, Int. J. Environ. Res. Public Health 16 (8) (2019). PubMed PMC

Oldereid NB, Wennerholm UB, Pinborg A, Loft A, Laivuori H, Petzold M, Romundstad LB, Söderström-Anttila V, Bergh C, The effect of paternal factors on perinatal and paediatric outcomes: a systematic review and meta-analysis, Human reproduction update 24 (3) (2018) 320–389. PubMed

Nadhiroh SR, Djokosujono K, Utari DM, The association between secondhand smoke exposure and growth outcomes of children: A systematic literature review, Tob Induc Dis 18 (2020) 12. PubMed PMC

Chaiton M, Holloway A, Population attributable risk of smoking during pregnancy on obesity in offspring, Can. J. Public Health 107 (3) (2016), e336. PubMed PMC

Harris HR, Willett WC, Michels KB, Parental smoking during pregnancy and risk of overweight and obesity in the daughter, International journal of obesity (2005) 37(10) (2013) 1356–63. PubMed PMC

Pérez-Bermejo M, Mas-Pérez I, Murillo-Llorente MT, The Role of the Bisphenol A in Diabetes and Obesity, Biomedicines 9 (6) (2021). PubMed PMC

Qiu W, Liu S, Yang F, Dong P, Yang M, Wong M, Zheng C, Metabolism disruption analysis of zebrafish larvae in response to BPA and BPA analogs based on RNA-Seq technique, Ecotoxicol. Environ. Saf 174 (2019) 181–188. PubMed

Ji Z, Liu J, Sakkiah S, Guo W, Hong H, BPA Replacement Compounds: Current Status and Perspectives, ACS Sustainable Chem. Eng 9 (6) (2021) 2433–2446.

Mesnage R, Phedonos A, Arno M, Balu S, Corton JC, Antoniou MN, Editor’s Highlight: Transcriptome Profiling Reveals Bisphenol A Alternatives Activate Estrogen Receptor Alpha in Human Breast Cancer Cells, Toxicological sciences : an official journal of the Society of Toxicology 158 (2) (2017) 431–443. PubMed PMC

Ougier E, Zeman F, Antignac JP, Rousselle C, Lange R, Kolossa-Gehring M, Apel P, Human biomonitoring initiative (HBM4EU): Human biomonitoring guidance values (HBM-GVs) derived for bisphenol A, Environ. Int 154 (2021), 106563. PubMed

Bousoumah R, Leso V, Iavicoli I, Huuskonen P, Viegas S, Porras SP, Santonen T, Frery N, Robert A, Ndaw S, Biomonitoring of occupational exposure to bisphenol A, bisphenol S and bisphenol F: A systematic review, The Science of the total environment 783 (2021), 146905. PubMed

Hines CJ, Jackson MV, Deddens JA, Clark JC, Ye X, Christianson AL, Meadows JW, Calafat AM, Urinary Bisphenol A (BPA) Concentrations among Workers in Industries that Manufacture and Use BPA in the USA, Ann Work Expo Health 61 (2) (2017) 164–182. PubMed PMC

Longo M, Zatterale F, Naderi J, Nigro C, Oriente F, Formisano P, Miele C, Beguinot F, Low-dose Bisphenol-A Promotes Epigenetic Changes at Ppargamma Promoter in Adipose Precursor Cells, Nutrients 12 (11) (2020). PubMed PMC

Huc L, Lemarié A, Guéraud F, Héliès-Toussaint C, Low concentrations of bisphenol A induce lipid accumulation mediated by the production of reactive oxygen species in the mitochondria of HepG2 cells, Toxicol. In Vitro 26 (5) (2012) 709–717. PubMed

Peyre L, Rouimi P, de Sousa G, Héliès-Toussaint C, Carré B, Barcellini S, Chagnon M-C, Rahmani R, Comparative study of bisphenol A and its analogue bisphenol S on human hepatic cells: A focus on their potential involvement in nonalcoholic fatty liver disease, Food Chem. Toxicol 70 (2014) 9–18. PubMed

Boucher JG, Husain M, Rowan-Carroll A, Williams A, Yauk CL, Atlas E, Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling, Obesity (Silver Spring) 22 (11) (2014) 2333–2343. PubMed

Martinez MA, Blanco J, Rovira J, Kumar V, Domingo JL, Schuhmacher M, Bisphenol A analogues (BPS and BPF) present a greater obesogenic capacity in 3T3-L1 cell line, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 140 (2020), 111298. PubMed

Skledar DG, Carino A, Trontelj J, Troberg J, Distrutti E, Marchiano S, Tomasic T, Zega A, Finel M, Fiorucci S, Masic LP, Endocrine activities and adipogenic effects of bisphenol AF and its main metabolite, Chemosphere 215 (2019) 870–880. PubMed

Riu A, Grimaldi M, le Maire A, Bey G, Phillips K, Boulahtouf A, Perdu E, Zalko D, Bourguet W, Balaguer P, Peroxisome proliferator-activated receptor gamma is a target for halogenated analogs of bisphenol A, Environ. Health Perspect 119 (9) (2011) 1227–1232. PubMed PMC

Ariemma F, D’Esposito V, Liguoro D, Oriente F, Cabaro S, Liotti A, Cimmino I, Longo M, Beguinot F, Formisano P, Valentino R, Low-Dose bisphenol-A impairs adipogenesis and generates dysfunctional 3T3-L1 adipocytes, PLoS ONE 11 (3) (2016) 1–16. PubMed PMC

Martella A, Silvestri C, Maradonna F, Gioacchini G, Allarà M, Radaelli G, Overby DR, Di Marzo V, Carnevali O, Bisphenol A Induces Fatty Liver by an Endocannabinoid-Mediated Positive Feedback Loop, Endocrinology 157 (5) (2016) 1751–1763. PubMed PMC

Renaud L, Silveira W.A.d., Hazard ES, Simpson J, Falcinelli S, Chung D, Carnevali O, Hardiman G, The Plasticizer Bisphenol A Perturbs the Hepatic Epigenome: A Systems Level Analysis of the miRNome, Genes 8(10) (2017). PubMed PMC

Santangeli S, Notarstefano V, Maradonna F, Giorgini E, Gioacchini G, Forner-Piquer I, Habibi HR, Carnevali O, Effects of diethylene glycol dibenzoate and Bisphenol A on the lipid metabolism of Danio rerio, Sci. Total Environ 636 (2018) 641–655. PubMed

Wang W, Zhang X, Wang Z, Qin J, Wang W, Tian H, Ru S, Bisphenol S induces obesogenic effects through deregulating lipid metabolism in zebrafish (Danio rerio) larvae, Chemosphere 199 (2018) 286–296. PubMed

Riu A, McCollum CW, Pinto CL, Grimaldi M, Hillenweck A, Perdu E, Zalko D, Bernard L, Laudet V, Balaguer P, Bondesson M, Gustafsson J-A, Halogenated Bisphenol-A Analogs Act as Obesogens in Zebrafish Larvae (Danio rerio), Toxicol. Sci (2014). PubMed PMC

Tian S, Yan S, Meng Z, Huang S, Sun W, Jia M, Teng M, Zhou Z, Zhu W, New insights into bisphenols induced obesity in zebrafish (Danio rerio): Activation of cannabinoid receptor CB1, J. Hazard. Mater 418 (2021), 126100. PubMed

Rochester JR, Bolden AL, Bisphenol S and F: A Systematic Review and Comparison of the Hormonal Activity of Bisphenol A Substitutes, Environ. Health Perspect 123 (7) (2015) 643–650. PubMed PMC

Alonso-Magdalena P, Garcia-Arevalo M, Quesada I, Nadal A, Bisphenol-A treatment during pregnancy in mice: a new window of susceptibility for the development of diabetes in mothers later in life, Endocrinology 156 (5) (2015) 1659–1670. PubMed

Wassenaar PNH, Trasande L, Legler J, Systematic Review and Meta-Analysis of Early-Life Exposure to Bisphenol A and Obesity-Related Outcomes in Rodents, Environ. Health Perspect 125 (10) (2017), 106001. PubMed PMC

Angle BM, Do RP, Ponzi D, Stahlhut RW, Drury BE, Nagel SC, Welshons WV, Besch-Williford CL, Palanza P, Parmigiani S, vom Saal FS, Taylor JA, Metabolic disruption in male mice due to fetal exposure to low but not high doses of bisphenol A (BPA): Evidence for effects on body weight, food intake, adipocytes, leptin, adiponectin, insulin and glucose regulation, Reprod. Toxicol 42 (2013) 256–268. PubMed PMC

Rubin BS, Paranjpe M, DaFonte T, Schaeberle C, Soto AM, Obin M, Greenberg AS, Perinatal BPA exposure alters body weight and composition in a dose specific and sex specific manner: The addition of peripubertal exposure exacerbates adverse effects in female mice, Reprod. Toxicol 68 (2017) 130–144. PubMed PMC

Somm E, Schwitzgebel VM, Toulotte A, Cederroth CR, Combescure C, Nef S, Aubert ML, Huppi PS, Perinatal exposure to bisphenol a alters early adipogenesis in the rat, Environ. Health Perspect 117 (10) (2009) 1549–1555. PubMed PMC

Rubin BS, Soto AM, Bisphenol A: Perinatal exposure and body weight, Mol. Cell. Endocrinol 304 (1–2) (2009) 55–62. PubMed PMC

Desai M, Ferrini MG, Han G, Jellyman JK, Ross MG, In vivo maternal and in vitro BPA exposure effects on hypothalamic neurogenesis and appetite regulators, Environ. Res 164 (2018) 45–52. PubMed PMC

MacKay H, Patterson ZR, Abizaid A, Perinatal Exposure to Low-Dose Bisphenol-A Disrupts the Structural and Functional Development of the Hypothalamic Feeding Circuitry, Endocrinology 158 (4) (2017) 768–777. PubMed

Stoker C, Andreoli MF, Kass L, Bosquiazzo VL, Rossetti MF, Canesini G, Luque EH, Ramos JG, Perinatal exposure to bisphenol A (BPA) impairs neuroendocrine mechanisms regulating food intake and kisspetin system in adult male rats, Evidences of metabolic disruptor hypothesis, Mol Cell Endocrinol 499 (2020), 110614. PubMed

Yang M, Chen M, Wang J, Xu M, Sun J, Ding L, Lv X, Ma Q, Bi Y, Liu R, Hong J, Ning G, Bisphenol A promotes adiposity and inflammation in a nonmonotonic dose-response way in five-week old male and female C57BL/6J mice fed a low-calorie diet, Endocrinology (2016) en20151926. PubMed

Ivry Del Moral L, Le Corre L, Poirier H, Niot I, Truntzer T, Merlin JF, Rouimi P, Besnard P, Rahmani R, Chagnon MC, Obesogen effects after perinatal exposure of 4,4’-sulfonyldiphenol (Bisphenol S) in C57BL/6 mice, Toxicology 357–358 (2016) 11–20. PubMed

Ribeiro CM, Beserra BTS, Silva NG, Lima CL, Rocha PRS, Coelho MS, Neves FAR, Amato AA, Exposure to endocrine-disrupting chemicals and anthropometric measures of obesity: a systematic review and meta-analysis, BMJ Open 10 (6) (2020), e033509. PubMed PMC

Song Y, Hauser R, Hu FB, Franke AA, Liu S, Sun Q, Urinary concentrations of bisphenol A and phthalate metabolites and weight change: a prospective investigation in US women, International journal of obesity (2005) 38(12) (2014) 1532–7. PubMed PMC

Hao M, Ding L, Xuan L, Wang T, Li M, Zhao Z, Lu J, Xu Y, Chen Y, Wang W, Bi Y, Xu M, Ning G, Urinary bisphenol A concentration and the risk of central obesity in Chinese adults: A prospective study, J. Diabetes 10 (6) (2018) 442–448. PubMed

Braun JM, Li N, Arbuckle TE, Dodds L, Massarelli I, Fraser WD, Lanphear BP, Muckle G, Association between gestational urinary bisphenol a concentrations and adiposity in young children: The MIREC study, Environ. Res 172 (2019) 454–461. PubMed PMC

Hoepner LA, Whyatt RM, Widen EM, Hassoun A, Oberfield SE, Mueller NT, Diaz D, Calafat AM, Perera FP, Rundle AG, Bisphenol A and Adiposity in an Inner-City Birth Cohort, Environ. Health Perspect 124 (10) (2016) 1644–1650. PubMed PMC

Agay-Shay K, Martinez D, Valvi D, Garcia-Esteban R, Basagana X, Robinson O, Casas M, Sunyer J, Vrijheid M, Exposure to Endocrine-Disrupting Chemicals during Pregnancy and Weight at 7 Years of Age: A Multi-pollutant Approach, Environ. Health Perspect 123 (10) (2015) 1030–1037. PubMed PMC

Vafeiadi M, Roumeliotaki T, Myridakis A, Chalkiadaki G, Fthenou E, Dermitzaki E, Karachaliou M, Sarri K, Vassilaki M, Stephanou EG, Kogevinas M, Chatzi L, Association of early life exposure to bisphenol A with obesity and cardiometabolic traits in childhood, Environ. Res 146 (2016) 379–387. PubMed

Yang TC, Peterson KE, Meeker JD, Sánchez BN, Zhang Z, Cantoral A, Solano M, Tellez-Rojo MM, Bisphenol A and phthalates in utero and in childhood: association with child BMI z-score and adiposity, Environ. Res 156 (2017) 326–333. PubMed PMC

Buckley JP, Herring AH, Wolff MS, Calafat AM, Engel SM, Prenatal exposure to environmental phenols and childhood fat mass in the Mount Sinai Children’s Environmental Health Study, Environ. Int 91 (2016) 350–356. PubMed PMC

Harley KG, Aguilar Schall R, Chevrier J, Tyler K, Aguirre H, Bradman A, Holland NT, Lustig RH, Calafat AM, Eskenazi B, Prenatal and postnatal bisphenol A exposure and body mass index in childhood in the CHAMACOS cohort, Environ Health Perspect 121(4) (2013) 514–20, 520e1-6. PubMed PMC

Ryan KK, Haller AM, Sorrell JE, Woods SC, Jandacek RJ, Seeley RJ, Perinatal exposure to bisphenol-A and the development of metabolic syndrome in CD-1 mice, Endocrinology 151 (6) (2010) 2603–2612. PubMed PMC

Rolland M, Lyon-Caen S, Sakhi AK, Pin I, Sabaredzovic A, Thomsen C, Slama R, Philippat C, Exposure to phenols during pregnancy and the first year of life in a new type of couple-child cohort relying on repeated urine biospecimens, Environ. Int 139 (2020), 105678. PubMed

Petersen JH, Breindahl T, Plasticizers in total diet samples, baby food and infant formulae, Food Addit. Contam 17 (2) (2000) 133–141. PubMed

Genco M, Anderson-Shaw L, Sargis RM, Unwitting Accomplices: Endocrine Disruptors Confounding Clinical Care, The Journal of clinical endocrinology and metabolism 105 (10) (2020). PubMed PMC

Bowman JD, Choudhury M, Phthalates in neonatal health: friend or foe? J Dev Orig Health Dis 7 (6) (2016) 652–664. PubMed

Zhang J, Powell CA, Kay MK, Park MH, Meruvu S, Sonkar R, Choudhury M, A moderate physiological dose of benzyl butyl phthalate exacerbates the high fat diet-induced diabesity in male mice, Toxicol. Res (2020). PubMed PMC

Rajagopal G, Bhaskaran RS, Karundevi B, Developmental exposure to DEHP alters hepatic glucose uptake and transcriptional regulation of GLUT2 in rat male offspring, Toxicology 413 (2019) 56–64. PubMed

Hao C, Cheng X, Guo J, Xia H, Ma X, Perinatal exposure to diethyl-hexylphthalate induces obesity in mice, Front Biosci (Elite Ed) 5 (2013) 725–733. PubMed

Schaedlich K, Gebauer S, Hunger L, Beier L-S, Koch HM, Wabitsch M, Fischer B, Ernst J, DEHP deregulates adipokine levels and impairs fatty acid storage in human SGBS-adipocytes, Sci. Rep 8 (1) (2018) 3447. PubMed PMC

Biemann R, Navarrete Santos A, Navarrete Santos A, Riemann D, Knelangen J, Bluher M, Koch H, Fischer B, Endocrine disrupting chemicals affect the adipogenic differentiation of mesenchymal stem cells in distinct ontogenetic windows, Biochem. Biophys. Res. Commun 417 (2) (2012) 747–752. PubMed

Klöting N, Hesselbarth N, Gericke M, Kunath A, Biemann R, Chakaroun R, Kosacka J, Kovacs P, Kern M, Stumvoll M, Fischer B, Rolle-Kampczyk U, Feltens R, Otto W, Wissenbach DK, von Bergen M, Blüher M, Di-(2-Ethylhexyl)-Phthalate (DEHP) Causes Impaired Adipocyte Function and Alters Serum Metabolites, PLoS ONE 10 (12) (2015), e0143190. PubMed PMC

Chiu CY, Sun SC, Chiang CK, Wang CC, Chan DC, Chen HJ, Liu SH, Yang RS, Plasticizer di(2-ethylhexyl)phthalate interferes with osteoblastogenesis and adipogenesis in a mouse model, Journal of orthopaedic research : official publication of the Orthopaedic Research Society 36 (4) (2018) 1124–1134. PubMed

Feige JN, Gelman L, Rossi D, Zoete V, Metivier R, Tudor C, Anghel SI, Grosdidier A, Lathion C, Engelborghs Y, Michielin O, Wahli W, Desvergne B, The endocrine disruptor monoethyl-hexyl-phthalate is a selective peroxisome proliferator-activated receptor gamma modulator that promotes adipogenesis, J. Biol. Chem 282 (26) (2007) 19152–19166. PubMed

Hurst CH, Waxman DJ, Activation of PPARalpha and PPARgamma by environmental phthalate monoesters, Toxicological sciences : an official journal of the Society of Toxicology 74 (2) (2003) 297–308. PubMed

Hatch EE, Association of urinary phthalate metabolite concentrations with body mass index and waist circumference: a cross-sectional study of NHANES data, 1999–2002, Environ. Health 7 (2008) 27. PubMed PMC

Desvergne B, Feige JN, Casals-Casas C, PPAR-mediated activity of phthalates: A link to the obesity epidemic? Mol. Cell. Endocrinol 304 (1–2) (2009) 43–48. PubMed

Ellero-Simatos S, Claus SP, Benelli C, Forest C, Letourneur F, Cagnard N, Beaune PH, de Waziers I, Combined Transcriptomic–1H NMR Metabonomic Study Reveals That Monoethylhexyl Phthalate Stimulates Adipogenesis and Glyceroneogenesis in Human Adipocytes, J. Proteome Res 10 (12) (2011) 5493–5502. PubMed PMC

Buerger AN, Schmidt J, Chase A, Paixao C, Patel TN, Brumback BA, Kane AS, Martyniuk CJ, Bisesi JH, Examining the responses of the zebrafish (Danio rerio) gastrointestinal system to the suspected obesogen diethylhexyl phthalate, Environmental Pollution (Barking, Essex 245 (2019) (1987) 1086–1094. PubMed

Buerger AN, Dillon DT, Schmidt J, Yang T, Zubcevic J, Martyniuk CJ, Bisesi JH, Gastrointestinal dysbiosis following diethylhexyl phthalate exposure in zebrafish (Danio rerio): Altered microbial diversity, functionality, and network connectivity, Environmental Pollution (Barking, Essex: 1987) 265(Pt B) (2020) 114496. PubMed

Jacobs HM, Sant KE, Basnet A, Williams LM, Moss JB, Timme-Laragy AR, Embryonic exposure to Mono(2-ethylhexyl) phthalate (MEHP) disrupts pancreatic organogenesis in zebrafish (Danio rerio), Chemosphere 195 (2018) 498–507. PubMed PMC

Tête A, Gallais I, Imran M, Legoff L, Martin-Chouly C, Sparfel L, Bescher M, Sergent O, Podechard N, Lagadic-Gossmann D, MEHP/ethanol co-exposure favors the death of steatotic hepatocytes, possibly through CYP4A and ADH involvement, Food Chem. Toxicol 146 (2020), 111798. PubMed

Chen H, Zhang W, Rui B-B, Yang S-M, Xu W-P, Wei W, Di(2-ethylhexyl) phthalate exacerbates non-alcoholic fatty liver in rats and its potential mechanisms, Environ. Toxicol. Pharmacol 42 (2016) 38–44. PubMed

Zhang W, Shen X-Y, Zhang W-W, Chen H, Xu W-P, Wei W, The effects of di 2-ethyl hexyl phthalate (DEHP) on cellular lipid accumulation in HepG2 cells and its potential mechanisms in the molecular level, Toxicol. Mech. Methods 27 (4) (2017) 245–252. PubMed

Zhang Y, Wang S, Zhao T, Yang L, Guo S, Shi Y, Zhang X, Zhou L, Ye L, Mono-2-ethylhexyl phthalate (MEHP) promoted lipid accumulation via JAK2/STAT5 and aggravated oxidative stress in BRL-3A cells, Ecotoxicol. Environ. Saf 184 (2019), 109611. PubMed

Guo W, Han J, Wu S, Shi X, Wang Q, Zhou B, Bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate Affects Lipid Metabolism in Zebrafish Larvae via DNA Methylation Modification, Environ. Sci. Technol 54 (1) (2020) 355–363. PubMed

Wassenaar PNH, Legler J, Systematic review and meta-analysis of early life exposure to di(2-ethylhexyl) phthalate and obesity related outcomes in rodents, Chemosphere 188 (2017) 174–181. PubMed

Schmidt J-S, Schaedlich K, Fiandanese N, Pocar P, Fischer B, Effects of di(2-ethylhexyl) phthalate (DEHP) on female fertility and adipogenesis in C3H/N mice, Environ. Health Perspect 120 (8) (2012) 1123–1129. PubMed PMC

Lv Z, Cheng J, Huang S, Zhang Y, Wu S, Qiu Y, Geng Y, Zhang Q, Huang G, Ma Q, Xie X, Zhou S, Wu T, Ke Y, DEHP induces obesity and hypothyroidism through both central and peripheral pathways in C3H/He mice, Obesity (Silver Spring) 24 (2) (2016) 368–378. PubMed

Hao C, Cheng X, Xia H, Ma X, The endocrine disruptor mono-(2-ethylhexyl) phthalate promotes adipocyte differentiation and induces obesity in mice, Biosci. Rep 32 (6) (2012) 619–629. PubMed PMC

Moody L, Kougias D, Jung PM, Digan I, Hong A, Gorski A, Chen H, Juraska J, Pan Y-X, Perinatal phthalate and high-fat diet exposure induce sex-specific changes in adipocyte size and DNA methylation, The Journal of nutritional biochemistry 65 (2019) 15–25. PubMed PMC

Majeed KA, Ur Rehman H, Yousaf MS, Zaneb H, Rabbani I, Tahir SK, Rashid MA, Sub-chronic exposure to low concentration of dibutyl phthalate affects anthropometric parameters and markers of obesity in rats, Environ. Sci. Pollut. Res. Int 24 (32) (2017) 25462–25467. PubMed

Harley KG, Berger K, Rauch S, Kogut K, Claus Henn B, Calafat AM, Huen K, Eskenazi B, Holland N, Association of prenatal urinary phthalate metabolite concentrations and childhood BMI and obesity, Pediatr. Res 82 (3) (2017) 405–415. PubMed PMC

Buckley JP, Engel SM, Braun JM, Whyatt RM, Daniels JL, Mendez MA, Richardson DB, Xu Y, Calafat AM, Wolff MS, Lanphear BP, Herring AH, Rundle AG, Prenatal Phthalate Exposures and Body Mass Index Among 4- to 7-Year-old Children: A Pooled Analysis, Epidemiology (Cambridge, Mass.) 27 (3) (2016) 449–458. PubMed PMC

Kim JH, Park H, Lee J, Cho G, Choi S, Choi G, Kim SY, Eun S-H, Suh E, Kim SK, Kim H-J, Kim G-H, Lee JJ, Kim YD, Eom S, Kim S, Moon H-B, Park J, Choi K, Kim S, Kim S, Association of diethylhexyl phthalate with obesity-related markers and body mass change from birth to 3 months of age, J. Epidemiol. Community Health 70 (5) (2016) 466–472. PubMed PMC

Valvi D, Casas M, Romaguera D, Monfort N, Ventura R, Martinez D, Sunyer J, Vrijheid M, Prenatal Phthalate Exposure and Childhood Growth and Blood Pressure: Evidence from the Spanish INMA-Sabadell Birth Cohort Study, Environ. Health Perspect 123 (10) (2015) 1022–1029. PubMed PMC

Botton J, Philippat C, Calafat AM, Carles S, Charles M-A, Slama R, E.m.-c.c.s. g. the, Phthalate pregnancy exposure and male offspring growth from the intrauterine period to five years of age, Environ. Res 151 (2016) 601–609. PubMed PMC

Hou JW, Lin CL, Tsai YA, Chang CH, Liao KW, Yu CJ, Yang W, Lee MJ, Huang PC, Sun CW, Wang YH, Lin FR, Wu WC, Lee MC, Pan WH, Chen BH, Wu MT, Chen CC, Wang SL, Lee CC, Hsiung CA, Chen ML, The effects of phthalate and nonylphenol exposure on body size and secondary sexual characteristics during puberty, Int. J. Hyg. Environ. Health 218 (7) (2015) 603–615. PubMed

Sol CM, Santos S, Duijts L, Asimakopoulos AG, Martinez-Moral M-P, Kannan K, Philips EM, Trasande L, Jaddoe VWV, Fetal exposure to phthalates and bisphenols and childhood general and organ fat, A population-based prospective cohort study, International Journal of Obesity 44 (11) (2020) 2225–2235. PubMed

Maresca MM, Hoepner LA, Hassoun A, Oberfield SE, Mooney SJ, Calafat AM, Ramirez J, Freyer G, Perera FP, Whyatt RM, Rundle AG, Prenatal Exposure to Phthalates and Childhood Body Size in an Urban Cohort, Environ. Health Perspect 124 (4) (2016) 514–520. PubMed PMC

Buckley JP, Engel SM, Mendez MA, Richardson DB, Daniels JL, Calafat AM, Wolff MS, Herring AH, Prenatal Phthalate Exposures and Childhood Fat Mass in a New York City Cohort, Environ. Health Perspect 124 (4) (2016) 507–513. PubMed PMC

Berger K, Hyland C, Ames JL, Mora AM, Huen K, Eskenazi B, Holland N, Harley KG, Prenatal Exposure to Mixtures of Phthalates, Parabens, and Other Phenols and Obesity in Five-Year-Olds in the CHAMACOS Cohort, Int. J. Environ. Res. Public Health 18 (4) (2021). PubMed PMC

Shoaff J, Papandonatos GD, Calafat AM, Ye X, Chen A, Lanphear BP, Yolton K, Braun JM, Early-Life Phthalate Exposure and Adiposity at 8 Years of Age, Environ. Health Perspect 125 (9) (2017), 097008. PubMed PMC

Brauer M, Freedman G, Frostad J, van Donkelaar A, Martin RV, Dentener F, van Dingenen R, Estep K, Amini H, Apte JS, Balakrishnan K, Barregard L, Broday D, Feigin V, Ghosh S, Hopke PK, Knibbs LD, Kokubo Y, Liu Y, Ma S, Morawska L, Sangrador JL, Shaddick G, Anderson HR, Vos T, Forouzanfar MH, Burnett RT, Cohen A, Ambient Air Pollution Exposure Estimation for the Global Burden of Disease 2013, Environ. Sci. Technol 50 (1) (2016) 79–88. PubMed

G.B.D.R.F. Collaborators, Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017, Lancet 392(10159) (2018) 1923–1994. PubMed PMC

Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, Balakrishnan K, Brunekreef B, Dandona L, Dandona R, Feigin V, Freedman G, Hubbell B, Jobling A, Kan H, Knibbs L, Liu Y, Martin R, Morawska L, Pope CA 3rd, Shin H, Straif K, Shaddick G, Thomas M, van Dingenen R, van Donkelaar A, Vos T, Murray CJL, Forouzanfar MH, Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015, Lancet 389 (10082) (2017) 1907–1918. PubMed PMC

Bailey MJ, Naik NN, Wild LE, Patterson WB, Alderete TL, Exposure to air pollutants and the gut microbiota: a potential link between exposure, obesity, and type 2 diabetes, Gut Microbes 11 (5) (2020) 1188–1202. PubMed PMC

Rajagopalan S, Brook RD, Air pollution and type 2 diabetes: mechanistic insights, Diabetes 61 (12) (2012) 3037–3045. PubMed PMC

Brook RD, Xu X, Bard RL, Dvonch JT, Morishita M, Kaciroti N, Sun Q, Harkema J, Rajagopalan S, Reduced metabolic insulin sensitivity following subacute exposures to low levels of ambient fine particulate matter air pollution, The Science of the total environment 448 (2013) 66–71. PubMed PMC

Sun Q, Yue P, Deiuliis JA, Lumeng CN, Kampfrath T, Mikolaj MB, Cai Y, Ostrowski MC, Lu B, Parthasarathy S, Ambient air pollution exaggerates adipose inflammation and insulin resistance in a mouse model of diet-induced obesity, Circulation 119 (2009). PubMed PMC

Wang Y, Eliot MN, Kuchel GA, Schwartz J, Coull BA, Mittleman MA, Lipsitz LA, Wellenius GA, Long-term exposure to ambient air pollution and serum leptin in older adults: results from the MOBILIZE Boston study, J. Occup. Environ. Med 56 (9) (2014) e73–e77. PubMed PMC

Wu W, Jin Y, Carlsten C, Inflammatory health effects of indoor and outdoor particulate matter, J. Allergy Clin. Immunol 141 (3) (2018) 833–844. PubMed

Xu Z, Xu X, Zhong M, Hotchkiss IP, Lewandowski RP, Wagner JG, Bramble LA, Yang Y, Wang A, Harkema JR, Lippmann M, Rajagopalan S, Chen LC, Sun Q, Ambient particulate air pollution induces oxidative stress and alterations of mitochondria and gene expression in brown and white adipose tissues, Part. Fibre Toxicol 8 (2011) 20. PubMed PMC

Haberzettl P, O’Toole TE, Bhatnagar A, Conklin DJ, Exposure to Fine Particulate Air Pollution Causes Vascular Insulin Resistance by Inducing Pulmonary Oxidative Stress, Environ. Health Perspect 124 (12) (2016) 1830–1839. PubMed PMC

Calderon-Garciduenas L, Franco-Lira M, D’Angiulli A, Rodriguez-Diaz J, Blaurock-Busch E, Busch Y, Chao CK, Thompson C, Mukherjee PS, Torres-Jardon R, Perry G, Mexico City normal weight children exposed to high concentrations of ambient PM2.5 show high blood leptin and endothelin-1, vitamin D deficiency, and food reward hormone dysregulation versus low pollution controls. Relevance for obesity and Alzheimer disease, Environ. Res 140 (2015) 579–592. PubMed

Irigaray P, Newby JA, Lacomme S, Belpomme D, Overweight/obesity and cancer genesis: more than a biological link, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 61 (10) (2007) 665–678. PubMed

Irigaray P, Ogier V, Jacquenet S, Notet V, Sibille P, Mejean L, Bihain BE, Yen FT, Benzo[a]pyrene impairs beta-adrenergic stimulation of adipose tissue lipolysis and causes weight gain in mice, A novel molecular mechanism of toxicity for a common food pollutant, The FEBS journal 273 (7) (2006) 1362–1372. PubMed

Ortiz L, Nakamura B, Li X, Blumberg B, Luderer U, In utero exposure to benzo [a]pyrene increases adiposity and causes hepatic steatosis in female mice, and glutathione deficiency is protective, Toxicol. Lett 223 (2) (2013) 260–267. PubMed PMC

Yin F, Gupta R, Vergnes L, Driscoll WS, Ricks J, Ramanathan G, Stewart JA, Shih DM, Faull KF, Beaven SW, Lusis AJ, Reue K, Rosenfeld ME, Araujo JA, Diesel Exhaust Induces Mitochondrial Dysfunction, Hyperlipidemia, and Liver Steatosis, Arterioscler. Thromb. Vasc. Biol 39 (9) (2019) 1776–1786. PubMed PMC

Xu X, Yavar Z, Verdin M, Ying Z, Mihai G, Kampfrath T, Wang A, Zhong M, Lippmann M, Chen LC, Rajagopalan S, Sun Q, Effect of early particulate air pollution exposure on obesity in mice: role of p47phox, Arterioscler. Thromb. Vasc. Biol 30 (12) (2010) 2518–2527. PubMed PMC

Wu G, Brown J, Zamora ML, Miller A, Satterfield MC, Meininger CJ, Steinhauser CB, Johnson GA, Burghardt RC, Bazer FW, Li Y, Johnson NM, Molina MJ, Zhang R, Adverse organogenesis and predisposed long-term metabolic syndrome from prenatal exposure to fine particulate matter, PNAS 116 (24) (2019) 11590–11595. PubMed PMC

Pan K, Jiang S, Du X, Zeng X, Zhang J, Song L, Zhou J, Kan H, Sun Q, Xie Y, Zhao J, AMPK activation attenuates inflammatory response to reduce ambient PM2.5-induced metabolic disorders in healthy and diabetic mice, Ecotoxicol. Environ. Saf 179 (2019) 290–300. PubMed

Reyes-Caballero H, Rao X, Sun Q, Warmoes MO, Lin P, Sussan TE, Park B, Fan TW, Maiseyeu A, Rajagopalan S, Girnun GD, Biswal S, Air pollution-derived particulate matter dysregulates hepatic Krebs cycle, glucose and lipid metabolism in mice, Sci. Rep 9 (1) (2019) 17423. PubMed PMC

Li R, Wang Y, Hou B, Lam SM, Zhang W, Chen R, Shui G, Sun Q, Qiang G, Liu C, Lipidomics insight into chronic exposure to ambient air pollution in mice, Environmental pollution (Barking, Essex 262 (2020) (1987), 114668. PubMed

Jiang M, Li D, Piao J, Li J, Sun H, Chen L, Chen S, Pi J, Zhang R, Chen R, Leng S, Chen W, Zheng Y, Real-ambient exposure to air pollution exaggerates excessive growth of adipose tissue modulated by Nrf2 signal, The Science of the total environment 730 (2020), 138652. PubMed

Bolton JL, Smith SH, Huff NC, Gilmour MI, Foster WM, Auten RL, Bilbo SD, Prenatal air pollution exposure induces neuroinflammation and predisposes offspring to weight gain in adulthood in a sex-specific manner, FASEB J. (2012). PubMed

Goettems-Fiorin PB, Grochanke BS, Baldissera FG, Dos Santos AB, Homem de Bittencourt PI Jr., Ludwig MS, Rhoden CR, Heck TG, Fine particulate matter potentiates type 2 diabetes development in high-fat diet-treated mice: stress response and extracellular to intracellular HSP70 ratio analysis, J Physiol Biochem 72(4) (2016) 643–656. PubMed

Pardo M, Kuperman Y, Levin L, Rudich A, Haim Y, Schauer JJ, Chen A, Rudich Y, Exposure to air pollution interacts with obesogenic nutrition to induce tissue-specific response patterns, Environmental pollution (Barking, Essex 239 (2018) (1987) 532–543. PubMed

Liu C, Bai Y, Xu X, Sun L, Wang A, Wang TY, Maurya SK, Periasamy M, Morishita M, Harkema J, Ying Z, Sun Q, Rajagopalan S, Exaggerated effects of particulate matter air pollution in genetic type II diabetes mellitus, Part. Fibre Toxicol 11 (2014) 27. PubMed PMC

Tang H, Cheng Z, Li N, Mao S, Ma R, He H, Niu Z, Chen X, Xiang H, The short- and long-term associations of particulate matter with inflammation and blood coagulation markers: A meta-analysis, Environmental pollution (Barking, Essex 267 (2020) (1987), 115630. PubMed PMC

Clementi EA, Talusan A, Vaidyanathan S, Veerappan A, Mikhail M, Ostrofsky D, Crowley G, Kim JS, Kwon S, Nolan A, Metabolic Syndrome and Air Pollution: A Narrative Review of Their Cardiopulmonary Effects, Toxics 7 (1) (2019). PubMed PMC

Wei Y, Zhang JJ, Li Z, Gow A, Chung KF, Hu M, Sun Z, Zeng L, Zhu T, Jia G, Li X, Duarte M, Tang X, Chronic exposure to air pollution particles increases the risk of obesity and metabolic syndrome: findings from a natural experiment in Beijing, FASEB journal : official publication of the Federation of American Societies for Experimental Biology 30 (6) (2016) 2115–2122. PubMed PMC

Liu C, Xu X, Bai Y, Wang TY, Rao X, Wang A, Sun L, Ying Z, Gushchina L, Maiseyeu A, Morishita M, Sun Q, Harkema JR, Rajagopalan S, Air pollution-mediated susceptibility to inflammation and insulin resistance: influence of CCR2 pathways in mice, Environ. Health Perspect 122 (1) (2014) 17–26. PubMed PMC

Xu MX, Ge CX, Qin YT, Gu TT, Lou DS, Li Q, Hu LF, Feng J, Huang P, Tan J, Prolonged PM2.5 exposure elevates risk of oxidative stress-driven nonalcoholic fatty liver disease by triggering increase of dyslipidemia, Free Radic Biol Med 130 (2019) 542–556. PubMed

Liu C, Ying Z, Harkema J, Sun Q, Rajagopalan S, Epidemiological and experimental links between air pollution and type 2 diabetes, Toxicol. Pathol 41 (2) (2013) 361–373. PubMed PMC

Alderete TL, Jones RB, Chen Z, Kim JS, Habre R, Lurmann F, Gilliland FD, Goran MI, Exposure to traffic-related air pollution and the composition of the gut microbiota in overweight and obese adolescents, Environ. Res 161 (2018) 472–478. PubMed PMC

Andrysík Z, Vondráček J, Marvanová S, Ciganek M, Neča J, Pěnčíková K, Mahadevan B, Topinka J, Baird WM, Kozubík A, Machala M, Activation of the aryl hydrocarbon receptor is the major toxic mode of action of an organic extract of a reference urban dust particulate matter mixture: the role of polycyclic aromatic hydrocarbons, Mutat. Res 714 (1–2) (2011) 53–62. PubMed

Metidji A, Omenetti S, Crotta S, Li Y, Nye E, Ross E, Li V, Maradana MR, Schiering C, Stockinger B, The Environmental Sensor AHR Protects from Inflammatory Damage by Maintaining Intestinal Stem Cell Homeostasis and Barrier Integrity, Immunity 49(2) (2018) 353–362 e5. PubMed PMC

Campolim CM, Weissmann L, Ferreira CKO, Zordao OP, Dornellas APS, de Castro G, Zanotto TM, Boico VF, Quaresma PGF, Lima RPA, Donato J Jr., Veras MM, Saldiva PHN, Kim YB, Prada PO, Short-term exposure to air pollution (PM2.5) induces hypothalamic inflammation, and long-term leads to leptin resistance and obesity via Tlr4/Ikbke in mice, Sci. Rep 10 (1) (2020) 10160. PubMed PMC

Li R, Sun Q, Lam SM, Chen R, Zhu J, Gu W, Zhang L, Tian H, Zhang K, Chen LC, Sun Q, Shui G, Liu C, Sex-dependent effects of ambient PM2.5 pollution on insulin sensitivity and hepatic lipid metabolism in mice, Part. Fibre Toxicol 17 (1) (2020) 14. PubMed PMC

Seo MY, Kim SH, Park MJ, Air pollution and childhood obesity, Clin Exp Pediatr 63 (10) (2020) 382–388. PubMed PMC

Alderete TL, Habre R, Toledo-Corral CM, Berhane K, Chen Z, Lurmann FW, Weigensberg MJ, Goran MI, Gilliland FD, Longitudinal Associations Between Ambient Air Pollution With Insulin Sensitivity, beta-Cell Function, and Adiposity in Los Angeles Latino Children, Diabetes 66 (7) (2017) 1789–1796. PubMed PMC

Rundle A, Hoepner L, Hassoun A, Oberfield S, Freyer G, Holmes D, Reyes M, Quinn J, Camann D, Perera F, Whyatt R, Association of childhood obesity with maternal exposure to ambient air polycyclic aromatic hydrocarbons during pregnancy, Am. J. Epidemiol 175 (2012). PubMed PMC

Jerrett M, McConnell R, Wolch J, Chang R, Lam C, Dunton G, Gilliland F, Lurmann F, Islam T, Berhane K, Traffic-related air pollution and obesity formation in children: a longitudinal, multilevel analysis, Environ Health 13 (2014). PubMed PMC

McConnell R, Gilliland FD, Goran M, Allayee H, Hricko A, Mittelman S, Does near-roadway air pollution contribute to childhood obesity? Pediatric obesity (2015). PubMed PMC

Starling AP, Moore BF, Thomas DSK, Peel JL, Zhang W, Adgate JL, Magzamen S, Martenies SE, Allshouse WB, Dabelea D, Prenatal exposure to traffic and ambient air pollution and infant weight and adiposity: The Healthy Start study, Environ. Res 182 (2020), 109130. PubMed PMC

Rundle AG, Gallagher D, Herbstman JB, Goldsmith J, Holmes D, Hassoun A, Oberfield S, Miller RL, Andrews H, Widen EM, Hoepner LA, Perera F, Prenatal exposure to airborne polycyclic aromatic hydrocarbons and childhood growth trajectories from age 5–14 years, Environ. Res 177 (2019) 108595. PubMed PMC

Kim JS, Alderete TL, Chen Z, Lurmann F, Rappaport E, Habre R, Berhane K, Gilliland FD, Longitudinal associations of in utero and early life near-roadway air pollution with trajectories of childhood body mass index, Environmental Health 17 (1) (2018) 64. PubMed PMC

de Bont J, Casas M, Barrera-Gomez J, Cirach M, Rivas I, Valvi D, Alvarez M, Dadvand P, Sunyer J, Vrijheid M, Ambient air pollution and overweight and obesity in school-aged children in Barcelona, Spain, Environ. Int 125 (2019) 58–64. PubMed PMC

Kim JS, Chen Z, Alderete TL, Toledo-Corral C, Lurmann F, Berhane K, Gilliland FD, Associations of air pollution, obesity and cardiometabolic health in young adults: The Meta-AIR study, Environ. Int 133 (Pt A) (2019), 105180. PubMed PMC

Chen Z, Newgard CB, Kim JS, O II, Alderete TL, Thomas DC, Berhane K, Breton C, Chatzi L, Bastain TM, McConnell R, Avol E, Lurmann F, Muehlbauer MJ, Hauser ER, Gilliland FD, Near-roadway air pollution exposure and altered fatty acid oxidation among adolescents and young adults - The interplay with obesity, Environ Int 130 (2019) 104935. PubMed PMC

Guo Q, Xue T, Jia C, Wang B, Cao S, Zhao X, Zhang Q, Zhao L, Zhang JJ, Duan X, Association between exposure to fine particulate matter and obesity in children: A national representative cross-sectional study in China, Environ. Int 143 (2020), 105950. PubMed

Parasin N, Amnuaylojaroen T, Saokaew S, Effect of Air Pollution on Obesity in Children, A Systematic Review and Meta-Analysis, Children (Basel) 8 (5) (2021). PubMed PMC

Frondelius K, Oudin A, Malmqvist E, Traffic-Related Air Pollution and Child BMI-A Study of Prenatal Exposure to Nitrogen Oxides and Body Mass Index in Children at the Age of Four Years in Malmo, Sweden, Int. J. Environ. Res. Public Health 15 (10) (2018). PubMed PMC

Wang Z, Zhao L, Huang Q, Hong A, Yu C, Xiao Q, Zou B, Ji S, Zhang L, Zou K, Ning Y, Zhang J, Jia P, Traffic-related environmental factors and childhood obesity: A systematic review and meta-analysis, Obes. Rev (2020). PubMed PMC

Fioravanti S, Cesaroni G, Badaloni C, Michelozzi P, Forastiere F, Porta D, Traffic-related air pollution and childhood obesity in an Italian birth cohort, Environ. Res 160 (2018). PubMed

Zhang K, Wang H, He W, Chen G, Lu P, Xu R, Yu P, Ye T, Guo S, Li S, Xie Y, Hao Z, Wang H, Guo Y, The association between ambient air pollution and blood lipids: A longitudinal study in Shijiazhuang, China, The Science of the total environment 752 (2021), 141648. PubMed

Zhang N, Wang L, Zhang M, Nazroo J, Air quality and obesity at older ages in China: The role of duration, severity and pollutants, PLoS ONE 14 (12) (2019), e0226279. PubMed PMC

Zhang X, Zhao H, Chow WH, Bixby M, Durand C, Markham C, Zhang K, Population-Based Study of Traffic-Related Air Pollution and Obesity in Mexican Americans, Obesity (Silver Spring) 28 (2) (2020) 412–420. PubMed

Lee S, Park H, Kim S, Lee EK, Lee J, Hong YS, Ha E, Fine particulate matter and incidence of metabolic syndrome in non-CVD patients: A nationwide population-based cohort study, Int. J. Hyg. Environ. Health 222 (3) (2019) 533–540. PubMed

Huang S, Zhang X, Huang J, Lu X, Liu F, Gu D, Ambient air pollution and body weight status in adults: A systematic review and meta-analysis, Environmental pollution (Barking, Essex : 1987) 265(Pt A) (2020) 114999. PubMed

Wolf K, Popp A, Schneider A, Breitner S, Hampel R, Rathmann W, Herder C, Roden M, Koenig W, Meisinger C, Peters A, K.O.-S. Group, Association Between Long-term Exposure to Air Pollution and Biomarkers Related to Insulin Resistance, Subclinical Inflammation, and Adipokines, Diabetes 65 (11) (2016) 3314–3326. PubMed

Mattos Y, Stotz WB, Romero MS, Bravo M, Fillmann G, Castro IB, Butyltin contamination in Northern Chilean coast: Is there a potential risk for consumers? The Science of the total environment 595 (2017) 209–217. PubMed

Lagadic L, Katsiadaki I, Biever R, Guiney PD, Karouna-Renier N, Schwarz T, Meador JP, Tributyltin: Advancing the Science on Assessing Endocrine Disruption with an Unconventional Endocrine-Disrupting Compound, Rev. Environ. Contam. Toxicol 245 (2018) 65–127. PubMed

Golub M, Doherty J, Triphenyltin as a potential human endocrine disruptor, J. Toxicol. Environ. Health B. Crit. Rev 7 (2004) 281–295. PubMed

Fromme H, Mattulat A, Lahrz T, Ruden H, Occurrence of organotin compounds in house dust in Berlin (Germany), Chemosphere 58 (10) (2005) 1377–1383. PubMed

Kannan K, Takahashi S, Fujiwara N, Mizukawa H, Tanabe S, Organotin compounds, including butyltins and octyltins, in house dust from Albany, New York, USA, Arch Environ Contam Toxicol 58 (4) (2010) 901–907. PubMed

Chamorro-García R, Shoucri BM, Willner S, Käch H, Janesick A, Blumberg B, Effects of Perinatal Exposure to Dibutyltin Chloride on Fat and Glucose Metabolism in Mice, and Molecular Mechanisms, in Vitro, Environ. Health Perspect 126 (5) (2018), 057006. PubMed PMC

Milton FA, Lacerda MG, Sinoti SBP, Mesquita PG, Prakasan D, Coelho MS, de Lima CL, Martini AG, Pazzine GT, Borin MF, Amato AA, Neves FAR, Dibutyltin Compounds Effects on PPARγ/RXRα Activity, Adipogenesis, and Inflammation in Mammalians Cells, Frontiers in pharmacology 8 (2017) 507. PubMed PMC

le Maire A, Grimaldi M, Roecklin D, Dagnino S, Vivat-Hannah V, Balaguer P, Bourguet W, Activation of RXR-PPAR heterodimers by organotin environmental endocrine disruptors, EMBO Rep. 10 (4) (2009) 367–373. PubMed PMC

Delfosse V, Huet T, Harrus D, Granell M, Bourguet M, Gardia-Parège C, Chiavarina B, Grimaldi M, Le Mével S, Blanc P, Huang D, Gruszczyk J, Demeneix B, Cianférani S, Fini JB, Balaguer P, Bourguet W, Mechanistic insights into the synergistic activation of the RXR-PXR heterodimer by endocrine disruptor mixtures, PNAS 118 (1) (2021). PubMed PMC

Inadera H, Shimomura A, Environmental chemical tributyltin augments adipocyte differentiation, Toxicol. Lett 159 (3) (2005) 226–234. PubMed

Li X, Ycaza J, Blumberg B, The environmental obesogen tributyltin chloride acts via peroxisome proliferator activated receptor gamma to induce adipogenesis in murine 3T3-L1 preadipocytes, The Journal of Steroid Biochemistry and Molecular Biology 127 (1–2) (2011) 9–15. PubMed PMC

Kirchner S, Kieu T, Chow C, Casey S, Blumberg B, Prenatal exposure to the environmental obesogen tributyltin predisposes multipotent stem cells to become adipocytes, Molecular endocrinology (Baltimore, Md.) 24 (3) (2010) 526–539. PubMed PMC

Yanik SC, Baker AH, Mann KK, Schlezinger JJ, Organotins are potent activators of PPARgamma and adipocyte differentiation in bone marrow multipotent mesenchymal stromal cells, Toxicological sciences : an official journal of the Society of Toxicology 122 (2) (2011) 476–488. PubMed PMC

Stossi F, Dandekar RD, Johnson H, Lavere P, Foulds CE, Mancini MG, Mancini MA, Tributyltin chloride (TBT) induces RXRA down-regulation and lipid accumulation in human liver cells, PLoS ONE 14 (11) (2019) e0224405. PubMed PMC

Flynn EJ, Trent CM, Rawls JF, Ontogeny and nutritional control of adipogenesis in zebrafish (Danio rerio), J. Lipid Res 50 (8) (2009) 1641–1652. PubMed PMC

Imrie D, Sadler KC, White adipose tissue development in zebrafish is regulated by both developmental time and fish size, Dev. Dyn 239 (11) (2010) 3013–3023. PubMed PMC

Tingaud-Sequeira A, Ouadah N, Babin PJ, Zebrafish obesogenic test: a tool for screening molecules that target adiposity, J. Lipid Res 52 (9) (2011) 1765–1772. PubMed PMC

den Broeder MJ, Moester MJB, Kamstra JH, Cenijn PH, Davidoiu V, Kamminga LM, Ariese F, de Boer JF, Legler J, Altered Adipogenesis in Zebrafish Larvae Following High Fat Diet and Chemical Exposure Is Visualised by Stimulated Raman Scattering Microscopy, Int. J. Mol. Sci 18 (4) (2017) 894. PubMed PMC

Zhang J, Sun P, Yang F, Kong T, Zhang R, Tributyltin disrupts feeding and energy metabolism in the goldfish (Carassius auratus), Chemosphere 152 (2016) 221–228. PubMed

Meador JP, Sommers FC, Cooper KA, Yanagida G, Tributyltin and the obesogen metabolic syndrome in a salmonid, Environ. Res 111 (1) (2011) 50–56. PubMed

Chen K, Iwasaki N, Qiu X, Xu H, Takai Y, Tashiro K, Shimasaki Y, Oshima Y, Obesogenic and developmental effects of TBT on the gene expression of juvenile Japanese medaka (Oryzias latipes), Aquatic toxicology (Amsterdam, Netherlands) 237 (2021), 105907. PubMed

Capitão AMF, Lopes-Marques MS, Ishii Y, Ruivo R, Fonseca ESS, Páscoa I, Jorge RP, Barbosa MAG, Hiromori Y, Miyagi T, Nakanishi T, Santos MM, Castro LFC, Evolutionary Exploitation of Vertebrate Peroxisome Proliferator-Activated Receptor γ by Organotins, Environ. Sci. Technol 52 (23) (2018) 13951–13959. PubMed

Ouadah-Boussouf N, Babin PJ, Pharmacological evaluation of the mechanisms involved in increased adiposity in zebrafish triggered by the environmental contaminant tributyltin, Toxicol. Appl. Pharmacol 294 (2016) 32–42. PubMed

Grun F, Endocrine-disrupting organotin compounds are potent inducers of adipogenesis in vertebrates, Mol. Endocrinol 20 (2006) 2141–2155. PubMed

Bo E, Viglietti-Panzica C, Panzica GC, Acute exposure to tributyltin induces c-fos activation in the hypothalamic arcuate nucleus of adult male mice, Neurotoxicology 32 (2) (2011) 277–280. PubMed

Penza M, Jeremic M, Marrazzo E, Maggi A, Ciana P, Rando G, Grigolato PG, Di Lorenzo D, The environmental chemical tributyltin chloride (TBT) shows both estrogenic and adipogenic activities in mice which might depend on the exposure dose, Toxicol. Appl. Pharmacol 255 (1) (2011) 65–75. PubMed

Zuo Z, Chen S, Wu T, Zhang J, Su Y, Chen Y, Wang C, Tributyltin causes obesity and hepatic steatosis in male mice, Environ. Toxicol 26 (1) (2011) 79–85. PubMed

He K, Zhang J, Chen Z, Effect of tributyltin on the food intake and brain neuropeptide expression in rats, Endokrynol Pol 65 (6) (2014) 485–490. PubMed

Bo E, Farinetti A, Marraudino M, Sterchele D, Eva C, Gotti S, Panzica G, Adult exposure to tributyltin affects hypothalamic neuropeptide Y, Y1 receptor distribution, and circulating leptin in mice, Andrology 4 (4) (2016) 723–734. PubMed

Rantakokko P, Main KM, Wohlfart-Veje C, Kiviranta H, Airaksinen R, Vartiainen T, Skakkebaek NE, Toppari J, Virtanen HE, Association of placenta organotin concentrations with growth and ponderal index in 110 newborn boys from Finland during the first 18 months of life: a cohort study, Environ Health 13 (1) (2014) 45. PubMed PMC

Liu B, Sun Y, Lehmler HJ, Bao W, Association between urinary tin concentration and diabetes in nationally representative sample of US adults, J. Diabetes 10 (12) (2018) 977–983. PubMed PMC

Lehmler HJ, Gadogbe M, Liu B, Bao W, Environmental tin exposure in a nationally representative sample of U.S. adults and children: The National Health and Nutrition Examination Survey 2011–2014, Environmental pollution (Barking, Essex 240 (2018) (1987) 599–606. PubMed PMC

National Toxicology Program (NTP), NTP research report on organotin and total tin levels in Danish women of reproductive age., NTP Research Report Series, National Toxicology Program. Research Report 2, Research Triangle Park, NC, 2016. PubMed

Gadogbe M, Bao W, Wels BR, Dai SY, Santillan DA, Santillan MK, Lehmler HJ, Levels of tin and organotin compounds in human urine samples from Iowa, United States, Journal of environmental science and health, Part A, Toxic/hazardous substances & environmental engineering 54 (9) (2019) 884–890. PubMed PMC

Xue J, Zartarian V, Moya J, Freeman N, Beamer P, Black K, Tulve N, Shalat S, A meta-analysis of children’s hand-to-mouth frequency data for estimating nondietary ingestion exposure, Risk analysis : an official publication of the Society for Risk Analysis 27 (2) (2007) 411–420. PubMed

Hoffman K, Butt CM, Chen A, Limkakeng AT, Stapleton HM, High Exposure to Organophosphate Flame Retardants in Infants: Associations with Baby Products, Environ. Sci. Technol 49 (24) (2015) 14554–14559. PubMed

Wong KH, Durrani TS, Exposures to Endocrine Disrupting Chemicals in Consumer Products-A Guide for Pediatricians, Curr Probl Pediatr Adolesc Health Care 47 (5) (2017) 107–118. PubMed

Percy Z, La Guardia MJ, Xu Y, Hale RC, Dietrich KN, Lanphear BP, Yolton K, Vuong AM, Cecil KM, Braun JM, Xie C, Chen A, Concentrations and loadings of organophosphate and replacement brominated flame retardants in house dust from the home study during the PBDE phase-out, Chemosphere 239 (2020), 124701. PubMed PMC

Zota AR, Linderholm L, Park JS, Petreas M, Guo T, Privalsky ML, Zoeller RT, Woodruff TJ, Temporal comparison of PBDEs, OH-PBDEs, PCBs, and OH-PCBs in the serum of second trimester pregnant women recruited from San Francisco General Hospital, California, Environ. Sci. Technol 47 (20) (2013) 11776–11784. PubMed PMC

Adgent MA, Hoffman K, Goldman BD, Sjödin A, Daniels JL, Brominated flame retardants in breast milk and behavioural and cognitive development at 36 months, Paediatr. Perinat. Epidemiol 28 (1) (2014) 48–57. PubMed PMC

Leonetti C, Butt CM, Hoffman K, Hammel SC, Miranda ML, Stapleton HM, Brominated flame retardants in placental tissues: associations with infant sex and thyroid hormone endpoints, Environ Health 15 (1) (2016) 113. PubMed PMC

van der Veen I, de Boer J, Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis, Chemosphere 88 (10) (2012) 1119–1153. PubMed

Blum A, Behl M, Birnbaum LS, Diamond ML, Phillips A, Singla V, Sipes NS, Stapleton HM, Venier M, Organophosphate Ester Flame Retardants: Are They a Regrettable Substitution for Polybrominated Diphenyl Ethers? Environ. Sci. Technol. Lett 6 (11) (2019) 638–649. PubMed PMC

Meeker JD, Cooper EM, Stapleton HM, Hauser R, Urinary metabolites of organophosphate flame retardants: temporal variability and correlations with house dust concentrations, Environ. Health Perspect 121 (5) (2013) 580–585. PubMed PMC

Dishaw LV, Macaulay LJ, Roberts SC, Stapleton HM, Exposures, mechanisms, and impacts of endocrine-active flame retardants, Curr. Opin. Pharmacol 19 (2014) 125–133. PubMed PMC

Hoffman K, Butt CM, Webster TF, Preston EV, Hammel SC, Makey C, Lorenzo AM, Cooper EM, Carignan C, Meeker JD, Hauser R, Soubry A, Murphy SK, Price TM, Hoyo C, Mendelsohn E, Congleton J, Daniels JL, Stapleton HM, Temporal Trends in Exposure to Organophosphate Flame Retardants in the United States, Environ. Sci. Technol. Lett 4 (3) (2017) 112–118. PubMed PMC

Hoffman K, Daniels JL, Stapleton HM, Urinary metabolites of organophosphate flame retardants and their variability in pregnant women, Environ. Int 63 (2014) 169–172. PubMed PMC

Carignan CC, McClean MD, Cooper EM, Watkins DJ, Fraser AJ, Heiger-Bernays W, Stapleton HM, Webster TF, Predictors of tris(1,3-dichloro-2-propyl) phosphate metabolite in the urine of office workers, Environ. Int 55 (2013) 56–61. PubMed PMC

Bastos Sales L, Kamstra JH, Cenijn PH, van Rijt LS, Hamers T, Legler J, Effects of endocrine disrupting chemicals on in vitro global DNA methylation and adipocyte differentiation, Toxicol. In Vitro 27 (6) (2013) 1634–1643. PubMed

Wen Q, Xie X, Zhao C, Ren Q, Zhang X, Wei D, Emanuelli B, Du Y, The brominated flame retardant PBDE 99 promotes adipogenesis via regulating mitotic clonal expansion and PPARγ expression, Sci. Total Environ 670 (2019) 67–77. PubMed

Kamstra JH, Hruba E, Blumberg B, Janesick A, Mandrup S, Hamers T, Legler J, Transcriptional and epigenetic mechanisms underlying enhanced in vitro adipocyte differentiation by the brominated flame retardant BDE-47, Environ. Sci. Technol 48 (7) (2014) 4110–4119. PubMed PMC

Yang C, Wong CM, Wei J, Chung ACK, Cai Z, The brominated flame retardant BDE 47 upregulates purine metabolism and mitochondrial respiration to promote adipocyte differentiation, Sci. Total Environ 644 (2018) 1312–1322. PubMed

Karandrea S, Yin H, Liang X, Heart EA, BDE-47 and BDE-85 stimulate insulin secretion in INS-1 832/13 pancreatic β-cells through the thyroid receptor and Akt, Environ. Toxicol. Pharmacol 56 (May) (2017) 29–34. PubMed

Gao H, Li P, Liu L, Yang K, Xiao B, Zhou G, Tian Z, Luo C, Xia T, Dong L, Zhao Q, Wang A, Zhang S, Perigestational low-dose BDE-47 exposure alters maternal serum metabolome and results in sex-specific weight gain in adult offspring, Chemosphere 233 (2019) 174–182. PubMed

Suvorov A, Battista MC, Takser L, Perinatal exposure to low-dose 2,2’,4,4’-tetrabromodiphenyl ether affects growth in rat offspring: what is the role of IGF-1? Toxicology 260 (1–3) (2009) 126–131. PubMed

Abrha A, Suvorov A, Transcriptomic Analysis of Gonadal Adipose Tissue in Male Mice Exposed Perinatally to 2,2’,4,4’-Tetrabromodiphenyl Ether (BDE-47), Toxics 6 (2) (2018) 21. PubMed PMC

Wang D, Zhu W, Chen L, Yan J, Teng M, Zhou Z, Neonatal triphenyl phosphate and its metabolite diphenyl phosphate exposure induce sex- and dose-dependent metabolic disruptions in adult mice, Environ. Pollut 237 (2018) 10–17. PubMed

Yanagisawa R, Koike E, Win-Shwe TT, Takano H, Decabromodiphenyl ether exacerbates hyperglycemia in diet-induced obese mice, Toxicology 412 (November 2018) (2019) 12–18. PubMed

Zhang Z, Li S, Liu L, Wang L, Xiao X, Sun Z, Wang X, Wang C, Wang M, Li L, Xu Q, Gao W, Wang SL, Environmental exposure to BDE47 is associated with increased diabetes prevalence: Evidence from community-based case-control studies and an animal experiment, Sci. Rep 6 (May) (2016) 1–9. PubMed PMC

Scoville DK, Li CY, Wang D, Dempsey JL, Raftery D, Mani S, Gu H, Cui JY, Polybrominated diphenyl ethers and gut microbiome modulate metabolic syndrome-related aqueous metabolites in mice, Drug Metab. Dispos 47 (8) (2019) 928–940. PubMed PMC

Drage DS, Heffernan AL, Cunningham TK, Aylward LL, Mueller JF, Sathyapalan T, Atkin SL, Serum measures of hexabromocyclododecane (HBCDD) and polyborminated diphenyl ethers (PBDEs) in reproductive-aged women in the United Kingdom, Environ. Res 177 (July) (2019) 108631. PubMed

Cordier S, Anassour-Laouan-Sidi E, Lemire M, Costet N, Lucas M, Ayotte P, Association between exposure to persistent organic pollutants and mercury, and glucose metabolism in two Canadian Indigenous populations, Environ. Res 184 (February) (2020). PubMed

Erkin-Cakmak A, Harley KG, Chevrier J, Bradman A, Kogut K, Huen K, Eskenazi B, In utero and childhood polybrominated diphenyl ether exposures and body mass at age 7 years: the CHAMACOS study, Environ. Health Perspect 123 (6) (2015) 636–642. PubMed PMC

Guo J, Miao W, Wu C, Zhang J, Qi X, Yu H, Chang X, Zhang Y, Zhou Z, Umbilical cord serum PBDE concentrations and child adiposity measures at 7 years, Ecotoxicol. Environ. Saf 203 (July) (2020) 111009. PubMed

Vuong AM, Braun JM, Wang Z, Yolton K, Xie C, Sjodin A, Webster GM, Lanphear BP, Chen A, Exposure to polybrominated diphenyl ethers (PBDEs) during childhood and adiposity measures at age 8years, Environ. Int 123 (2019) 148–155. PubMed PMC

Cano-Sancho G, Smith A, La Merrill MA, Triphenyl phosphate enhances adipogenic differentiation, glucose uptake and lipolysis via endocrine and noradrenergic mechanisms, Toxicol. In Vitro 40 (2017) 280–288. PubMed PMC

Hao Z, Zhang Z, Lu D, Ding B, Shu L, Zhang Q, Wang C, Organophosphorus Flame Retardants Impair Intracellular Lipid Metabolic Function in Human Hepatocellular Cells, Chem. Res. Toxicol 32 (6) (2019) 1250–1258. PubMed

Walley SN, Roepke TA, Perinatal exposure to endocrine disrupting compounds and the control of feeding behavior — An overview, Hormones and Behavior 101 (November 2017) (2018) 22–28. PubMed PMC

Vail GM, Roepke TA, Organophosphate Flame Retardants Excite Arcuate Melanocortin Circuitry and Increase Neuronal Sensitivity to Ghrelin in Adult Mice, Endocrinology 161 (11) (2020) 1–19. PubMed PMC

Kim S, Rabhi N, Blum BC, Hekman R, Wynne K, Emili A, Farmer S, Schlezinger JJ, Triphenyl phosphate is a selective PPARγ modulator that does not induce brite adipogenesis in vitro and in vivo, Arch. Toxicol 94 (9) (2020) 3087–3103. PubMed PMC

Du Z, Zhang Y, Wang G, Peng J, Wang Z, Gao S, TPhP exposure disturbs carbohydrate metabolism, lipid metabolism, and the DNA damage repair system in zebrafish liver, Sci. Rep 6 (February) (2016) 1–10. PubMed PMC

Farhat A, Buick JK, Williams A, Yauk CL, O’Brien JM, Crump D, Williams KL, Chiu S, Kennedy SW, Tris(1,3-dichloro-2-propyl) phosphate perturbs the expression of genes involved in immune response and lipid and steroid metabolism in chicken embryos, Toxicol. Appl. Pharmacol 275 (2) (2014) 104–112. PubMed

Wang C, Le Y, Lu D, Zhao M, Dou X, Zhang Q, Triphenyl phosphate causes a sexually dimorphic metabolism dysfunction associated with disordered adiponectin receptors in pubertal mice, J. Hazard. Mater 388 (2020) 121732. PubMed

Morris PJ, Medina-Cleghorn D, Heslin A, King SM, Orr J, Mulvihill MM, Krauss RM, Nomura DK, Organophosphorus flame retardants inhibit specific liver carboxylesterases and cause serum hypertriglyceridemia, ACS Chem. Biol 9 (5) (2014) 1097–1103. PubMed PMC

Wade MG, Kawata A, Rigden M, Caldwell D, Holloway AC, Toxicity of Flame Retardant Isopropylated Triphenyl Phosphate: Liver, Adrenal, and Metabolic Effects, International journal of toxicology 38 (4) (2019) 279–290. PubMed

Krumm EA, Patel VJ, Tillery TS, Yasrebi A, Shen J, Guo GL, Marco SM, Buckley BT, Roepke TA, Organophosphate Flame-Retardants Alter Adult Mouse Homeostasis and Gene Expression in a Sex-Dependent Manner Potentially Through Interactions With ERα, Toxicol. Sci 162 (1) (2018) 212–224. PubMed PMC

Vail GM, Walley SN, Yasrebi A, Maeng A, Conde K, Roepke TA, The interactions of diet-induced obesity and organophosphate flame retardant exposure on energy homeostasis in adult male and female mice, Journal of Toxicology and Environmental Health, Part A 83 (11–12) (2020) 438–455. PubMed PMC

Yan S, Wang D, Teng M, Meng Z, Yan J, Li R, Jia M, Tian S, Zhou Z, Zhu W, Perinatal exposure to 2-Ethylhexyl Diphenyl Phosphate (EHDPHP) affected the metabolic homeostasis of male mouse offspring: Unexpected findings help to explain dose- and diet-specific phenomena, Journal of hazardous materials 388 (September 2019) (2020) 122034–122034. PubMed

Patisaul HB, Roberts SC, Mabrey N, McCaffrey KA, Gear RB, Braun J, Belcher SM, Stapleton HM, Accumulation and endocrine disrupting effects of the flame retardant mixture Firemaster(R) 550 in rats: an exploratory assessment, J. Biochem. Mol. Toxicol 27 (2) (2013) 124–136. PubMed PMC

Witchey SK, Al Samara L, Horman BM, Stapleton HM, Patisaul HB, Perinatal exposure to FireMaster® 550 (FM550), brominated or organophosphate flame retardants produces sex and compound specific effects on adult Wistar rat socioemotional behavior, Hormones and Behavior 126(September) (2020) 104853–104853. PubMed PMC

Wang D, Yan S, Yan J, Teng M, Meng Z, Li R, Zhou Z, Zhu W, Effects of triphenyl phosphate exposure during fetal development on obesity and metabolic dysfunctions in adult mice: Impaired lipid metabolism and intestinal dysbiosis, Environ. Pollut 246 (2019) 630–638. PubMed

Philbrook NA, Restivo VE, Belanger CL, Winn LM, Gestational triphenyl phosphate exposure in C57Bl/6 mice perturbs expression of insulin-like growth factor signaling genes in maternal and fetal liver, Birth defects research 110 (6) (2018) 483–494. PubMed

Walley SN, Krumm EA, Yasrebi A, Kwiecinski J, Wright V, Baker C, Roepke TA, Maternal organophosphate flame-retardant exposure alters offspring energy and glucose homeostasis in a sexually dimorphic manner in mice, J. Appl. Toxicol (2020) 1–15. PubMed PMC

Luo D, Liu W, Tao Y, Wang L, Yu M, Hu L, Zhou A, Covaci A, Xia W, Li Y, Xu S, Mei S, Prenatal Exposure to Organophosphate Flame Retardants and the Risk of Low Birth Weight: A Nested Case-Control Study in China, Environ. Sci. Technol 54 (6) (2020) 3375–3385. PubMed

Boyle M, Buckley JP, Quirós-Alcalá L, Associations between urinary organophosphate ester metabolites and measures of adiposity among U.S. children and adults: NHANES 2013–2014, Environment International 127(March) (2019) 754–763. PubMed PMC

Kuiper JR, Stapleton HM, Wills-Karp M, Wang X, Burd I, Buckley JP, Predictors and reproducibility of urinary organophosphate ester metabolite concentrations during pregnancy and associations with birth outcomes in an urban population, Environmental health : a global access science source 19 (1) (2020) 55. PubMed PMC

Crawford KA, Hawley N, Calafat AM, Jayatilaka NK, Froehlich RJ, Has P, Gallagher LG, Savitz DA, Braun JM, Werner EF, Romano ME, Maternal urinary concentrations of organophosphate ester metabolites: associations with gestational weight gain, early life anthropometry, and infant eating behaviors among mothers-infant pairs in Rhode Island, Environmental health : a global access science source 19 (1) (2020) 97. PubMed PMC

Pinos H, Carrillo B, Merchán A, Biosca-Brull J, Pérez-Fernández C, Colomina MT, Sánchez-Santed F, Martín-Sánchez F, Collado P, Arias JL, Conejo NM, Relationship between Prenatal or Postnatal Exposure to Pesticides and Obesity: A Systematic Review, Int. J. Environ. Res. Public Health 18 (13) (2021). PubMed PMC

Heindel JJ, Skalla LA, Joubert BR, Dilworth CH, Gray KA, Review of developmental origins of health and disease publications in environmental epidemiology, Reprod. Toxicol 68 (2017) 34–48. PubMed

Ren XM, Kuo Y, Blumberg B, Agrochemicals and obesity, Mol. Cell. Endocrinol 515 (2020), 110926. PubMed PMC

van den Berg H, Global status of DDT and its alternatives for use in vector control to prevent disease, Environ. Health Perspect 117 (11) (2009) 1656–1663. PubMed PMC

Enayati A, Hemingway J, Malaria management: past, present, and future, Annu. Rev. Entomol 55 (2010) 569–591. PubMed

A.f.T.S.a.D.R. (ATSDR), Toxicological profile for DDT, DDE, and DDD, in: D.o.H.a.H. Services; (Ed.) Atlanta, GA, 2002.

Chapados NA, Casimiro C, Robidoux MA, Haman F, Batal M, Blais JM, Imbeault P, Increased proliferative effect of organochlorine compounds on human preadipocytes, Mol. Cell. Biochem 365 (1–2) (2012) 275–278. PubMed

Ibrahim MM, Fjaere E, Lock EJ, Naville D, Amlund H, Meugnier E, Le Magueresse Battistoni B, Froyland L, Madsen L, Jessen N, Lund S, Vidal H, Ruzzin J, Chronic consumption of farmed salmon containing persistent organic pollutants causes insulin resistance and obesity in mice, PLoS ONE 6 (9) (2011), e25170. PubMed PMC

Mangum LH, Howell GE 3rd, Chambers JE, Exposure to p, p’-DDE enhances differentiation of 3T3-L1 preadipocytes in a model of sub-optimal differentiation, Toxicol. Lett 238 (2) (2015) 65–71. PubMed PMC

Kim J, Sun Q, Yue Y, Yoon KS, Whang KY, Marshall Clark J, Park Y, 4,4’-Dichlorodiphenyltrichloroethane (DDT) and 4,4’-dichlorodiphenyldichloroethylene (DDE) promote adipogenesis in 3T3-L1 adipocyte cell culture, Pestic. Biochem. Physiol 131 (2016) 40–45. PubMed

Moreno-Aliaga MJ, Matsumura F, Effects of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)-ethane (p, p’-DDT) on 3T3-L1 and 3T3-F442A adipocyte differentiation, Biochem. Pharmacol 63 (5) (2002) 997–1007. PubMed

Strong AL, Shi Z, Strong MJ, Miller DF, Rusch DB, Buechlein AM, Flemington EK, McLachlan JA, Nephew KP, Burow ME, Bunnell BA, Effects of the endocrine-disrupting chemical DDT on self-renewal and differentiation of human mesenchymal stem cells, Environ. Health Perspect 123 (1) (2015) 42–48. PubMed PMC

Howell G 3rd, Mangum L, Exposure to bioaccumulative organochlorine compounds alters adipogenesis, fatty acid uptake, and adipokine production in NIH3T3-L1 cells, Toxicol. In Vitro 25 (1) (2011) 394–402. PubMed PMC

Taxvig C, Dreisig K, Boberg J, Nellemann C, Schelde AB, Pedersen D, Boergesen M, Mandrup S, Vinggaard AM, Differential effects of environmental chemicals and food contaminants on adipogenesis, biomarker release and PPARgamma activation, Mol. Cell. Endocrinol 361 (1–2) (2012) 106–115. PubMed

La Merrill M, Karey E, Moshier E, Lindtner C, La Frano MR, Newman JW, Buettner C, Perinatal exposure of mice to the pesticide DDT impairs energy expenditure and metabolism in adult female offspring, PLoS ONE 9 (7) (2014), e103337. PubMed PMC

Cano-Sancho G, Salmon AG, La Merrill MA, Association between Exposure to p, p’-DDT and Its Metabolite p, p’-DDE with Obesity: Integrated Systematic Review and Meta-Analysis, Environ. Health Perspect 125 (9) (2017), 096002. PubMed PMC

Mustieles V, Arrebola JP, How polluted is your fat? What the study of adipose tissue can contribute to environmental epidemiology, J Epidemiol Community Health 74 (5) (2020) 401–407. PubMed

Dhooge W, Den Hond E, Koppen G, Bruckers L, Nelen V, Van De Mieroop E, Bilau M, Croes K, Baeyens W, Schoeters G, Van Larebeke N, Internal exposure to pollutants and body size in Flemish adolescents and adults: associations and dose-response relationships, Environ. Int 36 (4) (2010) 330–337. PubMed

Arrebola JP, Ocana-Riola R, Arrebola-Moreno AL, Fernandez-Rodriguez M, Martin-Olmedo P, Fernandez MF, Olea N, Associations of accumulated exposure to persistent organic pollutants with serum lipids and obesity in an adult cohort from Southern Spain, Environmental pollution (Barking, Essex 195 (2014) (1987) 9–15. PubMed

Arrebola JP, Cuellar M, Claure E, Quevedo M, Antelo SR, Mutch E, Ramirez E, Fernandez MF, Olea N, Mercado LA, Concentrations of organochlorine pesticides and polychlorinated biphenyls in human serum and adipose tissue from Bolivia, Environ. Res 112 (2012) 40–47. PubMed

Elobeid MA, Padilla MA, Brock DW, Ruden DM, Allison DB, Endocrine disruptors and obesity: an examination of selected persistent organic pollutants in the NHANES 1999–2002 data, Int. J. Environ. Res. Public Health 7 (7) (2010) 2988–3005. PubMed PMC

Roos V, Ronn M, Salihovic S, Lind L, van Bavel B, Kullberg J, Johansson L, Ahlstrom H, Lind PM, Circulating levels of persistent organic pollutants in relation to visceral and subcutaneous adipose tissue by abdominal MRI, Obesity (Silver Spring) 21 (2) (2013) 413–418. PubMed

Ronn M, Lind L, van Bavel B, Salihovic S, Michaelsson K, Lind PM, Circulating levels of persistent organic pollutants associate in divergent ways to fat mass measured by DXA in humans, Chemosphere 85 (3) (2011) 335–343. PubMed

Ben Hassine S, Hammami B, Ben Ameur W, El Megdiche Y, Barhoumi B, El Abidi R, Driss MR, Concentrations of organochlorine pesticides and polychlorinated biphenyls in human serum and their relation with age, gender, and BMI for the general population of Bizerte, Tunisia, Environ. Sci. Pollut. Res. Int 21 (10) (2014) 6303–6313. PubMed

Zong G, Grandjean P, Wu H, Sun Q, Circulating persistent organic pollutants and body fat distribution: Evidence from NHANES 1999–2004, Obesity (Silver Spring) 23 (9) (2015) 1903–1910. PubMed PMC

Dirinck E, Jorens PG, Covaci A, Geens T, Roosens L, Neels H, Mertens I, Van Gaal L, Obesity and persistent organic pollutants: possible obesogenic effect of organochlorine pesticides and polychlorinated biphenyls, Obesity (Silver Spring) 19 (4) (2011) 709–714. PubMed

Wolff MS, Anderson HA, Britton JA, Rothman N, Pharmacokinetic variability and modern epidemiology–the example of dichlorodiphenyltrichloroethane, body mass index, and birth cohort, Cancer Epidemiol Biomarkers Prev 16 (10) (2007) 1925–1930. PubMed

Lee DH, Lind L, Jacobs DR Jr., Salihovic S, van Bavel B, Lind PM, Associations of persistent organic pollutants with abdominal obesity in the elderly: The Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study, Environ. Int 40 (2012) 170–178. PubMed

Lee DH, Steffes MW, Sjodin A, Jones RS, Needham LL, Jacobs DR Jr., Low dose organochlorine pesticides and polychlorinated biphenyls predict obesity, dyslipidemia, and insulin resistance among people free of diabetes, PLoS ONE 6 (1) (2011), e15977. PubMed PMC

Plouffe L, Bosson-Rieutort D, Madaniyazi L, Iwai-Shimada M, Nakai K, Tatsuta N, Nakayama SF, Verner M-A, Estimated postnatal p, p’-DDT and p, p’-DDE levels and body mass index at 42 months of age in a longitudinal study of Japanese children, Environmental Health 19 (1) (2020) 49. PubMed PMC

Valvi D, Mendez MA, Martinez D, Grimalt JO, Torrent M, Sunyer J, Vrijheid M, Prenatal concentrations of polychlorinated biphenyls, DDE, and DDT and overweight in children: a prospective birth cohort study, Environ. Health Perspect 120 (3) (2012) 451–457. PubMed PMC

Coker E, Chevrier J, Rauch S, Bradman A, Obida M, Crause M, Bornman R, Eskenazi B, Association between prenatal exposure to multiple insecticides and child body weight and body composition in the VHEMBE South African birth cohort, Environ. Int 113 (2018) 122–132. PubMed PMC

Warner M, Rauch S, Coker ES, Harley K, Kogut K, Sjödin A, Eskenazi B, Obesity in relation to serum persistent organic pollutant concentrations in CHAMACOS women, Environmental Epidemiology 2 (4) (2018) e032. PubMed PMC

Heggeseth B, Harley K, Warner M, Jewell N, Eskenazi B, Detecting Associations between Early-Life DDT Exposures and Childhood Growth Patterns: A Novel Statistical Approach, PLoS ONE 10 (6) (2015) e0131443. PubMed PMC

Delvaux I, Van Cauwenberghe J, Den Hond E, Schoeters G, Govarts E, Nelen V, Baeyens W, Van Larebeke N, Sioen I, Prenatal exposure to environmental contaminants and body composition at age 7–9 years, Environ. Res 132 (2014) 24–32. PubMed

Iszatt N, Stigum H, Verner M-A, White RA, Govarts E, Murinova LP, Schoeters G, Trnovec T, Legler J, Pelé F, Botton J, Chevrier C, Wittsiepe J, Ranft U, Vandentorren S, Kasper-Sonnenberg M, Klümper C, Weisglas-Kuperus N, Polder A, Eggesbø M, Obelix, Prenatal and Postnatal Exposure to Persistent Organic Pollutants and Infant Growth: A Pooled Analysis of Seven European Birth Cohorts, Environ. Health Perspect 123 (7) (2015) 730–736. PubMed PMC

Vafeiadi M, Georgiou V, Chalkiadaki G, Rantakokko P, Kiviranta H, Karachaliou M, Fthenou E, Venihaki M, Sarri K, Vassilaki M, Kyrtopoulos SA, Oken E, Kogevinas M, Chatzi L, Association of Prenatal Exposure to Persistent Organic Pollutants with Obesity and Cardiometabolic Traits in Early Childhood: The Rhea Mother-Child Cohort (Crete, Greece), Environ. Health Perspect 123 (10) (2015) 1015–1021. PubMed PMC

La Merrill MA, Krigbaum NY, Cirillo PM, Cohn BA, Association between maternal exposure to the pesticide dichlorodiphenyltrichloroethane (DDT) and risk of obesity in middle age, International journal of obesity (2005) 44(8) (2020) 1723–1732. PubMed PMC

Cirillo PM, La Merrill MA, Krigbaum NY, Cohn BA, Grandmaternal Perinatal Serum DDT in Relation to Granddaughter Early Menarche and Adult Obesity: Three Generations in the Child Health and Development Studies Cohort, Cancer Epidemiol. Biomark. Prev 8 (2021) 1480–1488. PubMed PMC

Cupul-Uicab LA, Klebanoff MA, Brock JW, Longnecker MP, Prenatal Exposure to Persistent Organochlorines and Childhood Obesity in the U.S. Collaborative Perinatal Project, Environ. Health Perspect 121 (9) (2013) 1103–1109. PubMed PMC

Garced S, Torres-Sanchez L, Cebrian ME, Claudio L, Lopez-Carrillo L, Prenatal dichlorodiphenyldichloroethylene (DDE) exposure and child growth during the first year of life, Environ. Res 113 (2012) 58–62. PubMed PMC

Hoyer BB, Ramlau-Hansen CH, Vrijheid M, Valvi D, Pedersen HS, Zviezdai V, Jonsson BA, Lindh CH, Bonde JP, Toft G, Anthropometry in 5- to 9-Year-Old Greenlandic and Ukrainian Children in Relation to Prenatal Exposure to Perfluorinated Alkyl Substances, Environ. Health Perspect 123 (8) (2015) 841–846. PubMed PMC

Lauritzen HB, Larose TL, Oien T, Sandanger TM, Odland JO, van de Bor M, Jacobsen GW, Prenatal exposure to persistent organic pollutants and child overweight/obesity at 5-year follow-up: a prospective cohort study, Environ Health 17 (1) (2018) 9. PubMed PMC

Lee HA, Park SH, Hong YS, Ha EH, Park H, The Effect of Exposure to Persistent Organic Pollutants on Metabolic Health among KOREAN Children during a 1-Year Follow-Up, Int. J. Environ. Res. Public Health 13 (3) (2016). PubMed PMC

Karlsen M, Grandjean P, Weihe P, Steuerwald U, Oulhote Y, Valvi D, Early-life exposures to persistent organic pollutants in relation to overweight in preschool children, Reprod. Toxicol 68 (2017) 145–153. PubMed PMC

Verhulst SL, Nelen V, Hond ED, Koppen G, Beunckens C, Vael C, Schoeters G, Desager K, Intrauterine exposure to environmental pollutants and body mass index during the first 3 years of life, Environ. Health Perspect 117 (1) (2009) 122–126. PubMed PMC

Mendez MA, Garcia-Esteban R, Guxens M, Vrijheid M, Kogevinas M, Goni F, Fochs S, Sunyer J, Prenatal organochlorine compound exposure, rapid weight gain, and overweight in infancy, Environ. Health Perspect 119 (2) (2011) 272–278. PubMed PMC

Jusko TA, Koepsell TD, Baker RJ, Greenfield TA, Willman EJ, Charles MJ, Teplin SW, Checkoway H, Hertz-Picciotto I, Maternal DDT exposures in relation to fetal and 5-year growth, Epidemiology (Cambridge, Mass.) 17 (6) (2006) 692–700. PubMed PMC

Artacho-Cordón F, Fernández-Rodríguez M, Garde C, Salamanca E, Iribarne-Durán LM, Torné P, Expósito J, Papay-Ramírez L, Fernández MF, Olea N, Arrebola JP, Serum and adipose tissue as matrices for assessment of exposure to persistent organic pollutants in breast cancer patients, Environ. Res 142 (2015) 633–643. PubMed

Karmaus W, Zhu X, Maternal concentration of polychlorinated biphenyls and dichlorodiphenyl dichlorethylene and birth weight in Michigan fish eaters: a cohort study, Environ Health 3 (1) (2004) 1. PubMed PMC

Brodie AE, Azarenko VA, Hu CY, Inhibition of increases of transcription factor mRNAs during differentiation of primary rat adipocytes by in vivo 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) treatment, Toxicol. Lett 90 (2–3) (1997) 91–95. PubMed

Cimafranca MA, Hanlon PR, Jefcoate CR, TCDD administration after the pro-adipogenic differentiation stimulus inhibits PPARgamma through a MEK-dependent process but less effectively suppresses adipogenesis, Toxicol. Appl. Pharmacol 196 (1) (2004) 156–168. PubMed

Nagashima H, Matsumura F, 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-induced down-regulation of glucose transporting activities in mouse 3T3-L1 preadipocyte, Journal of environmental science and health, Part. B, Pesticides, food contaminants, and agricultural wastes 37 (1) (2002) 1–14. PubMed

Gadupudi G, Gourronc FA, Ludewig G, Robertson LW, Klingelhutz AJ, PCB126 inhibits adipogenesis of human preadipocytes, Toxicol. In Vitro 29 (1) (2015) 132–141. PubMed PMC

Gourronc FA, Perdew GH, Robertson LW, Klingelhutz AJ, PCB126 blocks the thermogenic beiging response of adipocytes, Environ. Sci. Pollut. Res. Int 27 (9) (2020) 8897–8904. PubMed PMC

Arsenescu V, Arsenescu RI, King V, Swanson H, Cassis LA, Polychlorinated Biphenyl-77 Induces Adipocyte Differentiation and Proinflammatory Adipokines and Promotes Obesity and Atherosclerosis, Environ. Health Perspect 116 (6) (2008) 761–768. PubMed PMC

Zhang L, Hatzakis E, Nichols RG, Hao R, Correll J, Smith PB, Chiaro CR, Perdew GH, Patterson AD, Metabolomics Reveals that Aryl Hydrocarbon Receptor Activation by Environmental Chemicals Induces Systemic Metabolic Dysfunction in Mice, Environ. Sci. Technol 49 (13) (2015) 8067–8077. PubMed PMC

Korecka A, Dona A, Lahiri S, Tett AJ, Al-Asmakh M, Braniste V, D’Arienzo R, Abbaspour A, Reichardt N, Fujii-Kuriyama Y, Rafter J, Narbad A, Holmes E, Nicholson J, Arulampalam V, Pettersson S, Bidirectional communication between the Aryl hydrocarbon Receptor (AhR) and the microbiome tunes host metabolism, npj Biofilms Microbiomes 2 (2016) 16014. PubMed PMC

Brawner KM, Yeramilli VA, Duck LW, Van Der Pol W, Smythies LE, Morrow CD, Elson CO, Martin CA, Depletion of dietary aryl hydrocarbon receptor ligands alters microbiota composition and function, Sci. Rep 9 (1) (2019) 14724. PubMed PMC

Girer NG, Tomlinson CR, Elferink CJ, The Aryl Hydrocarbon Receptor in Energy Balance: The Road from Dioxin-Induced Wasting Syndrome to Combating Obesity with Ahr Ligands, Int. J. Mol. Sci 22 (1) (2020). PubMed PMC

Duval C, Teixeira-Clerc F, Leblanc AF, Touch S, Emond C, Guerre-Millo M, Lotersztajn S, Barouki R, Aggerbeck M, Coumoul X, Chronic Exposure to Low Doses of Dioxin Promotes Liver Fibrosis Development in the C57BL/6J Diet-Induced Obesity Mouse Model, Environ. Health Perspect 125 (3) (2017) 428–436. PubMed PMC

Weber LW, Lebofsky M, Stahl BU, Gorski JR, Muzi G, Rozman K, Reduced activities of key enzymes of gluconeogenesis as possible cause of acute toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in rats, Toxicology 66 (2) (1991) 133–144. PubMed

Rojas IY, Moyer BJ, Ringelberg CS, Wilkins OM, Pooler DB, Ness DB, Coker S, Tosteson TD, Lewis LD, Chamberlin MD, Tomlinson C, Kynurenine-Induced Aryl Hydrocarbon Receptor Signaling in Mice Causes Body Mass Gain, Liver Steatosis, and Hyperglycemia, Obesity (Silver Spring) 29 (2) (2021) 337–349. PubMed PMC

Hoyeck MP, Merhi RC, Blair HL, Spencer CD, Payant MA, Martin Alfonso DI, Zhang M, Matteo G, Chee MJ, Bruin JE, Female mice exposed to low doses of dioxin during pregnancy and lactation have increased susceptibility to diet-induced obesity and diabetes, Molecular metabolism 42 (2020), 101104. PubMed PMC

Brulport A, Le Corre L, Chagnon M-C, Chronic exposure of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces an obesogenic effect in C57BL/6J mice fed a high fat diet, Toxicology 390 (2017) 43–52. PubMed

Merrill ML, Kuruvilla BS, Pomp D, Birnbaum LS, Threadgill DW, Dietary Fat Alters Body Composition, Mammary Development, and Cytochrome P450 Induction after Maternal TCDD Exposure in DBA/2J Mice with Low-Responsive Aryl Hydrocarbon Receptors, Environ. Health Perspect 117 (9) (2009) 1414–1419. PubMed PMC

Eskenazi B, Warner M, Brambilla P, Signorini S, Ames J, Mocarelli P, The Seveso accident: A look at 40 years of health research and beyond, Environ. Int 121 (Pt 1) (2018) 71–84. PubMed PMC

Goodman M, Narayan KM, Flanders D, Chang ET, Adami HO, Boffetta P, Mandel JS, Dose-response relationship between serum 2,3,7,8-tetrachlorodibenzo-p-dioxin and diabetes mellitus: a meta-analysis, Am. J. Epidemiol 181 (6) (2015) 374–384. PubMed PMC

Taylor KW, Novak RF, Anderson HA, Birnbaum LS, Blystone C, Devito M, Jacobs D, Köhrle J, Lee DH, Rylander L, Rignell-Hydbom A, Tornero-Velez R, Turyk ME, Boyles AL, Thayer KA, Lind L, Evaluation of the association between persistent organic pollutants (POPs) and diabetes in epidemiological studies: a national toxicology program workshop review, Environ. Health Perspect 121 (7) (2013) 774–783. PubMed PMC

de Cock M, van de Bor M, Obesogenic effects of endocrine disruptors, what do we know from animal and human studies? Environ. Int 70 (2014) 15–24. PubMed

Tang-Péronard JL, Andersen HR, Jensen TK, Heitmann BL, Endocrine-disrupting chemicals and obesity development in humans: A review, Obes. Rev 12 (8) (2011) 622–636. PubMed

De Silva AO, Armitage JM, Bruton TA, Dassuncao C, Heiger-Bernays W, Hu XC, Kärrman A, Kelly B, Ng C, Robuck A, Sun M, Webster TF, Sunderland EM, PFAS Exposure Pathways for Humans and Wildlife: A Synthesis of Current Knowledge and Key Gaps in Understanding, Environ. Toxicol. Chem 40 (3) (2021) 631–657. PubMed PMC

Blake BE, Fenton SE, Early life exposure to per- and polyfluoroalkyl substances (PFAS) and latent health outcomes: A review including the placenta as a target tissue and possible driver of peri- and postnatal effects, Toxicology 443 (2020) 152565. PubMed PMC

Fromme H, Tittlemier SA, Völkel W, Wilhelm M, Twardella D, Perfluorinated compounds–exposure assessment for the general population in Western countries, Int. J. Hyg. Environ. Health 212 (3) (2009) 239–270. PubMed

Inoue K, Okada F, Ito R, Kato S, Sasaki S, Nakajima S, Uno A, Saijo Y, Sata F, Yoshimura Y, Kishi R, Nakazawa H, Perfluorooctane sulfonate (PFOS) and related perfluorinated compounds in human maternal and cord blood samples: assessment of PFOS exposure in a susceptible population during pregnancy, Environ. Health Perspect 112 (11) (2004) 1204–1207. PubMed PMC

Gützkow KB, Haug LS, Thomsen C, Sabaredzovic A, Becher G, Brunborg G, Placental transfer of perfluorinated compounds is selective–a Norwegian Mother and Child sub-cohort study, Int. J. Hyg. Environ. Health 215 (2) (2012) 216–219. PubMed

Fisher M, Arbuckle TE, Liang CL, LeBlanc A, Gaudreau E, Foster WG, Haines D, Davis K, Fraser WD, Concentrations of persistent organic pollutants in maternal and cord blood from the maternal-infant research on environmental chemicals (MIREC) cohort study, Environ Health 15 (1) (2016) 59. PubMed PMC

Qi W, Clark JM, Timme-Laragy AR, Park Y, Perfluorobutanesulfonic acid (PFBS) potentiates adipogenesis of 3T3-L1 adipocytes, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 120 (2018) 340–345. PubMed PMC

Watkins AM, Wood CR, Lin MT, Abbott BD, The effects of perfluorinated chemicals on adipocyte differentiation in vitro, Mol. Cell. Endocrinol 400 (2015) 90–101. PubMed

Qiu T, Chen M, Sun X, Cao J, Feng C, Li D, Wu W, Jiang L, Yao X, Perfluorooctane sulfonate-induced insulin resistance is mediated by protein kinase B pathway, Biochem. Biophys. Res. Commun 477 (4) (2016) 781–785. PubMed

Sant KE, Annunziato K, Conlin S, Teicher G, Chen P, Venezia O, Downes GB, Park Y, Timme-Laragy AR, Developmental exposures to perfluorooctanesulfonic acid (PFOS) impact embryonic nutrition, pancreatic morphology, and adiposity in the zebrafish, Danio rerio, Environmental pollution (Barking, Essex 275 (2021) (1987), 116644. PubMed PMC

Du Y, Shi X, Liu C, Yu K, Zhou B, Chronic effects of water-borne PFOS exposure on growth, survival and hepatotoxicity in zebrafish: a partial life-cycle test, Chemosphere 74 (5) (2009) 723–729. PubMed

Rosen MB, Abbott BD, Wolf DC, Corton JC, Wood CR, Schmid JE, Das KP, Zehr RD, Blair ET, Lau C, Gene profiling in the livers of wild-type and PPARalpha-null mice exposed to perfluorooctanoic acid, Toxicol. Pathol 36 (4) (2008) 592–607. PubMed

Rosen MB, Schmid JE, Das KP, Wood CR, Zehr RD, Lau C, Gene expression profiling in the liver and lung of perfluorooctane sulfonate-exposed mouse fetuses: comparison to changes induced by exposure to perfluorooctanoic acid, Reprod. Toxicol 27 (3–4) (2009) 278–288. PubMed

Kudo N, Kawashima Y, Fish oil-feeding prevents perfluorooctanoic acid-induced fatty liver in mice, Toxicol. Appl. Pharmacol 145 (2) (1997) 285–293. PubMed

Marques E, Pfohl M, Auclair A, Jamwal R, Barlock BJ, Sammoura FM, Goedken M, Akhlaghi F, Slitt AL, Perfluorooctanesulfonic acid (PFOS) administration shifts the hepatic proteome and augments dietary outcomes related to hepatic steatosis in mice, Toxicol. Appl. Pharmacol 408 (2020), 115250. PubMed PMC

Wang L, Wang Y, Liang Y, Li J, Liu Y, Zhang J, Zhang A, Fu J, Jiang G, PFOS induced lipid metabolism disturbances in BALB/c mice through inhibition of low density lipoproteins excretion, Sci. Rep 4 (2014) 4582. PubMed PMC

Shabalina IG, Kramarova TV, Mattsson CL, Petrovic N, Rahman Qazi M, Csikasz RI, Chang SC, Butenhoff J, DePierre JW, Cannon B, Nedergaard J, The Environmental Pollutants Perfluorooctane Sulfonate and Perfluorooctanoic Acid Upregulate Uncoupling Protein 1 (UCP1) in Brown-Fat Mitochondria Through a UCP1-Dependent Reduction in Food Intake, Toxicological sciences : an official journal of the Society of, Toxicology 146 (2) (2015) 334–343. PubMed

Hines EP, White SS, Stanko JP, Gibbs-Flournoy EA, Lau C, Fenton SE, Phenotypic dichotomy following developmental exposure to perfluorooctanoic acid (PFOA) in female CD-1 mice: Low doses induce elevated serum leptin and insulin, and overweight in mid-life, Mol. Cell. Endocrinol 304 (1–2) (2009) 97–105. PubMed

Tian YP, Zeng XW, Bloom MS, Lin S, Wang SQ, Yim SHL, Yang M, Chu C, Gurram N, Hu LW, Liu KK, Yang BY, Feng D, Liu RQ, Nian M, Dong GH, Isomers of perfluoroalkyl substances and overweight status among Chinese by sex status: Isomers of C8 Health Project in China, Environ. Int 124 (2019) 130–138. PubMed

Chen A, Jandarov R, Zhou L, Calafat AM, Zhang G, Urbina EM, Sarac J, Augustin DH, Caric T, Bockor L, Petranovic MZ, Novokmet N, Missoni S, Rudan P, Deka R, Association of perfluoroalkyl substances exposure with cardiometabolic traits in an island population of the eastern Adriatic coast of Croatia, The Science of the total environment 683 (2019) 29–36. PubMed PMC

Christensen KY, Raymond M, Meiman J, Perfluoroalkyl substances and metabolic syndrome, Int. J. Hyg. Environ. Health 222 (1) (2019) 147–153. PubMed

He X, Liu Y, Xu B, Gu L, Tang W, PFOA is associated with diabetes and metabolic alteration in US men: National Health and Nutrition Examination Survey 2003–2012, The Science of the total environment 625 (2018) 566–574. PubMed

Harris MH, Rifas-Shiman SL, Calafat AM, Ye X, Mora AM, Webster TF, Oken E, Sagiv SK, Predictors of Per- and Polyfluoroalkyl Substance (PFAS) Plasma Concentrations in 6–10 Year Old American Children, Environ. Sci. Technol 51 (9) (2017) 5193–5204. PubMed PMC

Scinicariello F, Buser MC, Abadin HG, Attanasio R, Perfluoroalkyl substances and anthropomorphic measures in children (ages 3–11 years), NHANES 2013–2014, Environ. Res 186 (2020), 109518. PubMed PMC

Averina M, Brox J, Huber S, Furberg AS, Exposure to perfluoroalkyl substances (PFAS) and dyslipidemia, hypertension and obesity in adolescents, Environ Res, The Fit Futures study, 2021, p. 110740. PubMed

Kingsley SL, Walker DI, Calafat AM, Chen A, Papandonatos GD, Xu Y, Jones DP, Lanphear BP, Pennell KD, Braun JM, Metabolomics of childhood exposure to perfluoroalkyl substances: a cross-sectional study, Metabolomics : Official journal of the Metabolomic Society 15 (7) (2019) 95. PubMed PMC

Alderete TL, Jin R, Walker DI, Valvi D, Chen Z, Jones DP, Peng C, Gilliland FD, Berhane K, Conti DV, Goran MI, Chatzi L, Perfluoroalkyl substances, metabolomic profiling, and alterations in glucose homeostasis among overweight and obese Hispanic children: A proof-of-concept analysis, Environ. Int 126 (2019) 445–453. PubMed PMC

Liu G, Dhana K, Furtado JD, Rood J, Zong G, Liang L, Qi L, Bray GA, DeJonge L, Coull B, Grandjean P, Sun Q, Perfluoroalkyl substances and changes in body weight and resting metabolic rate in response to weight-loss diets: A prospective study, PLoS Med. 15 (2) (2018), e1002502. PubMed PMC

Cardenas A, Hauser R, Gold DR, Kleinman KP, Hivert MF, Fleisch AF, Lin PD, Calafat AM, Webster TF, Horton ES, Oken E, Association of Perfluoroalkyl and Polyfluoroalkyl Substances With Adiposity, JAMA network open 1 (4) (2018), e181493. PubMed PMC

Domazet SL, Grontved A, Timmermann AG, Nielsen F, Jensen TK, Longitudinal Associations of Exposure to Perfluoroalkylated Substances in Childhood and Adolescence and Indicators of Adiposity and Glucose Metabolism 6 and 12 Years Later: The European Youth Heart Study, Diabetes Care 39 (10) (2016) 1745–1751. PubMed

Johnson PI, Sutton P, Atchley DS, Koustas E, Lam J, Sen S, Robinson KA, Axelrad DA, Woodruff TJ, The Navigation Guide - evidence-based medicine meets environmental health: systematic review of human evidence for PFOA effects on fetal growth, Environ. Health Perspect 122 (10) (2014) 1028–1039. PubMed PMC

Cao T, Qu A, Li Z, Wang W, Liu R, Wang X, Nie Y, Sun S, Zhang X, Liu X, The relationship between maternal perfluoroalkylated substances exposure and low birth weight of offspring: a systematic review and meta-analysis, Environ. Sci. Pollut. Res. Int (2021). PubMed

Starling AP, Adgate JL, Hamman RF, Kechris K, Calafat AM, Ye X, Dabelea D, Perfluoroalkyl Substances during Pregnancy and Offspring Weight and Adiposity at Birth: Examining Mediation by Maternal Fasting Glucose in the Healthy Start Study, Environ. Health Perspect 125 (6) (2017), 067016. PubMed PMC

Kobayashi S, Azumi K, Goudarzi H, Araki A, Miyashita C, Kobayashi S, Itoh S, Sasaki S, Ishizuka M, Nakazawa H, Ikeno T, Kishi R, Effects of prenatal perfluoroalkyl acid exposure on cord blood IGF2/H19 methylation and ponderal index: The Hokkaido Study, J. Eposure Sci. Environ. Epidemiol 27 (3) (2017) 251–259. PubMed

Mitro SD, Sagiv SK, Rifas-Shiman SL, Calafat AM, Fleisch AF, Jaacks LM, Williams PL, Oken E, James-Todd TM, Per- and Polyfluoroalkyl Substance Exposure, Gestational Weight Gain, and Postpartum Weight Changes in Project Viva, Obesity (Silver Spring) 28 (10) (2020) 1984–1992. PubMed PMC

Romano ME, Gallagher LG, Eliot MN, Calafat AM, Chen A, Yolton K, Lanphear B, Braun JM, Per- and polyfluoroalkyl substance mixtures and gestational weight gain among mothers in the Health Outcomes and Measures of the Environment study, Int. J. Hyg. Environ. Health 231 (2021), 113660. PubMed PMC

Marks KJ, Jeddy Z, Flanders WD, Northstone K, Fraser A, Calafat AM, Kato K, Hartman TJ, Maternal serum concentrations of perfluoroalkyl substances during pregnancy and gestational weight gain: The Avon Longitudinal Study of Parents and Children, Reprod. Toxicol 90 (2019) 8–14. PubMed PMC

Jaacks LM, Boyd Barr D, Sundaram R, Grewal J, Zhang C, Buck Louis GM, Pre-Pregnancy Maternal Exposure to Persistent Organic Pollutants and Gestational Weight Gain: A Prospective Cohort Study, Int. J. Environ. Res. Public Health 13 (9) (2016). PubMed PMC

Ashley-Martin J, Dodds L, Arbuckle TE, Morisset AS, Fisher M, Bouchard MF, Shapiro GD, Ettinger AS, Monnier P, Dallaire R, Taback S, Fraser W, Maternal and Neonatal Levels of Perfluoroalkyl Substances in Relation to Gestational Weight Gain, Int. J. Environ. Res. Public Health 13 (1) (2016). PubMed PMC

Starling AP, Brinton JT, Glueck DH, Shapiro AL, Harrod CS, Lynch AM, Siega-Riz AM, Dabelea D, Associations of maternal BMI and gestational weight gain with neonatal adiposity in the Healthy Start study, Am. J. Clin. Nutr 101 (2) (2015) 302–309. PubMed PMC

Chen Z, Yang T, Walker DI, Thomas DC, Qiu C, Chatzi L, Alderete TL, Kim JS, Conti DV, Breton CV, Liang D, Hauser ER, Jones DP, Gilliland FD, Dysregulated lipid and fatty acid metabolism link perfluoroalkyl substances exposure and impaired glucose metabolism in young adults, Environ. Int 145 (2020), 106091. PubMed PMC

Braun JM, Chen A, Romano ME, Calafat AM, Webster GM, Yolton K, Lanphear BP, Prenatal perfluoroalkyl substance exposure and child adiposity at 8 years of age: The HOME study, Obesity (Silver Spring) 24 (1) (2016) 231–237. PubMed PMC

Liu P, Yang F, Wang Y, Yuan Z, Perfluorooctanoic Acid (PFOA) Exposure in Early Life Increases Risk of Childhood Adiposity: A Meta-Analysis of Prospective Cohort Studies, Int. J. Environ. Res. Public Health 15 (10) (2018). PubMed PMC

Halldorsson TI, Rytter D, Haug LS, Bech BH, Danielsen I, Becher G, Henriksen TB, Olsen SF, Prenatal Exposure to Perfluorooctanoate and Risk of Overweight at 20 Years of Age: A Prospective Cohort Study, Environ. Health Perspect (2012). PubMed PMC

Bloom MS, Commodore S, Ferguson PL, Neelon B, Pearce JL, Baumer A, Newman RB, Grobman W, Tita A, Roberts J, Skupski D, Palomares K, Nageotte M, Kannan K, Zhang C, Wapner R, Vena JE, Hunt KJ, Association between gestational PFAS exposure and Children’s adiposity in a diverse population, Environ. Res 203 (2022), 111820. PubMed PMC

Barry V, Darrow LA, Klein M, Winquist A, Steenland K, Early life perfluorooctanoic acid (PFOA) exposure and overweight and obesity risk in adulthood in a community with elevated exposure, Environ. Res 132 (2014) 62–69. PubMed

Andersen CS, Fei C, Gamborg M, Nohr EA, Sorensen TI, Olsen J, Prenatal exposures to perfluorinated chemicals and anthropometry at 7 years of age, Am. J. Epidemiol 178 (6) (2013) 921–927. PubMed

Mérillon JM, Ramawat KG , Sweeteners: Pharmacology, Biotechnology, and Applications, Switzerland: Springer; (2018).

Kumar NS, Sharma A, Kishore DK, K., Food Safety and Human Health, London: Academic Press; (2019).

Gardiner C, Wylie-Rossett J, Gidding SS, Steffen LM, Johnson RK, Reader D, Lichtenstein AH, Non-nutritive sweeteners: current use and health perspectives: a scientific statement from the American Heart association and the American Diabetes Association, Diabetes Care 35 (2012) 1798–1808. PubMed PMC

Moriconi E, Feraco A, Marzolla V, Infante M, Lombardo M, Fabbri A, Caprio M, ‘Neuroendocrine and Metabolic Effects of Low-Calorie and Non-Calorie Sweeteners, Front. Endocrinol 11 (2020) 444. PubMed PMC

Liauchonak I, Qirri B, Dawoud F, Riat Y, Szewczuk MR, Non-nuitritive sweeteners and their implication on the development of metabolic syndrome, Nutrients 11 (2019) 644. PubMed PMC

Rother KI, Conway EM, Sylvetsky AC, How non-nutritive sweeteners influence hormones and health, Trends Endocrinol. Metab 29 (7) (2018). PubMed

Azad MB, Archibald A, Tomczyk MM, Head A, Cheung KG, Souza RJ, Becker AB, Mandhane PJ, Turvey SE, Moraes TJ, Sears MR, Subbarao P, Dolinsky VW, Nonnutritive sweetener consumption during pregnancy, adiposity, and adipocyte differentiation in offspring: evidence from humans, mice, and cells, International Journal of Obesity 44 (2020) 2137–2148. PubMed

Rosales-Gomez CA, Martinez-Carrillo BE, Resendiz-Albor AA, Ramirez-Duran N, Valdes-Ramos R, Mondragon-Velasquez T, Escoto-Herrera JA, Chronic Consumption of Sweeteners and Its Effect on Glycaemia, Cytokines, Hormones, and Lymphocytes of GALT in CD1 Mice, Biomed Res. Int (2018) 1–15. PubMed PMC

Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, Israeli D, Zmora N, Gilad S, Weinberger A, Kuperman Y, Harmelin A, Kolodkin-Gal I, Shapiro H, Halpern Z, Segal E, Elinav E, Artificial sweeteners induce glucose intolerance by altering the gut microbiota, Nature 514 (7521) (2014) 181–186. PubMed

Kundu N, Domingues CC, Patel J, Aljishi M, Ahmadi N, Fakhri M, Sylvetsky AC, Sen S, Sucralose promotes accumulation of reactive oxygen species (ROS) and adipogenesis in mesenchymal stromal cells, Stem Cell Res. Ther 11 (1) (2020). PubMed PMC

Palkowska-Gozdzik E, Bigos A, Rosolowska-Huszcz D, ‘Type of sweet flavour carrier affects thyroid axis activity in male rats’, Eur. J. Nutr 57 (2018) 773–782. PubMed PMC

Romo-Romo A, Aguilar-Salinas CA, Lopez-Carrasco MG, Guillen-Pineda LE, Brito-Cordova GX, Gomez-Diaz RA, Gomez-Perez FJ, Almeda-Valdes P, ‘Sucralose Consumption over 2 Weeks in Healthy Subjects Does Not Modify Fasting Plasma Concentrations of Appetite-Regulating Hormones: A Randomized Clinical Trial’, Journal of the Academy of, Nutrition and Dietetics 120 (8) (2020) 1295–1304. PubMed

Dalenberg JR, Patel BP, Denis R, Vinke PC, Luquet S, Small DM, Short-Term Consumption of Sucralose with, but Not without, Carbohydrate Impairs Neural and Metabolic Sensitivity to Sugar in Humans, Cell Metab. 31 (2020) 493–502. PubMed PMC

Azeez OH, Alkass SY, Persike DS, Long-Term Saccharin Consumption and Increased Risk of Obesity, Diabetes, Hepatic Dysfunction, and Renal Impairment in Rats, Med. Lith 55 (10) (2019) 1–15. PubMed PMC

Y.J. Zhao X, Chen K, Song L, Sun B, Wei X, Effects of saccharin supplementation on body weight, sweet receptor mRNA expression and appetite signals regulation in post-weanling rats, Peptides 107 (2018) 32–38. PubMed

Reiss R, Chang ET, Richardson RJ, Goodman M, A review of epidemiologic studies of low-level exposures to organophosphorus insecticides in non-occupational populations, Crit. Rev. Toxicol 45 (7) (2015) 531–641. PubMed

Blanco J, Guardia-Escote L, Mulero M, Basaure P, Biosca-Brull J, Cabré M, Colomina MT, Domingo JL, Sánchez DJ, Obesogenic effects of chlorpyrifos and its metabolites during the differentiation of 3T3-L1 preadipocytes, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 137 (2020), 111171. PubMed

Meggs WJ, Brewer KL, Weight gain associated with chronic exposure to chlorpyrifos in rats, J. Med. Toxicol 3 (3) (2007) 89–93. PubMed PMC

Peris-Sampedro F, Cabré M, Basaure P, Reverte I, Domingo JL, Teresa Colomina M, Adulthood dietary exposure to a common pesticide leads to an obese-like phenotype and a diabetic profile in apoE3 mice, Environ. Res 142 (2015) 169–176. PubMed

Guardia-Escote L, Blanco J, Basaure P, Biosca-Brull J, Verkaik-Schakel RN, Cabré M, Peris-Sampedro F, Pérez-Fernández C, Sánchez-Santed F, Plösch T, Domingo JL, Colomina MT, Sex and Exposure to Postnatal Chlorpyrifos Influence the Epigenetics of Feeding-Related Genes in a Transgenic APOE Mouse Model: Long-Term Implications on Body Weight after a High-Fat Diet, Int. J. Environ. Res. Public Health 18 (1) (2020) 184. PubMed PMC

Basaure P, Guardia-Escote L, Biosca-Brull J, Blanco J, Cabré M, Peris-Sampedro F, Sánchez-Santed F, Domingo JL, Colomina MT, Exposure to chlorpyrifos at different ages triggers APOE genotype-specific responses in social behavior, body weight and hypothalamic gene expression, Environ. Res 178 (2019), 108684. PubMed

Fang B, Li JW, Zhang M, Ren FZ, Pang GF, Chronic chlorpyrifos exposure elicits diet-specific effects on metabolism and the gut microbiome in rats, Food Chem. Toxicol 111 (2018) 144–152. PubMed

Liang Y, Zhan J, Liu D, Luo M, Han J, Liu X, Liu C, Cheng Z, Zhou Z, Wang P, Organophosphorus pesticide chlorpyrifos intake promotes obesity and insulin resistance through impacting gut and gut microbiota, Microbiome 7 (1) (2019) 19. PubMed PMC

Zhang Y, Jia Q, Hu C, Han M, Guo Q, Li S, Bo C, Zhang Y, Qi X, Sai L, Peng C, Effects of chlorpyrifos exposure on liver inflammation and intestinal flora structure in mice, Toxicol Res (Camb) 10 (1) (2021) 141–149. PubMed PMC

Samarghandian S, Foadoddin M, Zardast M, Mehrpour O, Sadighara P, Roshanravan B, Farkhondeh T, The impact of age-related sub-chronic exposure to chlorpyrifos on metabolic indexes in male rats, Environ. Sci. Pollut. Res. Int 27 (18) (2020) 22390–22399. PubMed

Lassiter TL, Brimijoin S, Rats gain excess weight after developmental exposure to the organophosphorothionate pesticide, chlorpyrifos, Neurotoxicol. Teratol 30 (2) (2008) 125–130. PubMed

Park Y, Kim Y, Kim J, Yoon KS, Clark J, Lee J, Imidacloprid, a neonicotinoid insecticide, potentiates adipogenesis in 3T3-L1 adipocytes, J. Agric. Food Chem 61 (1) (2013) 255–259. PubMed

Sun Q, Xiao X, Kim Y, Kim D, Yoon KS, Clark JM, Park Y, Imidacloprid Promotes High Fat Diet-Induced Adiposity and Insulin Resistance in Male C57BL/6J Mice, J. Agric. Food. Chem 64 (49) (2016) 9293–9306. PubMed PMC

Sun Q, Qi W, Xiao X, Yang SH, Kim D, Yoon KS, Clark JM, Park Y, Imidacloprid Promotes High Fat Diet-Induced Adiposity in Female C57BL/6J Mice and Enhances Adipogenesis in 3T3-L1 Adipocytes via the AMPKalpha-Mediated Pathway, J. Agric. Food Chem 65 (31) (2017) 6572–6581. PubMed PMC

Ndonwi EN, Atogho-Tiedeu B, Lontchi-Yimagou E, Shinkafi TS, Nanfa D, Balti EV, Katte JC, Mbanya A, Matsha T, Mbanya JC, Shakir A, Sobngwi E, Metabolic effects of exposure to pesticides during gestation in female Wistar rats and their offspring: a risk factor for diabetes? Toxicological research 36 (3) (2020) 249–256. PubMed PMC

Xiao X, Sun Q, Kim Y, Yang SH, Qi W, Kim D, Yoon KS, Clark JM, Park Y, Exposure to permethrin promotes high fat diet-induced weight gain and insulin resistance in male C57BL/6J mice, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 111 (2018) 405–416. PubMed PMC

Xiao X, Qi W, Clark JM, Park Y, Permethrin potentiates adipogenesis via intracellular calcium and endoplasmic reticulum stress-mediated mechanisms in 3T3-L1 adipocytes, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 109 (Pt 1) (2017) 123–129. PubMed

Kim J, Park Y, Yoon KS, Clark JM, Park Y, Permethrin alters adipogenesis in 3T3-L1 adipocytes and causes insulin resistance in C2C12 myotubes, J. Biochem. Mol. Toxicol 28 (9) (2014) 418–424. PubMed

Sargis RM, Neel BA, Brock CO, Lin Y, Hickey AT, Carlton DA, Brady MJ, The novel endocrine disruptor tolylfluanid impairs insulin signaling in primary rodent and human adipocytes through a reduction in insulin receptor substrate-1 levels, BBA 2012 (1822) 952–960. PubMed PMC

Chen Y, McCommis KS, Ferguson D, Hall AM, Harris CA, Finck BN, Inhibition of the Mitochondrial Pyruvate Carrier by Tolylfluanid, Endocrinology 159 (2) (2018) 609–621. PubMed PMC

Regnier SM, Kirkley AG, Ruiz D, Kamau W, Wu Q, Kannan K, Sargis RM, Diet-dependence of metabolic perturbations mediated by the endocrine disruptor tolylfluanid, Endocr Connect 7 (1) (2018) 159–168. PubMed PMC

Ruiz D, Regnier SM, Kirkley AG, Hara M, Haro F, Aldirawi H, Dybala MP, Sargis RM, Developmental exposure to the endocrine disruptor tolylfluanid induces sex-specific later-life metabolic dysfunction, Reprod. Toxicol 89 (2019) 74–82. PubMed PMC

Zinöcker MK, Lindseth IA, The Western Diet-Microbiome-Host Interaction and Its Role in Metabolic Disease, Nutrients 10 (3) (2018) 365. PubMed PMC

Lustig RH, Ultraprocessed Food: Addictive, Toxic, and Ready for Regulation, Nutrients 12 (11) (2020). PubMed PMC

Wong SK, Chin K-Y, Suhaimi FH, Fairus A, Ima-Nirwana S, Animal models of metabolic syndrome: a review, Nutrition & Metabolism 13 (1) (2016) 65. PubMed PMC

Simmons AL, Schlezinger JJ, Corkey BE, What Are We Putting in Our Food That Is Making Us Fat? Food Additives, Contaminants, and Other Putative Contributors to Obesity, Current obesity reports 3 (2) (2014) 273–285. PubMed PMC

Sharma S, Fernandes MF, Fulton S, Adaptations in brain reward circuitry underlie palatable food cravings and anxiety induced by high-fat diet withdrawal, International journal of obesity (2005) 37(9) (2013) 1183–91. PubMed

Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR, Muehlbauer MJ, Ilkayeva O, Semenkovich CF, Funai K, Hayashi DK, Lyle BJ, Martini MC, Ursell LK, Clemente JC, Van Treuren W, Walters WA, Knight R, Newgard CB, Heath AC, Gordon JI, Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in Mice, Science 341 (6150) (2013). PubMed PMC

Stanhope KL, Sugar consumption, metabolic disease and obesity: The state of the controversy, Crit. Rev. Clin. Lab. Sci 53 (1) (2016) 52–67. PubMed PMC

Lustig RH, Fructose: metabolic, hedonic, and societal parallels with ethanol, J. Am. Diet. Assoc 110 (2010) 1307–1321. PubMed

Muriel P, López-Sánchez P, Ramos-Tovar E, Fructose and the Liver, Int. J. Mol. Sci 22 (13) (2021). PubMed PMC

Schwarz JM, Noworolski SM, Erkin-Cakmak A, K. NJ, Wen MJ, Tai VW, Jones GM, Palii SP, Velasco-Alin M, Pan K, Patterson BW, Gugliucci A, Lustig RH, Mulligan K, Impact of dietary fructose restriction on liver fat, de novo lipogenesis, and insulin kinetics in children with obesity, Gastroenterology 153 (2017) 743–752. PubMed PMC

Bowen J, Noakes M, Clifton PM, Appetite hormones and energy intake in obese men after consumption of fructose, glucose and whey protein beverages, International journal of obesity (2005) 31(11) (2007) 1696–703. PubMed

Goran MI, Dumke K, Bouret SG, Kayser B, Walker RW, Blumberg B, The obesogenic effect of high fructose exposure during early development, Nature reviews. Endocrinology 9 (8) (2013) 494–500. PubMed PMC

Calafat AM, Ye X, Wong L-Y, Bishop AM, Needham LL, Urinary concentrations of four parabens in the U.S. population: NHANES 2005-2006, Environmental health perspectives 118(5) (2010) 679–685. PubMed PMC

Hu P, Chen X, Whitener RJ, Boder ET, Jones JO, Porollo A, Chen J, Zhao L, Effects of parabens on adipocyte differentiation, Toxicological sciences : an official journal of the Society of, Toxicology 131 (1) (2013) 56–70. PubMed PMC

Hu P, Overby H, Heal E, Wang S, Chen J, Shen C-L, Zhao L, Methylparaben and butylparaben alter multipotent mesenchymal stem cell fates towards adipocyte lineage, Toxicol. Appl. Pharmacol 329 (2017) 48–57. PubMed PMC

Leppert B, Strunz S, Seiwert B, Schlittenbauer L, Schlichting R, Pfeiffer C, Roder S, Bauer M, Borte M, Stangl GI, Schoneberg T, Schulz A, Karkossa I, Rolle-Kampczyk UE, Thurmann L, von Bergen M, Escher BI, Junge KM, Reemtsma T, Lehmann I, Polte T, Maternal paraben exposure triggers childhood overweight development, Nat. Commun 11 (1) (2020) 561. PubMed PMC

Hu J, Raikhel V, Gopalakrishnan K, Fernandez-Hernandez H, Lambertini L, Manservisi F, Falcioni L, Bua L, Belpoggi F, S LT, Chen J, Effect of postnatal low-dose exposure to environmental chemicals on the gut microbiome in a rodent model, Microbiome 4(1) (2016) 26. PubMed PMC

Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE, Gewirtz AT, Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome, Nature 519 (7541) (2015) 92–96. PubMed PMC

Sun Z, Tang Z, Yang X, Liu QS, Liang Y, Fiedler H, Zhang J, Zhou Q, Jiang G, Perturbation of 3-tert-butyl-4-hydroxyanisole in adipogenesis of male mice with normal and high fat diets, Sci. Total Environ 703 (2020), 135608. PubMed

Sun Z, Yang X, Liu QS, Li C, Zhou Q, Fiedler H, Liao C, Zhang J, Jiang G, Butylated hydroxyanisole isomers induce distinct adipogenesis in 3T3-L1 cells, J. Hazard. Mater 379 (2019), 120794. PubMed

Türküner MS, Özcan F, Monosodium glutamate restricts the adipogenic potential of 3T3 - L1 preadipocytes through mitotic clonal expansion, Cell Biology International 44 (3) (2020) 744–754. PubMed

Olney JW, Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate, Science 164 (3880) (1969) 719–721. PubMed

Chakraborty SP, Patho-physiological and toxicological aspects of monosodium glutamate, Toxicol. Mech. Methods 29 (6) (2019) 389–396. PubMed

Hernández Bautista RJ, Mahmoud AM, Königsberg M, López Díaz Guerrero N.e., Obesity: Pathophysiology, monosodium glutamate-induced model and anti-obesity medicinal plants, Biomed. Pharmacother 111 (2019) 503–516. PubMed

Shannon M, Green B, Willars G, Wilson J, Matthews N, Lamb J, Gillespie A, Connolly L, The endocrine disrupting potential of monosodium glutamate (MSG) on secretion of the glucagon-like peptide-1 (GLP-1) gut hormone and GLP-1 receptor interaction, Toxicol. Lett 265 (2017) 97–105. PubMed

Temkin AM, Bowers RR, Magaletta ME, Holshouser S, Maggi A, Ciana P, Guillette LJ, Bowden JA, Kucklick JR, Baatz JE, Spyropoulos DD, Effects of Crude Oil/Dispersant Mixture and Dispersant Components on PPARγ Activity in Vitro and in Vivo: Identification of Dioctyl Sodium Sulfosuccinate (DOSS; CAS #577-11-7) as a Probable Obesogen, Environ. Health Perspect 124 (1) (2016) 112–119. PubMed PMC

Temkin AM, Bowers RR, Ulmer CZ, Penta K, Bowden JA, Nyland J, Baatz JE, Spyropoulos DD, Increased adiposity, inflammation, metabolic disruption and dyslipidemia in adult male offspring of DOSS treated C57BL/6 dams, Sci. Rep 9 (1) (2019) 1530. PubMed PMC

Stoica A, Katzenellenbogen BS, Martin MB, Activation of estrogen receptor-alpha by the heavy metal cadmium, Mol. Endocrinol 14 (4) (2000) 545–553. PubMed

M.b. v, m.b. z, a. a, c. v, l. a, f. e, m. s,, The endocrine disruptor cadmium: a new player in the pathophysiology of metabolic diseases, J. Endocrinol. Invest 44 (7) (2021) 1363–1377. PubMed

Bimonte VM, Besharat ZM, Antonioni A, Cella V, Lenzi A, Ferretti E, Migliaccio S, The endocrine disruptor cadmium: a new player in the pathophysiology of metabolic diseases, J. Endocrinol. Invest 44 (7) (2021) 1363–1377. PubMed

Fransson MN, Barregard L, Sallsten G, Akerstrom M, Johanson G, Physiologically-Based Toxicokinetic Model for Cadmium Using Markov-Chain Monte Carlo Analysis of Concentrations in Blood, Urine, and Kidney Cortex from Living Kidney Donors, Toxicological Sciences 141 (2) (2014) 365–376. PubMed PMC

Jackson TW, Ryherd GL, Scheibly CM, Sasser AL, Guillette TC, Belcher SM, Gestational Cd Exposure in the CD-1 Mouse Induces Sex-Specific Hepatic Insulin Insensitivity, Obesity, and Metabolic Syndrome in Adult Female Offspring, Toxicological Sciences 178 (2) (2020) 264–280. PubMed PMC

Buha A, Đukić-Cosić D, Ćurčić M, Bulat Z, Antonijević B, Moulis J-M, Goumenou M, Wallace D, Emerging Links between Cadmium Exposure and Insulin Resistance: Human, Animal, and Cell Study Data, Toxics 8 (3) (2020) 63. PubMed PMC

Lee EJ, Moon JY, Yoo BS, Cadmium inhibits the differentiation of 3T3-L1 preadipocyte through the C/EBPα and PPARγ pathways, Drug Chem. Toxicol 35 (2) (2012) 225–231. PubMed

Karakis I, Baumfeld Y, Landau D, Gat R, Shemesh N, Yitshak-Sade M, Tirosh O, Sarov B, Novack L, Exposure to metals and morbidity at eight years follow-up in women of childbearing age, Sci. Rep (2021) 11429. PubMed PMC

Echeverría R, Vrhovnik P, Salcedo-Bellido I, Iribarne-Durán LM, Fiket Ž, Dolenec M, Martin-Olmedo P, Olea N, Arrebola JP, Levels and determinants of adipose tissue cadmium concentrations in an adult cohort from Southern Spain, The Science of the total environment 670 (2019) 1028–1036. PubMed

Kuivenhoven M, Mason K, Arsenic Toxicity, StatPearls, StatPearls Publishing. PubMed

Copyright © 2021, StatPearls Publishing LLC., Treasure Island (FL), 2021.

Hou Y, Xue P, Woods CG, Wang X, Fu J, Yarborough K, Qu W, Zhang Q, Andersen ME, Pi J, Association between arsenic suppression of adipogenesis and induction of CHOP10 via the endoplasmic reticulum stress response, Environ. Health Perspect 121 (2) (2013) 237–243. PubMed PMC

Wang ZX, Jiang CS, Liu L, Wang XH, Jin HJ, Wu Q, Chen Q, The role of Akt on arsenic trioxide suppression of 3T3-L1 preadipocyte differentiation, Cell Res. 15 (5) (2005) 379–386. PubMed

Rodriguez KF, Ungewitter EK, Crespo-Mejias Y, Liu C, Nicol B, Kissling GE, Yao H-H-C, Effects of in Utero Exposure to Arsenic during the Second Half of Gestation on Reproductive End Points and Metabolic Parameters in Female CD-1 Mice, Environ. Health Perspect 124 (3) (2016) 336–343. PubMed PMC

Rodriguez KF, Mellouk N, Ungewitter EK, Nicol B, Liu C, Brown PR, Willson CJ, Yao HHC, In utero exposure to arsenite contributes to metabolic and reproductive dysfunction in male offspring of CD-1 mice, Reprod. Toxicol 95 (2020) 95–103. PubMed PMC

Carmean CM, Kirkley AG, Landeche M, Ye H, Chellan B, Aldirawi H, Roberts AA, Parsons PJ, Sargis RM, Arsenic Exposure Decreases Adiposity During High-Fat Feeding, Obesity (Silver Spring) 28 (5) (2020) 932–941. PubMed PMC

Paul DS, Walton FS, Saunders RJ, Styblo M, Characterization of the impaired glucose homeostasis produced in C57BL/6 mice by chronic exposure to arsenic and high-fat diet, Environ. Health Perspect 119 (8) (2011) 1104–1109. PubMed PMC

Su CT, Lin HC, Choy CS, Huang YK, Huang SR, Hsueh YM, The relationship between obesity, insulin and arsenic methylation capability in Taiwan adolescents, The Science of the total environment 414 (2012) 152–158. PubMed

Eick SM, Steinmaus C, Arsenic and Obesity: a Review of Causation and Interaction, Current environmental health reports 7 (3) (2020) 343–351. PubMed PMC

Kassotis CD, Nagel SC, Stapleton HM, Unconventional oil and gas chemicals and wastewater-impacted water samples promote adipogenesis via PPARγ-dependent and independent mechanisms in 3T3-L1 cells, The Science of the total environment 640–641 (2018) 1601–1610. PubMed PMC

Peng H, Sun J, Alharbi HA, Jones PD, Giesy JP, Wiseman S, Peroxisome Proliferator-Activated Receptor γ is a Sensitive Target for Oil Sands Process-Affected Water: Effects on Adipogenesis and Identification of Ligands, Environ. Sci. Technol 50 (14) (2016) 7816–7824. PubMed

Kassotis CD, Klemp KC, Vu DC, Lin CH, Meng CX, Besch-Williford CL, Pinatti L, Zoeller RT, Drobnis EZ, Balise VD, Isiguzo CJ, Williams MA, Tillitt DE, Nagel SC, Endocrine-Disrupting Activity of Hydraulic Fracturing Chemicals and Adverse Health Outcomes After Prenatal Exposure in Male Mice, Endocrinology 156 (12) (2015) 4458–4473. PubMed

Balise VD, Cornelius-Green JN, Parmenter B, Baxter S, Kassotis CD, Rector RS, Thyfault JP, Paterlini S, Palanza P, Ruiz D, Sargis R, Nagel SC, Developmental Exposure to a Mixture of Unconventional Oil and Gas Chemicals Increased Risk-Taking Behavior, Activity and Energy Expenditure in Aged Female Mice After a Metabolic Challenge, Front Endocrinol (Lausanne) 10 (2019) 460. PubMed PMC

Benbrook CM, Trends in glyphosate herbicide use in the United States and globally, Environ. Sci. Eur 28 (1) (2016) 3. PubMed PMC

Biserni M, Mesnage R, Ferro R, Wozniak E, Xenakis T, Mein CA, Antoniou MN, Quizalofop-p-Ethyl Induces Adipogenesis in 3T3-L1 Adipocytes, Toxicological sciences : an official journal of the Society of, Toxicology 170 (2) (2019) 452–461. PubMed PMC

Martini CN, Gabrielli M, Codesido MM, del Vila MC, Glyphosate-based herbicides with different adjuvants are more potent inhibitors of 3T3-L1 fibroblast proliferation and differentiation to adipocytes than glyphosate alone, Comp. Clin. Pathol 25 (3) (2016) 607–613.

Kubsad D, Nilsson EE, King SE, Sadler-Riggleman I, Beck D, Skinner MK, Assessment of Glyphosate Induced Epigenetic Transgenerational Inheritance of Pathologies and Sperm Epimutations: Generational Toxicology, Sci. Rep 9 (1) (2019) 6372. PubMed PMC

Aggarwal V, Deng X, Tuli A, Goh KS, Diazinon-chemistry and environmental fate: a California perspective, Rev. Environ. Contam. Toxicol 223 (2013) 107–140. PubMed

Smith A, Yu X, Yin L, Diazinon exposure activated transcriptional factors CCAAT-enhancer-binding proteins α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ) and induced adipogenesis in 3T3-L1 preadipocytes, Pestic. Biochem. Physiol 150 (2018) 48–58. PubMed PMC

Kassotis CD, Hoffman K, Stapleton HM, Characterization of Adipogenic Activity of House Dust Extracts and Semi-Volatile Indoor Contaminants in 3T3-L1 Cells, Environ. Sci. Technol 51 (15) (2017) 8735–8745. PubMed PMC

Stapleton HM, Klosterhaus S, Eagle S, Fuh J, Meeker JD, Blum A, Webster TF, Detection of organophosphate flame retardants in furniture foam and U.S. house dust, Environ. Sci. Technol 43 (19) (2009) 7490–7495. PubMed PMC

Kassotis CD, Hoffman K, Völker J, Pu Y, Veiga-Lopez A, Kim SM, Schlezinger JJ, Bovolin P, Cottone E, Saraceni A, Scandiffio R, Atlas E, Leingartner K, Krager S, Tischkau SA, Ermler S, Legler J, Chappell VA, Fenton SE, Mesmar F, Bondesson M, Fernández MF, Stapleton HM, Reproducibility of Adipogenic Responses to Metabolism Disrupting Chemicals in the 3T3-L1 Pre-adipocyte Model System: An Interlaboratory Study, Toxicology 461 (2021), 152900. PubMed PMC

Ying G-G, Williams B, Kookana R, Environmental fate of alkylphenols and alkylphenol ethoxylates—a review, Environ. Int 28 (3) (2002) 215–226. PubMed

Kassotis CD, Kollitz EM, Ferguson PL, Stapleton HM, Nonionic Ethoxylated Surfactants Induce Adipogenesis in 3T3-L1 Cells, Toxicological sciences : an official journal of the Society of, Toxicology 162 (1) (2018) 124–136. PubMed PMC

Kassotis CD, LeFauve MK, Chiang YT, Knuth MM, Schkoda S, Kullman SW, Nonylphenol Polyethoxylates Enhance Adipose Deposition in Developmentally Exposed Zebrafish, Toxics 10 (2) (2022). PubMed PMC

Sun Z, Cao H, Liu QS, Liang Y, Fiedler H, Zhang J, Zhou Q, Jiang G, 4-Hexylphenol influences adipogenic differentiation and hepatic lipid accumulation in vitro, Environ. Pollut 268 (2021), 115635. PubMed

Cao XL, Dufresne G, Clement G, Bélisle S, Robichaud A, Beraldin F, Levels of bisphenol A diglycidyl ether (BADGE) and bisphenol F diglycidyl ether (BFDGE) in canned liquid infant formula products in Canada and dietary intake estimates, J. AOAC Int 92 (6) (2009) 1780–1789. PubMed

Chamorro-García R, Kirchner S, Li X, Janesick A, Casey SC, Chow C, Blumberg B, Bisphenol A Diglycidyl Ether Induces Adipogenic Differentiation of Multipotent Stromal Stem Cells through a Peroxisome Proliferator-Activated Receptor Gamma-Independent Mechanism, Environ. Health Perspect 120 (7) (2012). PubMed PMC

Boucher JG, Boudreau A, Ahmed S, Atlas E, In Vitro Effects of Bisphenol A β-D-Glucuronide (BPA-G) on Adipogenesis in Human and Murine Preadipocytes, Environ. Health Perspect 123 (12) (2015) 1287–1293. PubMed PMC

Ginsberg GL, Balk SJ, Consumer products as sources of chemical exposures to children: case study of triclosan, Curr. Opin. Pediatr 28 (2) (2016) 235–242. PubMed

Liu J, Chen D, Huang Y, Bigambo FM, Chen T, Wang X, Effect of Maternal Triclosan Exposure on Neonatal Birth Weight and Children Triclosan Exposure on Children’s BMI: A Meta-Analysis, Front. Public Health 9 (2021), 648196. PubMed PMC

Lankester J, Patel C, Cullen MR, Ley C, Parsonnet J, Urinary triclosan is associated with elevated body mass index in NHANES, PLoS ONE 8 (11) (2013), e80057. PubMed PMC

Han M, Wang Y, Tang C, Fang H, Yang D, Wu J, Wang H, Chen Y, Jiang Q, Association of triclosan and triclocarban in urine with obesity risk in Chinese school children, Environ. Int 157 (2021), 106846. PubMed

Li X, Pham HT, Janesick AS, Blumberg B, Triflumizole Is an Obesogen in Mice that Acts through Peroxisome Proliferator Activated Receptor Gamma (PPARγ), Environ. Health Perspect 120 (12) (2012) 1720–1726. PubMed PMC

Lim S, Ahn SY, Song IC, Chung MH, Jang HC, Park KS, Lee K-U, Pak YK, Lee HK, Chronic Exposure to the Herbicide, Atrazine, Causes Mitochondrial Dysfunction and Insulin Resistance, PLoS ONE 4 (4) (2009), e5186. PubMed PMC

Fildes A, Charlton J, Rudisill C, Littlejohns P, Prevost AT, Gulliford MC, Probability of an Obese Person Attaining Normal Body Weight: Cohort Study Using Electronic Health Records, Am. J. Public Health 105 (9) (2015) e54–e59. PubMed PMC

Fothergill E, Guo J, Howard L, Kerns JC, Knuth ND, Brychta R, Chen KY, Skarulis MC, Walter M, Walter PJ, Hall KD, Persistent metabolic adaptation 6 years after “The Biggest Loser” competition, Obesity (Silver Spring), 2016, p. n/a-n/a.. PubMed PMC

Brown RE, Sharma AM, Ardern CI, Mirdamadi P, Mirdamadi P, Kuk JL, Secular differences in the association between caloric intake, macronutrient intake, and physical activity with obesity, Obesity research & clinical practice 10 (3) (2015) 243–255. PubMed

Teixeira PJ, CarraÇa EV, Marques MM, Rutter H, Oppert J-M, De Bourdeaudhuij I, Lakerveld J, Brug J, Successful behavior change in obesity interventions in adults: a systematic review of self-regulation mediators, BMC Medicine 13 (2015) 84. PubMed PMC

Newbold RR, Perinatal Exposure to Endocrine Disrupting Chemicals with Estrogenic Activity and the Development of Obesity, in: Lustig RH (Ed.), Obesity Before Birth, Springer US; 2011, pp. 367–382.

Johnson SA, Painter MS, Javurek AB, Ellersieck MR, Wiedmeyer CE, Thyfault JP, Rosenfeld CS, Sex-dependent effects of developmental exposure to bisphenol A and ethinyl estradiol on metabolic parameters and voluntary physical activity, J Dev Orig Health Dis (2015) 1–14. PubMed PMC

Hales CM, Carroll MD, Fryar CD, Ogden CL, Prevalence of Obesity Among Adults and Youth: United States, 2015-2016, NCHS data brief (288) (2017) 1–8. PubMed

Jiang X, Ma H, Wang Y, Liu Y, Early life factors and type 2 diabetes mellitus, J. Diabetes Research 2013 (2013), 485082. PubMed PMC

Myers MG, Leibel RL, Seeley RJ, Schwartz MW, Obesity and Leptin Resistance: Distinguishing Cause from Effect, Trends in endocrinology and metabolism: TEM 21 (11) (2010) 643–651. PubMed PMC

Sargis RM, Heindel JJ, Padmanabhan V, Interventions to Address Environmental Metabolism-Disrupting Chemicals: Changing the Narrative to Empower Action to Restore Metabolic Health, Front. Endocrinol 10 (33) (2019). PubMed PMC

Shaikh S, Jagai JS, Ashley C, Zhou S, Sargis RM, Underutilized and Under Threat: Environmental Policy as a Tool to Address Diabetes Risk, Curr Diab Rep 18 (5) (2018) 25. PubMed PMC

Harley KG, Kogut K, Madrigal DS, Cardenas M, Vera IA, Meza-Alfaro G, She J, Gavin Q, Zahedi R, Bradman A, Eskenazi B, Parra KL, Reducing Phthalate, Paraben, and Phenol Exposure from Personal Care Products in Adolescent Girls: Findings from the HERMOSA Intervention Study, Environ. Health Perspect 124 (10) (2016) 1600–1607. PubMed PMC

Rudel RA, Gray JM, Engel CL, Rawsthorne TW, Dodson RE, Ackerman JM, Rizzo J, Nudelman JL, Brody JG, Food packaging and bisphenol A and bis(2-ethyhexyl) phthalate exposure: findings from a dietary intervention, Environ. Health Perspect 119 (7) (2011) 914–920. PubMed PMC

Sathyanarayana S, Alcedo G, Saelens BE, Zhou C, Dills RL, Yu J, Lanphear B, Unexpected results in a randomized dietary trial to reduce phthalate and bisphenol A exposures, J. Eposure Sci. Environ. Epidemiol 23 (4) (2013) 378–384. PubMed

Lai IK, Dhakal K, Gadupudi GS, Li M, Ludewig G, Robertson LW, Olivier AK, N-acetylcysteine (NAC) diminishes the severity of PCB 126-induced fatty liver in male rodents, Toxicology 302 (1) (2012) 25–33. PubMed PMC

Rezaei M, Khodayar MJ, Seydi E, Soheila A, Parsi IK, Acute, but not Chronic, Exposure to Arsenic Provokes Glucose Intolerance in Rats: Possible Roles for Oxidative Stress and the Adrenergic Pathway, Can J, Diabetes 41 (3) (2017) 273–280. PubMed

Hennig B, Ormsbee L, McClain CJ, Watkins BA, Blumberg B, Bachas LG, Sanderson W, Thompson C, Suk WA, Nutrition Can Modulate the Toxicity of Environmental Pollutants: Implications in Risk Assessment and Human Health, Environ. Health Perspect 120 (6) (2012) 771–774. PubMed PMC

Gupta P, Thompson BL, Wahlang B, Jordan CT, Zach HJ, Hennig B, Dziubla T, The environmental pollutant, polychlorinated biphenyls, and cardiovascular disease: a potential target for antioxidant nanotherapeutics, Drug Deliv, Transl. Res (2017). PubMed PMC

Amjad S, Rahman MS, Pang MG, Role of Antioxidants in Alleviating Bisphenol A Toxicity, Biomolecules 10 (8) (2020). PubMed PMC

Zwierello W, Maruszewska A, Skorka-Majewicz M, Goschorska M, Baranowska-Bosiacka I, Dec K, Styburski D, Nowakowska A, Gutowska I, The influence of polyphenols on metabolic disorders caused by compounds released from plastics - Review, Chemosphere 240 (2019), 124901. PubMed

Guo W, Huen K, Park JS, Petreas M, Crispo SS, Block G, Holland N, Vitamin C intervention may lower the levels of persistent organic pollutants in blood of healthy women - A pilot study, Food Chem. Toxicol 92 (2016) 197–204. PubMed

Mengozzi A, Carli F, Guiducci L, Parolini F, Biancalana E, Gastaldelli A, Solini A, SGLT2 inhibitors and thiazide enhance excretion of DEHP toxic metabolites in subjects with type 2 diabetes: A randomized clinical trial, Environ. Res 192 (2021), 110316. PubMed

Rameshrad M, Razavi BM, Imenshahidi M, Hosseinzadeh H, Vitis vinifera (grape) seed extract and resveratrol alleviate bisphenol-A-induced metabolic syndrome: Biochemical and molecular evidences, Phytother. Res (2019). PubMed

Fadishei M, Ghasemzadeh RM, Imenshahidi M, Mohajeri A, Razavi BM, Hosseinzadeh H, Effects of Nigella sativa oil and thymoquinone against bisphenol A-induced metabolic disorder in rats, Phytother. Res 35 (4) (2020) 2005–2024. PubMed

Elgawish RA, El-Beltagy MA, El-Sayed RM, Gaber AA, Abdelrazek HMA, Protective role of lycopene against metabolic disorders induced by chronic bisphenol A exposure in rats, Environ. Sci. Pollut. Res, Int, 2020. PubMed

Park J, Choi K, Lee J, Jung JM, Lee Y, The Effect of Korean Red Ginseng on Bisphenol A-Induced Fatty Acid Composition and Lipid Metabolism-Related Gene Expression Changes, Am. J. Chin. Med 48 (8) (2020) 1841–1848. PubMed

Sakuma S, Sumida M, Endoh Y, Kurita A, Yamaguchi A, Watanabe T, Kohda T, Tsukiyama Y, Fujimoto Y, Curcumin inhibits adipogenesis induced by benzyl butyl phthalate in 3T3-L1 cells, Toxicol. Appl. Pharmacol 329 (2017) 158–164. PubMed

Choi SI, Lee JS, Lee S, Sim WS, Kim YC, Lee OH, Potentilla rugulosa Nakai Extract Attenuates Bisphenol A-, S- and F-Induced ROS Production and Differentiation of 3T3-L1 Preadipocytes in the Absence of Dexamethasone, Antioxidants, (Basel) 9 (2(2)) (2020) 3041–3050. PubMed PMC

Zhu K, Zhao Y, Yang Y, Bai Y, Zhao T, Icariin Alleviates Bisphenol A Induced Disruption of Intestinal Epithelial Barrier by Maintaining Redox Homeostasis In Vivo and In Vitro, ACS Omega 5 (32) (2020) 20399–20408. PubMed PMC

Baralić K, Živančević K, Jorgovanović D, Javorac D, Radovanović J, Gojković T, Djordjevic AB, Ćurčić M, Mandinić Z, Bulat Z, Antonijević B, Đukić-Cosić D, Probiotic reduced the impact of phthalates and bisphenol A mixture on type 2 diabetes mellitus development: merging bioinformatics with in vivo analysis, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 112325 (2021). PubMed

Vahdati HF, Mehri S, Abnous K, Birner-Gruenberger R, Hosseinzadeh H, Protective effect of crocin on BPA-induced liver toxicity in rats through inhibition of oxidative stress and downregulation of MAPK and MAPKAP signaling pathway and miRNA-122 expression, Food Chem. Toxicol 107 (Pt A) (2017) 395–405. PubMed

Akcay NC, Omeroglu S, Dizakar SOA, Kavutcu M, Turkoglu I, Esmekaya MA, Peker TV, The effects of melatonin on possible damage that will occur on adipocytokines and liver tissue by coadministration of fructose and bisphenol a (BPA), Environ. Sci. Pollut. Res. Int (2020). PubMed

Poormoosavi SM, Najafzadehvarzi H, Behmanesh MA, Amirgholami R, Protective effects of Asparagus officinalis extract against Bisphenol A-induced toxicity in Wistar rats, Toxicol. Rep 5 (2018) 427–433. PubMed PMC

Geng S, Wang S, Zhu W, Xie C, Li X, Wu J, Zhu J, Jiang Y, Yang X, Li Y, Chen Y, Wang X, Meng Y, Zhu M, Wu R, Huang C, Zhong C, Curcumin attenuates BPA-induced insulin resistance in HepG2 cells through suppression of JNK/p38 pathways, Toxicol. Lett 272 (2017) 75–83. PubMed

Huang WC, Liao KY, Hsieh SK, Pan PH, Kuan YH, Liao SL, Chen CJ, Chen WY, Magnesium lithospermate B supplementation improved prenatal Bisphenol A exposure-induced metabolic abnormalities in male offspring, Environ. Toxicol (2021). PubMed

Jandacek RJ, Heubi JE, Buckley DD, Khoury JC, Turner WE, Sjodin A, Olson JR, Shelton C, Helms K, Bailey TD, Carter S, Tso P, Pavuk M, Reduction of the body burden of PCBs and DDE by dietary intervention in a randomized trial, J. Nutr. Biochem 25 (4) (2014) 483–488. PubMed PMC

Iida T, Nakagawa R, Hirakawa H, Matsueda T, Morita K, Hamamura K, Nakayama J, Hori Y, Guo YL, Chang FM, et al., Clinical trial of a combination of rice bran fiber and cholestyramine for promotion of fecal excretion of retained polychlorinated dibenzofuran and polychlorinated biphenyl in Yu-Cheng patients, Fukuoka Igaku Zasshi 86 (5) (1995) 226–233. PubMed

Takasuga T, Senthilkumar K, Takemori H, Ohi E, Tsuji H, Nagayama J, Impact of FEBRA (fermented brown rice with Aspergillus oryzae) intake and concentrations of PCDDs, PCDFs and PCBs in blood of humans from Japan, Chemosphere 57 (10) (2004) 1409–1426. PubMed

Geusau A, Schmaldienst S, Derfler K, Papke O, Abraham K, Severe 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) intoxication: kinetics and trials to enhance elimination in two patients, Arch. Toxicol 76 (5–6) (2002) 316–325. PubMed

Anderson JW, Baird P, Davis RH Jr., Ferreri S, Knudtson M, Koraym A, Waters V, Williams CL, Health benefits of dietary fiber, Nutr. Rev 67 (4) (2009) 188–205. PubMed

Shih MK, Tain YL, Chen YW, Hsu WH, Yeh YT, Chang SKC, Liao JX, Hou CY, Resveratrol Butyrate Esters Inhibit Obesity Caused by Perinatal Exposure to Bisphenol A in Female Offspring Rats, Molecules (Basel, Switzerland) 26 (13) (2021). PubMed PMC

Stahlhut RW, Myers JP, Taylor JA, Nadal A, Dyer JA, vom Saal FS, Experimental BPA Exposure and Glucose-Stimulated Insulin Response in Adult Men and Women, J. Endocr. Soc 2 (10) (2018) 1173–1187. PubMed PMC

Hagobian TA, Bird A, Stanelle S, Williams D, Schaffner A, Phelan S, Pilot Study on the Effect of Orally Administered Bisphenol A on Glucose and Insulin Response in Nonobese Adults, J. Endocr. Soc 3 (3) (2019) 643–654. PubMed PMC

Bae S, Hong YC, Exposure to bisphenol A from drinking canned beverages increases blood pressure: randomized crossover trial, Hypertension 65 (2) (2015) 313–319. PubMed

Kim JH, Cho YH, Hong YC, MicroRNA expression in response to bisphenol A is associated with high blood pressure, Environ. Int 141 (2020), 105791. PubMed

Miller DB, Ghio AJ, Karoly ED, Bell LN, Snow SJ, Madden MC, Soukup J, Cascio WE, Gilmour MI, Kodavanti UP, Ozone Exposure Increases Circulating Stress Hormones and Lipid Metabolites in Humans, Am. J. Respir. Crit. Care Med (2016). PubMed PMC

Li H, Cai J, Chen R, Zhao Z, Ying Z, Wang L, Chen J, Hao K, Kinney PL, Chen H, Kan H, Particulate Matter Exposure and Stress Hormone Levels: A Randomized, Double-Blind, Crossover Trial of Air Purification, Circulation 136 (7) (2017) 618–627. PubMed

Makris KC, Konstantinou C, Andrianou XD, Charisiadis P, Kyriacou A, Gribble MO, Christophi CA, A cluster-randomized crossover trial of organic diet impact on biomarkers of exposure to pesticides and biomarkers of oxidative stress/inflammation in primary school children, PLoS ONE 14 (9) (2019), e0219420. PubMed PMC

Luderer U, Eskenazi B, Hauser R, Korach KS, McHale CM, Moran F, Rieswijk L, Solomon G, Udagawa O, Zhang L, Zlatnik M, Zeise L, Smith MT, Proposed Key Characteristics of Female Reproductive Toxicants as an Approach for Organizing and Evaluating Mechanistic Data in Hazard Assessment, Environ. Health Perspect 127 (7) (2019) 75001. PubMed PMC

Arzuaga X, Smith MT, Gibbons CF, Skakkebæk NE, Yost EE, Beverly BEJ, Hotchkiss AK, Hauser R, Pagani RL, Schrader SM, Zeise L, Prins GS, Proposed Key Characteristics of Male Reproductive Toxicants as an Approach for Organizing and Evaluating Mechanistic Evidence in Human Health Hazard Assessments, Environ. Health Perspect 127 (6) (2019) 65001. PubMed PMC

Braun JM, Gray K, Challenges to studying the health effects of early life environmental chemical exposures on children’s health, PLoS Biol. 15 (12) (2017), e2002800. PubMed PMC

Lind L, Salihovic S, Lampa E, Lind PM, Mixture effects of 30 environmental contaminants on incident metabolic syndrome-A prospective study, Environ. Int 107 (2017) 8–15. PubMed

Taylor KW, Joubert BR, Braun JM, Dilworth C, Gennings C, Hauser R, Heindel JJ, Rider CV, Webster TF, Carlin DJ, Statistical Approaches for Assessing Health Effects of Environmental Chemical Mixtures in Epidemiology: Lessons from an Innovative Workshop, Environ. Health Perspect 124 (12) (2016) A227–A229. PubMed PMC

Braun JM, Gennings C, Hauser R, Webster TF, What Can Epidemiological Studies Tell Us about the Impact of Chemical Mixtures on Human Health? Environ. Health Perspect 124 (1) (2016) A6–A9. PubMed PMC

Lazarevic N, Barnett AG, Sly PD, Knibbs LD, Statistical Methodology in Studies of Prenatal Exposure to Mixtures of Endocrine-Disrupting Chemicals: A Review of Existing Approaches and New Alternatives, Environ. Health Perspect 127 (2) (2019) 26001. PubMed PMC

Santos S, Maitre L, Warembourg C, Agier L, Richiardi L, Basagaña X, Vrijheid M, Applying the exposome concept in birth cohort research: a review of statistical approaches, Eur. J. Epidemiol 35 (3) (2020) 193–204. PubMed PMC

Esteban López M, Göen T, Mol H, Nübler S, Haji-Abbas-Zarrabi K, Koch HM, Kasper-Sonnenberg M, Dvorakova D, Hajslova J, Antignac JP, Vaccher V, Elbers I, Thomsen C, Vorkamp K, Pedraza-Díaz S, Kolossa-Gehring M, Castaño A, The European human biomonitoring platform - Design and implementation of a laboratory quality assurance/quality control (QA/QC) programme for selected priority chemicals, Int. J. Hyg. Environ. Health 234 (2021), 113740. PubMed

Bonde JP, Flachs EM, Rimborg S, Glazer CH, Giwercman A, Ramlau-Hansen CH, Hougaard KS, Høyer BB, Hærvig KK, Petersen SB, Rylander L, Specht IO, Toft G, Bräuner EV, The epidemiologic evidence linking prenatal and postnatal exposure to endocrine disrupting chemicals with male reproductive disorders: a systematic review and meta-analysis, Human reproduction update 23 (1) (2016) 104–125. PubMed PMC

Williams RJ, Tse T, Harlan WR, Zarin DA, Registration of observational studies: is it time? CMAJ 182 (15) (2010) 1638–1642. PubMed PMC

Kanj A, Levine D, Overcoming obesity: Weight-loss drugs are underused, Cleve Clin J Med 87 (10) (2020) 602–604. PubMed

Hill-Briggs F, Adler NE, Berkowitz SA, Chin MH, Gary-Webb TL, Navas-Acien A, Thornton PL, Haire-Joshu D, Social Determinants of Health and Diabetes: A Scientific Review, Diabetes Care 44 (1) (2020) 258–279. PubMed PMC

Alberga AS, Edache IY, Forhan M, Russell-Mayhew S, Weight bias and health care utilization: a scoping review, Prim Health Care Res Dev 20 (2019), e116. PubMed PMC

Calafat AM, Weuve J, Ye X, Jia LT, Hu H, Ringer S, Huttner K, Hauser R, Exposure to bisphenol A and other phenols in neonatal intensive care unit premature infants, Environ. Health Perspect 117 (4) (2009) 639–644. PubMed PMC

Rubin BS, Paranjpe M, DaFonte T, Schaeberle C, Soto AM, Obin M, Greenberg AS, Perinatal BPA exposure alters body weight and composition in a dose specific and sex specific manner: the addition of peripubertal exposure exacerbates adverse effects in female mice, Reprod. Toxicol (2016). PubMed PMC

Lai KP, Chung YT, Li R, Wan HT, Wong CK, Bisphenol A alters gut microbiome: Comparative metagenomics analysis, Environmental pollution (Barking, Essex 218 (2016) (1987) 923–930. PubMed

Zhang Y, Dong T, Hu W, Wang X, Xu B, Lin Z, Hofer T, Stefanoff P, Chen Y, Wang X, Xia Y, Association between exposure to a mixture of phenols, pesticides, and phthalates and obesity: Comparison of three statistical models, Environ. Int 123 (2019) 325–336. PubMed

Philips EM, Santos S, Steegers EAP, Asimakopoulos AG, Kannan K, Trasande L, Jaddoe VWV, Maternal bisphenol and phthalate urine concentrations and weight gain during pregnancy, Environ. Int 135 (2020), 105342. PubMed PMC

Güil-Oumrait N, Valvi D, Garcia-Esteban R, Guxens M, Sunyer J, Torrent M, Casas M, Vrijheid M, Prenatal exposure to persistent organic pollutants and markers of obesity and cardiometabolic risk in Spanish adolescents, Environ. Int 151 (2021), 106469. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...