The Exact Timing of Microinjection of Parthenogenetic Silkworm Embryos Is Crucial for Their Successful Transgenesis

. 2022 ; 13 () : 822900. [epub] 20220325

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35399273

The use of parthenogenetic silkworm (Bombyx mori) strains, which eliminate the problem of recombination, is a useful tool for maintaining transgenic clonal lines. The generation of genetically identical individuals is becoming an important tool in genetic engineering, allowing replication of an existing advantageous trait combination without the mixing that occurs during sexual reproduction. Thus, an animal with a particular genetic modification, such as the ability to produce transgenic proteins, can reproduce more rapidly than by natural mating. One obstacle to the widespread use of parthenogenesis in silkworm genetic engineering is the relatively low efficiency of downstream transgenesis techniques. In this work, we seek to optimize the use of transgenesis in conjunction with the production of parthenogenetic individuals. We found that a very important parameter for the introduction of foreign genes into a parthenogenetic strain is the precise timing of embryo microinjection. Our modification of the original method increased the efficiency of transgene injection as well as the survival rate of injected embryos. We also provide a detailed description of the methodological procedure including a graphical overview of the entire protocol.

Zobrazit více v PubMed

Astaurov B. L. (1940). Artificial Parthenogenesis in the Silkworm, Bombyx mori L. Saint Petersburg: AN SSSR.

Astaurov B. L. (1973). Selection for high ability for artificial thermic parthenogenesis and obtaining clones of the silkworm advanced in this direction. Genetika 9 93–106.

Cappellozza L., Cappellozza S., Saviane A., Sbrenna G. (2005). Artificial diet rearing system for the silkworm Bombyx mori (Lepidoptera : Bombycidae): effect of vitamin C deprivation on larval growth and cocoon production. Appl. Entomol. Zool. 40 405–412. 10.1303/aez.2005.405 PubMed DOI

Cary L. C., Goebel M., Corsaro B. G., Wang H. G., Rosen E., Fraser M. J. (1989). Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 172 156–169. 10.1016/0042-6822(89)90117-7 PubMed DOI

Dai H. J., Jiang R. J., Wang J., Xu G. J., Cao M. X., Wang Z. G., et al. (2007). Development of a heat shock inducible and inheritable RNAi system in silkworm. Biomol. Eng. 24 625–630. 10.1016/j.bioeng.2007.10.004 PubMed DOI

Doroshenko K. A., Klymenko V. V. (2010). Cloning Bombyx mori L. female genotypes by implantation of donor’s ovaries into parthenoclonal females. Séricologia 50 187–197.

Grenier A. M., Da Rocha M., Jalabert A., Royer C., Mauchamp B., Chavancy G. (2004). Artificial parthenogenesis and control of voltinism to manage transgenic populations in Bombyx mori. J. Insect. Physiol. 50 751–760. 10.1016/j.jinsphys.2004.06.002 PubMed DOI

Inoue S., Kanda T., Imamura M., Quan G. X., Kojima K., Tanaka H., et al. (2005). A fibroin secretion-deficient silkworm mutants Nd-s(D), provides an efficient system for producing recombinant proteins. Insect. Biochem. Mol. Biol. 35 51–59. 10.1016/j.ibmb.2004.10.002 PubMed DOI

Klymenko V. V. (2001). Parthenogenesis and cloning in the silkworm Bombyx mori L.: problems and prospects. J. Insect. Biotechnol. Sericol. 70 156–164.

Klymenko V. V., Lysenko N. G., Liang H. (2013). Parthenocloning in genetics and breeding of the silkworm. Anim. Breed. Genet. 47 40–56.

Miya K. (2003). The Early Embryonic Development of Bombyx mori - Ultrastructural Point of View. Sagamihara: Gendaitosho.

Mochida Y. (2001). Formulation of the Relationship Between Incubation Temperature and Growth Rate in Embryonic Development in Post-Diapausing Eggs of Silkworm, Bombyx mori, and Their Low Development Threshold Temperature. Ibaraki: Institute of Sericulture.

Nagy L., Riddiford L., Kiguchi K. (1994). Morphogenesis in the early embryo of the lepidopteran Bombyx mori. Dev. Biol. 165 137–151. 10.1006/dbio.1994.1241 PubMed DOI

Ohtsuki Y., Murakami A. (1968). Nuclear division in the early embryonic development of the silkworm, Bombyx mori L. Zool. Mag. 77 383–387.

Royer C., Jalabert A., Da Rocha M., Grenier A. M., Mauchamp B., Couble P., et al. (2005). Biosynthesis and cocoon-export of a recombinant globular protein in transgenic silkworms. Trans. Res. 14 463–472. 10.1007/s11248-005-4351-4 PubMed DOI

Sonobe H., Maotani K., Nakajima H. (1986). Studies on embryonic diapause in the pnd mutant of the silkworm, Bombyx mori: genetic control of embryogenesis. J. Insect. Physiol. 32 213–220.

Spiridonova T. L., Shchegelskaya E. A., Klymenko V. V. (1987). Gonad transplantation in the larvae of Lepidoptera. Izvestija Akad Nauk Moldavskoj SSR 2 69–71.

Strunnikov V. A. (1971). Obtaining silkworm hybrids whose ova can be separated into white (female) and dark (male). Dokl. Akad. Nauk. SSSR 201 1223–1226. PubMed

Sturtevant A. H. (1915). No crossing over in the female of the silkworm moth. Am. Nat. 49 42–44. 10.1086/279453 DOI

Takasu Y., Kobayashi I., Beumer K., Uchino K., Sezutsu H., Sajwan S., et al. (2010). Targeted mutagenesis in the silkworm Bombyx mori using zinc finger nuclease mRNA injection. Insect. Biochem. Mol. Biol. 40 759–765. 10.1016/j.ibmb.2010.07.012 PubMed DOI

Takasu Y., Kobayashi I., Tamura T., Uchino K., Sezutsu H., Zurovec M. (2016a). Precise genome editing in the silkworm Bombyx mori using TALENs and ds- and ssDNA donors - A practical approach. Insect. Biochem. Mol. Biol. 78 29–38. 10.1016/j.ibmb.2016.08.006 PubMed DOI

Takasu Y., Tamura T., Goldsmith M., Zurovec M. (2016b). Targeted mutagenesis in Bombyx mori using TALENs. Methods Mol. Biol. 1338 127–142. 10.1007/978-1-4939-2932-0_11 PubMed DOI

Tamura T., Kanda T., Takiya S., Okano K., Maekawa H. (1990). Transient expression of chimeric CAT genes injected into early embryos of the domesticated silkworm Bombyx mori. Jpn. J. Genet. 65 401–410. 10.1266/jjg.65.401 PubMed DOI

Tamura T., Kuwabara N., Uchino K., Kobayashi I., Kanda T. (2007). An improved DNA injection method for silkworm eggs drastically increases the efficiency of producing transgenic silkworms. J. Insect. Biotech. Sericol. 76 155–159.

Tamura T., Thibert C., Royer C., Kanda T., Abraham E., Kamba M., et al. (2000). Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat. Biotechnol. 18 81–84. 10.1038/71978 PubMed DOI

Tatemastu K., Sezutsu H., Tamura T. (2012). Utilization of transgenic silkworms for recombinant protein production. J. Biotechnol. Biomater. 9:4.

Tazima Y. (1978). The Silkworm: An Important Laboratory Tool. Tokyo: Kodansha Ltd.

Tomita M. (2011). Transgenic silkworms that weave recombinant proteins into silk cocoons. Biotechnol. Lett. 33 645–654. 10.1007/s10529-010-0498-z PubMed DOI

Tomita M., Munetsuna H., Sato T., Adachi T., Hino R., Hayashi M., et al. (2003). Transgenic silkworms produce recombinant human type III procollagen in cocoons. Nat. Biotechnol. 21 52–56. 10.1038/nbt771 PubMed DOI

Uhlirova M., Asahina M., Riddiford L. M., Jindra M. (2002). Heat-inducible transgenic expression in the silkmoth Bombyx mori. Dev. Genes Evol. 212 145–151. 10.1007/s00427-002-0221-8 PubMed DOI

Yamao M., Katayama N., Nakazawa H., Yamakawa M., Hayashi Y., Hara S., et al. (1999). Gene targeting in the silkworm by use of a Baculovirus. Genes Dev. 13 511–516. 10.1101/gad.13.5.511 PubMed DOI PMC

You Z., Sun C., Chen L., Yao Q., Chen K. (2013). A novel method of silkworm embryo preparation for immunohistochemistry. Biotechnol. Lett. 35 1209–1214. 10.1007/s10529-013-1202-x PubMed DOI

Zabelina V., Klymenko V., Tamura T., Doroshenko K., Liang H., Sezutsu H., et al. (2015a). Genome engineering and parthenocloning in the silkworm, Bombyx mori. J. Biosci. 40 645–655. 10.1007/s12038-015-9548-y PubMed DOI

Zabelina V., Uchino K., Mochida Y., Yonemura N., Klymenko V., Sezutsu H., et al. (2015b). Construction and long term preservation of clonal transgenic silkworms using a parthenogenetic strain. J. Insect. Physiol. 81 28–35. 10.1016/j.jinsphys.2015.06.011 PubMed DOI

Zabelina V., Yonemura N., Uchino K., Iizuka T., Mochida Y., Takemura Y., et al. (2021). Production of cloned transgenic silkworms by breeding non-diapausing parthenogenetic strains. J. Insect. Physiol. 132:104265. 10.1016/j.jinsphys.2021.104265 PubMed DOI

Zabelina V. Y., Klymenko V. V. (2008). Ovary transplantation in the silkworm Bombyx mori L.: parthenocloning by eggs produced in male recipient. Séricologia 48 123–128.

Zhao A. C., Zhao T. F., Zhang Y. S., Xia Q. Y., Lu C., Zhou Z. Y., et al. (2010). New and highly efficient expression systems for expressing selectively foreign protein in the silk glands of transgenic silkworm. Trans. Res. 19 29–44. 10.1007/s11248-009-9295-7 PubMed DOI

Zhong B. X., Li J. Y., Chen J. E., Ye J., Yu S. D. (2007). Comparison of transformation efficiency of piggyBac transposon among three different silkworm Bombyx mori strains. Acta Biochim. Biophys. Sin. 39 117–122. 10.1111/j.1745-7270.2007.00252.x PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...