Contemporary seminal vesicle invasion rates in NCCN high-risk prostate cancer patients
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35403734
PubMed Central
PMC9325368
DOI
10.1002/pros.24350
Knihovny.cz E-zdroje
- Klíčová slova
- Epidemiology, SVI, Surveillance, and End Results (SEER), high-risk, prostate cancer, radical prostatectomy,
- MeSH
- biopsie MeSH
- invazivní růst nádoru patologie MeSH
- lidé MeSH
- nádory prostaty * patologie MeSH
- nomogramy MeSH
- prostatektomie * metody MeSH
- prostatický specifický antigen MeSH
- semenné váčky patologie MeSH
- staging nádorů MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- prostatický specifický antigen MeSH
BACKGROUND: Contemporary seminal vesicle invasion (SVI) rates in National Cancer Comprehensive Network (NCCN) high-risk prostate cancer (PCa) patients are not well known but essential for treatment planning. We examined SVI rates according to individual patient characteristics for purpose of treatment planning. MATERIALS AND METHODS: Within Surveillance, Epidemiology, and End Results (SEER) database (2010-2015), 4975 NCCN high-risk patients were identified. In the development cohort (SEER geographic region of residence: South, North-East, Mid-West, n = 2456), we fitted a multivariable logistic regression model predicting SVI. Its accuracy, calibration, and decision curve analyses (DCAs) were then tested versus previous models within the external validation cohort (SEER geographic region of residence: West, n = 2519). RESULTS: Out of 4975 patients, 28% had SVI. SVI rate ranged from 8% to 89% according to clinical T stage, prostate-specific antigen (PSA), biopsy Gleason Grade Group and percentage of positive biopsy cores. In the development cohort, these variables were independent predictors of SVI. In the external validation cohort, the current model achieved 77.6% accuracy vs 73.7% for Memorial Sloan Kettering Cancer Centre (MSKCC) vs 68.6% for Gallina et al. Calibration was better than for the two alternatives: departures from ideal predictions were 6.0% for the current model vs 9.8% for MSKCC vs 38.5% for Gallina et al. In DCAs, the current model outperformed both alternatives. Finally, different nomogram cutoffs allowed to discriminate between low versus high SVI risk patients. CONCLUSIONS: More than a quarter of NCCN high-risk PCa patients harbored SVI. Since SVI positivity rate varies from 8% to 89%, the currently developed model offers a valuable approach to distinguish between low and high SVI risk patients.
Department of Surgical and Diagnostic Integrated Sciences University of Genova Genova Italy
Department of Urology 2nd Faculty of Medicine Charles University Prague Czech Republic
Department of Urology Comprehensive Cancer Center Medical University of Vienna Vienna Austria
Department of Urology University Hospital Frankfurt Frankfurt am Main Germany
Department of Urology University Hospital Hamburg Eppendorf Hamburg Germany
Department of Urology University of Texas Southwestern Dallas Texas USA
Department of Urology Weill Cornell Medical College New York New York USA
Martini Klinik Prostate Cancer Center University Hospital Hamburg Eppendorf Hamburg Germany
Zobrazit více v PubMed
Wenzel M, Würnschimmel C, Ruvolo CC, et al. Increasing rates of NCCN high and very high‐risk prostate cancer versus number of prostate biopsy cores. Prostate. 2021;81:874‐881. https://onlinelibrary.wiley.com/doi/full/10.1002/pros.24184 PubMed DOI
Fossati N, Passoni NM, Moschini M, et al. Impact of stage migration and practice changes on high‐risk prostate cancer: results from patients treated with radical prostatectomy over the last two decades. BJU Int. 2016;117:740‐747. https://pubmed‐ncbi‐nlm‐nih‐gov.ezproxy.uniroma1.it/25787671/ PubMed PMC
Pompe RS, Karakiewicz PI, Tian Z, et al. Oncologic and functional outcomes after radical prostatectomy for high or very high risk prostate cancer: European Validation of the Current NCCN® Guideline. J Urol. 2017;198:354‐361. PubMed
Salembier C, Villeirs G, De Bari B, et al. ESTRO ACROP consensus guideline on CT‐ and MRI‐based target volume delineation for primary radiation therapy of localized prostate cancer. Radiother Oncol. 2018;127:49‐61. https://pubmed‐ncbi‐nlm‐nih‐gov.ezproxy.uniroma1.it/29496279/ PubMed
Ghadjar P, Fiorino C, Munck af Rosenschöld P, Pinkawa M, Zilli T, van der Heide UA. ESTRO ACROP consensus guideline on the use of image guided radiation therapy for localized prostate cancer. Radiother Oncol. 2019;141:5‐13. PubMed
Mazzone E, Dell'oglio P, Rosiello G, et al. Technical refinements in superextended robot‐assisted radical prostatectomy for locally advanced prostate cancer patients at multiparametric magnetic resonance imaging. Eur Urol. 2021;80:104‐112. PubMed
Kumar A, Samavedi S, Bates AS, et al. Safety of selective nerve sparing in high risk prostate cancer during robot‐assisted radical prostatectomy. J Robot Surg. 2017;11:129‐138. https://pubmed‐ncbi‐nlm‐nih‐gov.ezproxy.uniroma1.it/27435701/ PubMed
Eifler JB, Feng Z, Lin BM. An updated prostate cancer staging nomogram (Partin tables) based on cases from 2006 to 2011. BJU Int. 2013;111:22‐29. PubMed PMC
About the SEER Program . n.d. Accessed September 22, 2021. https://seer.cancer.gov/about/
Hoeh B, Würnschimmel C, Flammia RS, et al. Cancer‐specific survival after radical prostatectomy versus external beam radiotherapy in high‐risk and very high‐risk African American prostate cancer patients. Prostate. 2022;82:120‐131. PubMed
Chierigo F, Wenzel M, Würnschimmel C, et al. Survival after radical prostatectomy versus radiation therapy in high‐risk and very high‐risk prostate cancer. J Urol. 2022;207:375‐384. https://pubmed‐ncbi‐nlm‐nih‐gov.ezproxy.uniroma1.it/34555930/ PubMed
Wenzel M, Würnschimmel C, Chierigo F, et al. Nomogram predicting downgrading in national comprehensive cancer network high‐risk prostate cancer patients treated with radical prostatectomy. Eur Urol Focus. 2021. https://pubmed‐ncbi‐nlm‐nih‐gov.ezproxy.uniroma1.it/34334344/ PubMed
Ellis RJ, Kalma B, Del Vecchio SJ, et al. Chronic kidney cortical damage is associated with baseline kidney function and albuminuria in patients managed with radical nephrectomy for kidney tumours. Pathology. 2019;51:32‐38. http://www.ncbi.nlm.nih.gov/pubmed/30477884 PubMed
Gallina A, Chun FK, Briganti A, et al. Development and split‐sample validation of a nomogram predicting the probability of seminal vesicle invasion at radical prostatectomy. Eur Urol. 2007;52:98‐105. PubMed
Hereditary Prostate Cancer. Memorial Sloan Kettering Cancer Center. https://www.mskcc.org/nomograms/prostate/pre_op
Ploussard G, Masson‐Lecomte A, Beauval JB, et al. Radical prostatectomy for high‐risk prostate cancer defined by preoperative criteria: oncologic follow‐up in national multicenter study in 813 patients and assessment of easy‐to‐use prognostic substratification. Urology. 2011;78:607‐613. PubMed
Pierorazio PM, Ross AE, Han M, Epstein JI, Partin AW, Schaeffer EM. Evolution of the clinical presentation of men undergoing radical prostatectomy for high‐risk prostate cancer. BJU Int. 2012;109:988‐993. https://onlinelibrary.wiley.com/doi/full/10.1111/j.1464‐410X.2011.10514.x PubMed DOI PMC
Walz J, Joniau S, Chun FK, et al. Pathological results and rates of treatment failure in high‐risk prostate cancer patients after radical prostatectomy. BJU Int. 2011;107:765‐770. https://onlinelibrary.wiley.com/doi/full/10.1111/j.1464‐410X.2010.09594.x PubMed DOI
Reichard CA, Kukreja J, Gregg JR, et al. Prediction of organ‐confined disease in high‐ and very‐high‐risk prostate cancer patients staged with magnetic resonance imaging: implications for clinical trial design. Eur Urol Focus. 2021;7:71‐77. PubMed
Tward JD, O'neil B, Boucher K, et al. Metastasis, mortality, and quality of life for men with NCCN High and very high risk localized prostate cancer after surgical and/or combined modality radiotherapy. Clin Genitourin Cancer. 2020;18:274‐283. PubMed
Joniau S, Hsu CY, Lerut E, et al. A pretreatment table for the prediction of final histopathology after radical prostatectomy in clinical unilateral T3a prostate cancer. Eur Urol. 2007;51:388‐396. https://pubmed‐ncbi‐nlm‐nih‐gov.ezproxy.uniroma1.it/16901622/ PubMed
Joniau S, Spahn M, Briganti A, et al. Pretreatment tables predicting pathologic stage of locally advanced prostate cancer. Eur Urol. 2015;67:319‐325. https://pubmed.ncbi.nlm.nih.gov/24684960/ PubMed
Hoeh B, Flammia RS, Hohenhorst L, et al. Non‐organ confined stage and upgrading rates in exclusive PSA high‐risk prostate cancer patients. Prostate. 2022;82:687‐694. http://www.ncbi.nlm.nih.gov/pubmed/35188982 PubMed
Schaeffer E, Srinivas S, Antonarakis ES, et al. NCCN guidelines insights: prostate cancer, version 1.2021. J Natl Compr Cancer Netw. 2021;19(2):134‐143. https://jnccn.org/view/journals/jnccn/19/2/article‐p134.xml PubMed
Goupy F, Supiot S, Pasquier D, et al. Intensity‐modulated radiotherapy for prostate cancer with seminal vesicle involvement (T3b): a multicentric retrospective analysis. PLOS One. 2019;14:0210514. https://pubmed‐ncbi‐nlm‐nih‐gov.ezproxy.uniroma1.it/30682036/ PubMed PMC
Nyarangi‐Dix JN, Görtz M, Gradinarov G, et al. Retzius‐sparing robot‐assisted laparoscopic radical prostatectomy: functional and early oncologic results in aggressive and locally advanced prostate cancer. BMC Urol. 2019;19:1‐7. https://bmcurol.biomedcentral.com/articles/10.1186/s12894‐019‐0550‐9 PubMed DOI PMC
Al‐Hussain TO, Nagar MS, Epstein JI. Gleason pattern 5 is frequently underdiagnosed on prostate needle‐core biopsy. Urology. 2012;79:178‐181. https://pubmed‐ncbi‐nlm‐nih‐gov.ezproxy.uniroma1.it/22035764/ PubMed
Fajardo DA, Miyamoto H, Miller JS, Lee TK, Epstein JI. Identification of Gleason pattern 5 on prostatic needle core biopsy: frequency of underdiagnosis and relation to morphology. Am J Surg Pathol. 2011;35:1706‐1711. https://pubmed‐ncbi‐nlm‐nih‐gov.ezproxy.uniroma1.it/21997691/ PubMed
Koh H, Kattan MW, Scardino PT, et al. A nomogram to predict seminal vesicle invasion by the extent and location of cancer in systematic biopsy results. J Urol. 2003;170:1203‐1208. PubMed
Gandaglia G, Ploussard G, Valerio M, et al. The key combined value of multiparametric magnetic resonance imaging, and magnetic resonance imaging–targeted and concomitant systematic biopsies for the prediction of adverse pathological features in prostate cancer patients undergoing radical prostatectomy. Eur Urol. 2020;77:733‐741. PubMed
Martini A, Gupta A, Cumarasamy S, et al. Novel nomogram for the prediction of seminal vesicle invasion including multiparametric magnetic resonance imaging. Int J Urol. 2019;26:458‐464. https://pubmed‐ncbi‐nlm‐nih‐gov.ezproxy.uniroma1.it/30659663/ PubMed
Gallina A, Chun FK, Suardi N, et al. Comparison of stage migration patterns between Europe and the USA: an analysis of 11 350 men treated with radical prostatectomy for prostate cancer. BJU Int. 2008;101:1513‐1518. https://onlinelibrary.wiley.com/doi/full/10.1111/j.1464‐410X.2008.07519.x PubMed DOI
Diamand R, Ploussard G, Roumiguié M, et al. External validation of a multiparametric magnetic resonance imaging‐based nomogram for the prediction of extracapsular extension and seminal vesicle invasion in prostate cancer patients undergoing radical prostatectomy. Eur Urol. 2021;79:180‐185. https://pubmed‐ncbi‐nlm‐nih‐gov.ezproxy.uniroma1.it/33023770/ PubMed
Feng TS, Sharif‐Afshar AR, Wu J, et al. Multiparametric MRI improves accuracy of clinical nomograms for predicting extracapsular extension of prostate cancer. Urology. 2015;86:332‐337. PubMed
Weaver JK, Kim EH, Vetter JM, et al. Prostate magnetic resonance imaging provides limited incremental value over the memorial sloan kettering cancer center preradical prostatectomy nomogram. Urology. 2018;113:119‐128. PubMed