• This record comes from PubMed

5-Azacytidine Downregulates the Proliferation and Migration of Hepatocellular Carcinoma Cells In Vitro and In Vivo by Targeting miR-139-5p/ROCK2 Pathway

. 2022 Mar 23 ; 14 (7) : . [epub] 20220323

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
no number Fondazione Benefica Kathleen Foreman Casali of Trieste, Italy
no number Beneficentia Stiftung" of Vaduz Liechtenstein
P3-0003 Slovenian Research Agency (ARRS)
FP168562300 Progetto HEaD "HIGHER EDUCATION AND DEVELOPMENT" UNITS, Fondo sociale Europeo 2014/2020, Asse 3, Programma specifico 25/15
VN21GR01 Italian Ministry of Foreign Affairs and International Cooperation

BACKGROUND: For hepatocellular carcinoma (HCC), effective therapeutic approaches are lacking. As aberrant gene methylation is a major contributor to HCC development, demethylating drugs such as 5-azacytidine (5-Aza) have been proposed. As most 5-Aza mechanisms of action are unknown, we investigated its phenotypic/molecular effects. METHODS: 5-Aza effects were examined in the human HCC cell lines JHH-6/HuH-7 and in the rat cell-line N1-S1. We also employed a xenograft mouse model (HuH-7), a zebrafish model (JHH-6), and an orthotopic syngeneic rat model (N1-S1) of HCC. RESULTS: 5-Aza downregulated cell viability/growth/migration/adhesion by upregulating miR-139-5p, which in turn downregulated ROCK2/cyclin D1/E2F1 and increased p27kip1, resulting in G1/G0 cell accumulation. Moreover, a decrease in cyclin B1 and an increase in p27kip1 led to G2/M accumulation. Finally, we observed a decrease in MMP-2 levels, a stimulator of HCC cell migration. Aza effects were confirmed in the mouse model; in the zebrafish model, we also demonstrated the downregulation of tumor neo-angiogenesis, and in the orthotopic rat model, we observed impaired N1-S1 grafting in a healthy liver. CONCLUSION: We demonstrate for the first time that 5-Aza can impair HCC development via upregulation of miR-139-5p, which in turn impairs the ROCK2/cyclin D1/E2F1/cyclin B1 pro-proliferative pathway and the ROCK2/MMP-2 pro-migratory pathway. Thus, we provide novel information about 5-Aza mechanisms of action and deepen the knowledge about the crosstalk among ROCK2/cyclin D1/E2F1/cyclin B1/p27kip1/MMP-2 in HCC.

CEINGE Advanced Biotechnologies via Gaetano Salvatore 486 1 80145 Napoli Italy

Clinical and Experimental Onco Haematology Unit Centro di Riferimento Oncologico Istituto di Ricovero a Cura a Carattere Scientifico IRCCS 33081 Aviano Italy

Department of Chemical Materials and Industrial Production Engineering University of Naples Federico 2 Piazzale 5 Tecchio 80 1 80125 Naples Italy

Department of Chemistry and Biology 10 University MaRS Discovery District West Tower 661 University Avenue Toronto ON M5G 1M1 Canada

Department of Clinic Surgical Sciences Laboratory of Experimental Surgery and Animal Facility University of Pavia Via Ferrata 9 1 27100 Pavia Italy

Department of Engineering and Architecture University of Trieste Via Valerio 6 A 1 34127 Trieste Italy

Department of Experimental Oncology Institute of Oncology Ljubljana Zaloska 2 SI 1000 Ljubljana Slovenia

Department of General Surgery Maggiore Hospital Largo Donatori del Sangue 1 1 26900 Lodi Italy

Department of Life Sciences Cattinara University Hospital Trieste University Strada di Fiume 447 1 34149 Trieste Italy

Department of Medical Surgical and Health Sciences University of Trieste Cattinara Hospital Strada di Fiume 447 1 34149 Trieste Italy

Department of Paediatrics University of Cambridge Addenbrooke's Hospital Hills Road Cambridge CB2 0QQ UK

Faculty of Health Sciences University of Primorska Polje 42 SI 6310 Izola Slovenia

Industrial Engineering Department University of Padova Via Francesco Marzolo 9 1 35131 Padova Italy

International Clinical Research Center of St Anne's University Hospital CZ 65691 Brno Czech Republic

Nealys SRL Via Flavia 23 1 1 34148 Trieste Italy

Stem Cell Research and Application Laboratory VNUHCM University of Science Ho Chi Minh City 72711 Vietnam

See more in PubMed

Ferlay J., Soerjomataram I., Dikshit R., Eser S., Mathers C., Rebelo M., Parkin D.M., Forman D., Bray F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer. 2015;136:E359–E386. doi: 10.1002/ijc.29210. PubMed DOI

Palmer D.H., Malagari K., Kulik L.M. Role of locoregional therapies in the wake of systemic therapy. J. Hepatol. 2020;72:277–287. doi: 10.1016/j.jhep.2019.09.023. PubMed DOI

Robertson K.D. DNA methylation, methyltransferases, and cancer. Oncogene. 2001;20:3139–3155. doi: 10.1038/sj.onc.1204341. PubMed DOI

Newell-Price J., Clark A.J., King P. DNA methylation and silencing of gene expression. Trends Endocrinol. Metab. 2000;11:142–148. doi: 10.1016/S1043-2760(00)00248-4. PubMed DOI

Hendrich B., Bird A. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol. Cell. Biol. 1998;18:6538–6547. doi: 10.1128/MCB.18.11.6538. PubMed DOI PMC

Yonemori M., Seki N., Yoshino H., Matsushita R., Miyamoto K., Nakagawa M., Enokida H. Dual tumor-suppressors miR-139-5p and miR-139-3p targeting matrix metalloprotease 11 in bladder cancer. Cancer Sci. 2016;107:1233–1242. doi: 10.1111/cas.13002. PubMed DOI PMC

Choi J., Kim Y.K., Park K., Nah J., Yoon S.-S., Kim D.-W., Kim V.N., Seong R.H. MicroRNA-139-5p regulates proliferation of hematopoietic progenitors and is repressed during BCR-ABL-mediated leukemogenesis. Blood. 2016;128:2117–2129. doi: 10.1182/blood-2016-02-702464. PubMed DOI

Zhang L., Dong Y., Zhu N., Tsoi H., Zhao Z., Wu C.W., Wang K., Zheng S., Ng S.S., Chan F.K., et al. microRNA-139-5p exerts tumor suppressor function by targeting NOTCH1 in colorectal cancer. Mol. Cancer. 2014;13:124. doi: 10.1186/1476-4598-13-124. PubMed DOI PMC

Bao W., Fu H.J., Xie Q.-S., Wang L., Zhang R., Guo Z.-Y., Zhao J., Meng Y.-L., Ren X.-L., Wang T., et al. HER2 interacts with CD44 to up-regulate CXCR4 via epigenetic silencing of microRNA-139 in gastric cancer cells. Gastroenterology. 2011;141:2076–2087. doi: 10.1053/j.gastro.2011.08.050. PubMed DOI

Fernandez-Barrena M.G., Arechederra M., Colyn L., Berasain C., Avila M.A. Epigenetics in hepatocellular carcinoma development and therapy: The tip of the iceberg. JHEP Rep. 2020;2:100167. doi: 10.1016/j.jhepr.2020.100167. PubMed DOI PMC

Nishida N., Kudo M., Nagasaka T., Ikai I., Goel A. Characteristic patterns of altered DNA methylation predict emergence of human hepatocellular carcinoma. Hepatology. 2012;56:994–1003. doi: 10.1002/hep.25706. PubMed DOI

Hlady R.A., Tiedemann R.L., Puszyk W., Zendejas I., Roberts L.R., Choi J.-H., Liu C., Robertson K.D. Epigenetic signatures of alcohol abuse and hepatitis infection during human hepatocarcinogenesis. Oncotarget. 2014;5:9425–9443. doi: 10.18632/oncotarget.2444. PubMed DOI PMC

Scaggiante B., Dapas B., Farra R., Grassi M., Pozzato G., Giansante C., Grassi G. Improving siRNA bio-distribution and minimizing side effects. Curr. Drug Metab. 2011;12:11–23. doi: 10.2174/138920011794520017. PubMed DOI

Qin H., Wen D.-Y., Que Q., Zhou C.-Y., Wang X.-D., Peng Y.-T., He Y., Yang H., Liao B.-M. Reduced expression of microRNA-139-5p in hepatocellular carcinoma results in a poor outcome: An exploration the roles of microRNA-139-5p in tumorigenesis, advancement and prognosis at the molecular biological level using an integrated meta-analysis and bioinformatic investigation. Oncol. Lett. 2019;18:6704–6724. PubMed PMC

Wang X., Gao J., Zhou B., Xie J., Zhou G., Chen Y. Identification of prognostic markers for hepatocellular carcinoma based on miRNA expression profiles. Life Sci. 2019;232:116596. doi: 10.1016/j.lfs.2019.116596. PubMed DOI

Wong C.C.-L., Wong C.-M., Tung E.K.-K., Au S.L., Lee J.M., Poon R.T., Man K., Ng I.O.-L. The microRNA miR-139 suppresses metastasis and progression of hepatocellular carcinoma by down-regulating Rho-kinase 2. Gastroenterology. 2011;140:322–331. doi: 10.1053/j.gastro.2010.10.006. PubMed DOI

Schofield A.V., Bernard O. Rho-associated coiled-coil kinase (ROCK) signaling and disease. Crit. Rev. Biochem. Mol. Biol. 2013;48:301–316. doi: 10.3109/10409238.2013.786671. PubMed DOI

Julian L., Olson M.F. Rho-associated coiled-coil containing kinases (ROCK): Structure, regulation, and functions. Small GTPases. 2014;5:e29846. doi: 10.4161/sgtp.29846. PubMed DOI PMC

Huang D., Du X., Yuan R., Chen L., Liu T., Wen C., Huang M., Li M., Hao L., Shao J. Rock2 promotes the invasion and metastasis of hepatocellular carcinoma by modifying MMP2 ubiquitination and degradation. Biochem. Biophys. Res. Commun. 2014;453:49–56. doi: 10.1016/j.bbrc.2014.09.061. PubMed DOI

Wong C.C., Wong C.M., Tung E.K., Man K., Ng I.O. Rho-kinase 2 is frequently overexpressed in hepatocellular carcinoma and involved in tumor invasion. Hepatology. 2009;49:1583–1594. doi: 10.1002/hep.22836. PubMed DOI

Du Y., Lu S., Ge J., Long D., Wen C., Tan S., Chen l., Zhou W. ROCK2 disturbs MKP1 expression to promote invasion and metastasis in hepatocellular carcinoma. Am. J. Cancer Res. 2020;10:884–896. PubMed PMC

Croft D.R., Olson M.F. The Rho GTPase effector ROCK regulates cyclin A, cyclin D1, and p27Kip1 levels by distinct mechanisms. Mol. Cell. Biol. 2006;26:4612–4627. doi: 10.1128/MCB.02061-05. PubMed DOI PMC

Montalto F.I., De A.F. Cyclin D1 in Cancer: A Molecular Connection for Cell Cycle Control, Adhesion and Invasion in Tumor and Stroma. Cells. 2020;9:2648. doi: 10.3390/cells9122648. PubMed DOI PMC

Nishida N., Fukuda Y., Komeda T., Kita R., Sando T., Furukawa M., Amenomori M., Shibagaki I., Nakao K., Ikenaga M., et al. Amplification and overexpression of the cyclin D1 gene in aggressive human hepatocellular carcinoma. Cancer Res. 1994;54:3107–3110. PubMed

Zhang Y.J., Jiang W., Chen C.J., Lee C.S., Kahn S.M., Santella R.M., WeinsteinI B. Amplification and overexpression of cyclin D1 in human hepatocellular carcinoma. Biochem. Biophys. Res. Commun. 1993;196:1010–1016. doi: 10.1006/bbrc.1993.2350. PubMed DOI

Dapas B., Farra R., Grassi M., Giansante C., Fiotti N., Uxa L., Rainaldi G., Mercatanti A., Colombatti A., Spessotto P., et al. Role of E2F1-cyclin E1-cyclin E2 circuit in human coronary smooth muscle cell proliferation and therapeutic potential of its downregulation by siRNAs. Mol. Med. 2009;15:297–306. doi: 10.2119/molmed.2009.00030. PubMed DOI PMC

Attwooll C., Lazzerini D.E., Helin K. The E2F family: Specific functions and overlapping interests. EMBO J. 2004;23:4709–4716. doi: 10.1038/sj.emboj.7600481. PubMed DOI PMC

Kent L.N., Bae S., Tsai S.Y., Tang X., Srivastava A., Koivisto C., Martin C., Ridolfi E., Miller G.C., Zorko S.M., et al. Dosage-dependent copy number gains in E2f1 and E2f3 drive hepatocellular carcinoma. J. Clin. Investig. 2017;127:830–842. doi: 10.1172/JCI87583. PubMed DOI PMC

Farra R., Grassi G., Tonon F., Abrami M., Grassi M., Pozzato G., Fiotti N., Forte G., Dapas B. The Role of the Transcription Factor E2F1 in Hepatocellular Carcinoma. Curr. Drug Deliv. 2017;14:272–281. PubMed

Russo G.L., Stampone E., Cervellera C., Borriello A. Regulation of p27Kip1 and p57Kip2 Functions by Natural Polyphenols. Biomolecules. 2020;10:1316. doi: 10.3390/biom10091316. PubMed DOI PMC

Newby A.C. Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovasc. Res. 2006;69:614–624. doi: 10.1016/j.cardiores.2005.08.002. PubMed DOI

Gore S.D., Hermes-DeSantis E.R. Future directions in myelodysplastic syndrome: Newer agents and the role of combination approaches. Cancer Control. 2008;15((Suppl. 4)):40–49. doi: 10.1177/107327480801504s05. PubMed DOI PMC

Bennett R.L., Licht J.D. Targeting Epigenetics in Cancer. Annu. Rev. Pharmacol. Toxicol. 2018;58:187–207. doi: 10.1146/annurev-pharmtox-010716-105106. PubMed DOI PMC

Gailhouste L., Liew L.C., Yasukawa K., Hatada I., Tanaka Y., Nakagama H., Ochiya T. Differentiation Therapy by Epigenetic Reconditioning Exerts Antitumor Effects on Liver Cancer Cells. Mol. Ther. 2018;26:1840–1854. doi: 10.1016/j.ymthe.2018.04.018. PubMed DOI PMC

Nakabayashi H., Taketa K., Miyano K., Yamane T., Sato J. Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. Cancer Res. 1982;42:3858–3863. PubMed

Fujise K., Nagamori S., Hasumura S., Homma S., Sujino H., Matsuura T., Shimizu K., Niiya M., Kameda H., Fujita K. Integration of hepatitis B virus DNA into cells of six established human hepatocellular carcinoma cell lines. Hepatogastroenterology. 1990;37:457–460. PubMed

Nagamori S., Fujise K., Hasumura S., Homma S., Sujino H., Matsuura T., Shimizu K., Niiya M., Kameda H. Protein secretion of human cultured liver cells. Hum. Cell. 1988;1:382–390. PubMed

Lee T.K., Na K.S., Kim J., Jeong H.J. Establishment of animal models with orthotopic hepatocellular carcinoma. Nucl. Med. Mol. Imaging. 2014;48:173–179. doi: 10.1007/s13139-014-0288-y. PubMed DOI PMC

Tonon F., Giobbe G.G., Zambon A., Luni C., Gagliano O., Floreani A., Grassi G., Elvassore N. In vitro metabolic zonation through oxygen gradient on a chip. Sci. Rep. 2019;9:13557. doi: 10.1038/s41598-019-49412-6. PubMed DOI PMC

Garcia-Manero G., Gore S.D., Cogle C., Ward R., Shi T., Macbeth K.J., Laille E., Giordano H., Sakoian S., Jabbour E., et al. Phase I study of oral azacitidine in myelodysplastic syndromes, chronic myelomonocytic leukemia, and acute myeloid leukemia. J. Clin. Oncol. 2011;29:2521–2527. doi: 10.1200/JCO.2010.34.4226. PubMed DOI PMC

Sajadian S.O., Tripura C., Samani F.S., Ruoss M., Dooley S., Baharvand H., Nussler A.K. Vitamin C enhances epigenetic modifications induced by 5-azacytidine and cell cycle arrest in the hepatocellular carcinoma cell lines HLE and Huh7. Clin. Epigenet. 2016;8:46. doi: 10.1186/s13148-016-0213-6. PubMed DOI PMC

Grassi G., Scaggiante B., Farra R., Dapas B., Agostini F., Baiz D., Rosso N., Tiribelli C. The expression levels of the translational factors eEF1A 1/2 correlate with cell growth but not apoptosis in hepatocellular carcinoma cell lines with different differentiation grade. Biochimie. 2007;89:1544–1552. doi: 10.1016/j.biochi.2007.07.007. PubMed DOI

Baiz D., Pozzato G., Dapas B., Farra R., Scaggiante B., Grassi M., .Uxa L., Giansante G., Zennaro C., Guarnieri G.F., et al. Bortezomib arrests the proliferation of hepatocellular carcinoma cells HepG2 and JHH6 by differentially affecting E2F1, p21 and p27 levels. Biochimie. 2009;91:373–382. doi: 10.1016/j.biochi.2008.10.015. PubMed DOI

Perrone F., Craparo E.F., Cemazar M., Kamensek U., Drago S.E., Dapas B., Scaggiante B., Zanconati F., Bonazza D., Grassi M., et al. Targeted delivery of siRNAs against hepatocellular carcinoma-related genes by a galactosylated polyaspartamide copolymer. J. Control Release. 2021;330:1132–1151. doi: 10.1016/j.jconrel.2020.11.020. PubMed DOI

Farra R., Scaggiante B., Guerra C., Pozzato G., Grassi M., Zanconati F., Perrone F., Ferrari C., Trotta F., Grassi G., et al. Dissecting the role of the elongation factor 1A isoforms in hepatocellular carcinoma cells by liposome-mediated delivery of siRNAs. Int. J. Pharm. 2017;525:367–376. doi: 10.1016/j.ijpharm.2017.02.031. PubMed DOI

Nakagawa O., Fujisawa K., Ishizaki T., Saito Y., Nakao K., Narumiya S. ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBS Lett. 1996;392:189–193. doi: 10.1016/0014-5793(96)00811-3. PubMed DOI

Farra R., Dapas B., Pozzato G., Scaggiante B., Agostini F., Zennaro C., Grassi M., Rosso N., Giansante C., Fiotti N., et al. Effects of E2F1-cyclin E1-E2 circuit down regulation in hepatocellular carcinoma cells. Dig. Liver Dis. 2011;43:1006–1104. doi: 10.1016/j.dld.2011.07.007. PubMed DOI

Ascione F., Caserta S., Guido S. The Wound Healing Assay Revisited: A Transport Phenomena Approach. Chem. Eng. Sci. 2017;160:200–209. doi: 10.1016/j.ces.2016.11.014. DOI

Ascione F., Guarino A.M., Calabro V., Guido S., Caserta S. A novel approach to quantify the wound closure dynamic. Exp Cell Res. 2017;352:175–183. doi: 10.1016/j.yexcr.2017.01.005. PubMed DOI

Tonon F., Zennaro C., Dapas B., Carraro M., Mariotti M., Grassi G. Rapid and cost-effective xenograft hepatocellular carcinoma model in Zebrafish for drug testing. Int. J. Pharm. 2016;515:583–591. doi: 10.1016/j.ijpharm.2016.10.070. PubMed DOI

Tonon F., Di Bella S., Grassi G., Luzzati R., Ascenzi P., di Masi A., Zennaro C. Extra-Intestinal Effects of C. difficile Toxin A and B: An In Vivo Study Using the Zebrafish Embryo Model. Cells. 2020;9:2575. doi: 10.3390/cells9122575. PubMed DOI PMC

Farra R., Dapas B., Baiz D., Tonon F., Chiaretti S., Del S.G., Rustighi A., Elvassore N., Pozzato G., Grassi M., et al. mpairment of the Pin1/E2F1 axis in the anti-proliferative effect of bortezomib in hepatocellular carcinoma cells. Biochimie. 2015;112:85–95. doi: 10.1016/j.biochi.2015.02.015. PubMed DOI

Hay D.C., Zhao D., Fletcher J., Hewitt Z.A., McLean D., Urruticoechea-Uriguen A., Black J.R., Elcombe C., Ross J.A., Wolf R., et al. Efficient differentiation of hepatocytes from human embryonic stem cells exhibiting markers recapitulating liver development in vivo. Stem Cells. 2008;26:894–902. doi: 10.1634/stemcells.2007-0718. PubMed DOI

Gunning P.W., Ghoshdastider U., Whitaker S., Popp D., Robinson R.C. The evolution of compositionally and functionally distinct actin filaments. J. Cell Sci. 2015;128:2009–2019. doi: 10.1242/jcs.165563. PubMed DOI

Krishnan K., Steptoe A.L., Martin H.C., Pattabiraman D.R., Nones K., Waddell N., Mariasegaram M., Simpson P.T., Lakhani S.R., Vlassov A., et al. miR-139-5p is a regulator of metastatic pathways in breast cancer. RNA. 2013;19:1767–1780. doi: 10.1261/rna.042143.113. PubMed DOI PMC

Croft D.R., Olson M.F. Conditional regulation of a ROCK-estrogen receptor fusion protein. Methods Enzymol. 2006;406:541–553. PubMed

Venturelli S., Armeanu S., Pathil A., Hsieh C.J., Weiss T.S., Vonthein R., Wehrmann M., Gregor M., Lauer U.M., Bitzer M. Epigenetic combination therapy as a tumor-selective treatment approach for hepatocellular carcinoma. Cancer. 2007;109:2132–2141. doi: 10.1002/cncr.22652. PubMed DOI

Lin S.Y., Lin C.J., Liao J.W., Peir J.J., Chen W.L., Chi C.W., Lin Y.-C., Liu Y.-M., Chou F.-I. Therapeutic efficacy for hepatocellular carcinoma by boric acid-mediated boron neutron capture therapy in a rat model. Anticancer Res. 2013;33:4799–4809. PubMed

Rothschild M.A., Oratz M., Schreiber S.S. Albumin synthesis (second of two parts) N. Engl. J. Med. 1972;286:816–821. doi: 10.1056/NEJM197204132861505. PubMed DOI

Delov V., Muth-Kohne E., Schafers C., Fenske M. Transgenic fluorescent zebrafish Tg(fli1:EGFP)y(1) for the identification of vasotoxicity within the zFET. Aquat. Toxicol. 2014;150:189–200. doi: 10.1016/j.aquatox.2014.03.010. PubMed DOI

Zhao C., Wang X., Zhao Y., Li Z., Lin S., Wei Y., Yang H. A novel xenograft model in zebrafish for high-resolution investigating dynamics of neovascularization in tumors. PLoS ONE. 2011;6:e21768. doi: 10.1371/journal.pone.0021768. PubMed DOI PMC

Caballero M., Candiracci M. Zebrafish as Screening Model for Detecting Toxicity and Drugs Efficacy. J. Unexplored Med. Data. 2018;3:4. doi: 10.20517/2572-8180.2017.15. DOI

Lee S.H., Kim H.R., Han R.X., Oqani R.K., Jin D.I. Cardiovascular risk assessment of atypical antipsychotic drugs in a zebrafish model. J. Appl. Toxicol. 2013;33:466–470. doi: 10.1002/jat.1768. PubMed DOI

Venturelli S., Berger A., Weiland T., Zimmermann M., Hacker S., Peter C., Wesselborg S., Königsrainer A., Weiss T.S., Gregor M., et al. Dual antitumour effect of 5-azacytidine by inducing a breakdown of resistance-mediating factors and epigenetic modulation. Gut. 2011;60:156–165. doi: 10.1136/gut.2010.208041. PubMed DOI

Du S., Song X., Li Y., Cao Y., Chu F., Durojaye O.A., Su Z., Shi X., Wang J., Cheng J., et al. Celastrol inhibits ezrin-mediated migration of hepatocellular carcinoma cells. Sci. Rep. 2020;10:11273. doi: 10.1038/s41598-020-68238-1. PubMed DOI PMC

Li M., Ke J., Wang Q., Qian H., Yang L., Zhang X., Xiao J., Ding H., Shan X., Liu Q., et al. Upregulation of ROCK2 in gastric cancer cell promotes tumor cell proliferation, metastasis and invasion. Clin. Exp. Med. 2017;17:519–529. doi: 10.1007/s10238-016-0444-z. PubMed DOI

Pinca R.S., Manara M.C., Chiadini V., Picci P., Zucchini C., Scotlandi K. Targeting ROCK2 rather than ROCK1 inhibits Ewing sarcoma malignancy. Oncol. Rep. 2017;37:1387–1393. doi: 10.3892/or.2017.5397. PubMed DOI PMC

Kumper S., Mardakheh F.K., McCarthy A., Yeo M., Stamp G.W., Paul A., Worboys J., Sadok A., Jørgensen C., Guichard S., et al. Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis. eLife. 2016;5:e12994. doi: 10.7554/eLife.12203. PubMed DOI PMC

Arnst K.E., Banerjee S., Chen H., Deng S., Hwang D.J., Li W., Miller D.D. Current advances of tubulin inhibitors as dual acting small molecules for cancer therapy. Med. Res. Rev. 2019;39:1398–1426. doi: 10.1002/med.21568. PubMed DOI PMC

Yousef M.H., El-Fawal H.A.N., Abdelnaser A. Hepigenetics: A Review of Epigenetic Modulators and Potential Therapies in Hepatocellular Carcinoma. Biomed. Res. Int. 2020;2020:9593254. doi: 10.1155/2020/9593254. PubMed DOI PMC

Farra R., Musiani F., Perrone F., Čemažar M., Kamenšek U., Tonon F., Abrami M., Ručigaj A., Grassi M., Pozzato G., et al. Polymer-Mediated Delivery of siRNAs to Hepatocellular Carcinoma: Variables Affecting Specificity and Effectiveness. Molecules. 2018;23:777. doi: 10.3390/molecules23040777. PubMed DOI PMC

Scarabel L., Perrone F., Garziera M., Farra R., Grassi M., Musiani F., Spena C.R., Salis B., Stefano L.D., Spena C.R., et al. Strategies to optimize siRNA delivery to hepatocellular carcinoma cells. Expert Opin. Drug Deliv. 2017;14:797–810. doi: 10.1080/17425247.2017.1292247. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...