5-Azacytidine Downregulates the Proliferation and Migration of Hepatocellular Carcinoma Cells In Vitro and In Vivo by Targeting miR-139-5p/ROCK2 Pathway
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
no number
Fondazione Benefica Kathleen Foreman Casali of Trieste, Italy
no number
Beneficentia Stiftung" of Vaduz Liechtenstein
P3-0003
Slovenian Research Agency (ARRS)
FP168562300
Progetto HEaD "HIGHER EDUCATION AND DEVELOPMENT" UNITS, Fondo sociale Europeo 2014/2020, Asse 3, Programma specifico 25/15
VN21GR01
Italian Ministry of Foreign Affairs and International Cooperation
PubMed
35406401
PubMed Central
PMC8996928
DOI
10.3390/cancers14071630
PII: cancers14071630
Knihovny.cz E-resources
- Keywords
- 5-azacytidine, E2F1, MMP-2, ROCK2, cell cycle, hepatocellular carcinoma, miR-139-5p, migration,
- Publication type
- Journal Article MeSH
BACKGROUND: For hepatocellular carcinoma (HCC), effective therapeutic approaches are lacking. As aberrant gene methylation is a major contributor to HCC development, demethylating drugs such as 5-azacytidine (5-Aza) have been proposed. As most 5-Aza mechanisms of action are unknown, we investigated its phenotypic/molecular effects. METHODS: 5-Aza effects were examined in the human HCC cell lines JHH-6/HuH-7 and in the rat cell-line N1-S1. We also employed a xenograft mouse model (HuH-7), a zebrafish model (JHH-6), and an orthotopic syngeneic rat model (N1-S1) of HCC. RESULTS: 5-Aza downregulated cell viability/growth/migration/adhesion by upregulating miR-139-5p, which in turn downregulated ROCK2/cyclin D1/E2F1 and increased p27kip1, resulting in G1/G0 cell accumulation. Moreover, a decrease in cyclin B1 and an increase in p27kip1 led to G2/M accumulation. Finally, we observed a decrease in MMP-2 levels, a stimulator of HCC cell migration. Aza effects were confirmed in the mouse model; in the zebrafish model, we also demonstrated the downregulation of tumor neo-angiogenesis, and in the orthotopic rat model, we observed impaired N1-S1 grafting in a healthy liver. CONCLUSION: We demonstrate for the first time that 5-Aza can impair HCC development via upregulation of miR-139-5p, which in turn impairs the ROCK2/cyclin D1/E2F1/cyclin B1 pro-proliferative pathway and the ROCK2/MMP-2 pro-migratory pathway. Thus, we provide novel information about 5-Aza mechanisms of action and deepen the knowledge about the crosstalk among ROCK2/cyclin D1/E2F1/cyclin B1/p27kip1/MMP-2 in HCC.
CEINGE Advanced Biotechnologies via Gaetano Salvatore 486 1 80145 Napoli Italy
Department of General Surgery Maggiore Hospital Largo Donatori del Sangue 1 1 26900 Lodi Italy
Faculty of Health Sciences University of Primorska Polje 42 SI 6310 Izola Slovenia
Industrial Engineering Department University of Padova Via Francesco Marzolo 9 1 35131 Padova Italy
International Clinical Research Center of St Anne's University Hospital CZ 65691 Brno Czech Republic
See more in PubMed
Ferlay J., Soerjomataram I., Dikshit R., Eser S., Mathers C., Rebelo M., Parkin D.M., Forman D., Bray F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer. 2015;136:E359–E386. doi: 10.1002/ijc.29210. PubMed DOI
Palmer D.H., Malagari K., Kulik L.M. Role of locoregional therapies in the wake of systemic therapy. J. Hepatol. 2020;72:277–287. doi: 10.1016/j.jhep.2019.09.023. PubMed DOI
Robertson K.D. DNA methylation, methyltransferases, and cancer. Oncogene. 2001;20:3139–3155. doi: 10.1038/sj.onc.1204341. PubMed DOI
Newell-Price J., Clark A.J., King P. DNA methylation and silencing of gene expression. Trends Endocrinol. Metab. 2000;11:142–148. doi: 10.1016/S1043-2760(00)00248-4. PubMed DOI
Hendrich B., Bird A. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol. Cell. Biol. 1998;18:6538–6547. doi: 10.1128/MCB.18.11.6538. PubMed DOI PMC
Yonemori M., Seki N., Yoshino H., Matsushita R., Miyamoto K., Nakagawa M., Enokida H. Dual tumor-suppressors miR-139-5p and miR-139-3p targeting matrix metalloprotease 11 in bladder cancer. Cancer Sci. 2016;107:1233–1242. doi: 10.1111/cas.13002. PubMed DOI PMC
Choi J., Kim Y.K., Park K., Nah J., Yoon S.-S., Kim D.-W., Kim V.N., Seong R.H. MicroRNA-139-5p regulates proliferation of hematopoietic progenitors and is repressed during BCR-ABL-mediated leukemogenesis. Blood. 2016;128:2117–2129. doi: 10.1182/blood-2016-02-702464. PubMed DOI
Zhang L., Dong Y., Zhu N., Tsoi H., Zhao Z., Wu C.W., Wang K., Zheng S., Ng S.S., Chan F.K., et al. microRNA-139-5p exerts tumor suppressor function by targeting NOTCH1 in colorectal cancer. Mol. Cancer. 2014;13:124. doi: 10.1186/1476-4598-13-124. PubMed DOI PMC
Bao W., Fu H.J., Xie Q.-S., Wang L., Zhang R., Guo Z.-Y., Zhao J., Meng Y.-L., Ren X.-L., Wang T., et al. HER2 interacts with CD44 to up-regulate CXCR4 via epigenetic silencing of microRNA-139 in gastric cancer cells. Gastroenterology. 2011;141:2076–2087. doi: 10.1053/j.gastro.2011.08.050. PubMed DOI
Fernandez-Barrena M.G., Arechederra M., Colyn L., Berasain C., Avila M.A. Epigenetics in hepatocellular carcinoma development and therapy: The tip of the iceberg. JHEP Rep. 2020;2:100167. doi: 10.1016/j.jhepr.2020.100167. PubMed DOI PMC
Nishida N., Kudo M., Nagasaka T., Ikai I., Goel A. Characteristic patterns of altered DNA methylation predict emergence of human hepatocellular carcinoma. Hepatology. 2012;56:994–1003. doi: 10.1002/hep.25706. PubMed DOI
Hlady R.A., Tiedemann R.L., Puszyk W., Zendejas I., Roberts L.R., Choi J.-H., Liu C., Robertson K.D. Epigenetic signatures of alcohol abuse and hepatitis infection during human hepatocarcinogenesis. Oncotarget. 2014;5:9425–9443. doi: 10.18632/oncotarget.2444. PubMed DOI PMC
Scaggiante B., Dapas B., Farra R., Grassi M., Pozzato G., Giansante C., Grassi G. Improving siRNA bio-distribution and minimizing side effects. Curr. Drug Metab. 2011;12:11–23. doi: 10.2174/138920011794520017. PubMed DOI
Qin H., Wen D.-Y., Que Q., Zhou C.-Y., Wang X.-D., Peng Y.-T., He Y., Yang H., Liao B.-M. Reduced expression of microRNA-139-5p in hepatocellular carcinoma results in a poor outcome: An exploration the roles of microRNA-139-5p in tumorigenesis, advancement and prognosis at the molecular biological level using an integrated meta-analysis and bioinformatic investigation. Oncol. Lett. 2019;18:6704–6724. PubMed PMC
Wang X., Gao J., Zhou B., Xie J., Zhou G., Chen Y. Identification of prognostic markers for hepatocellular carcinoma based on miRNA expression profiles. Life Sci. 2019;232:116596. doi: 10.1016/j.lfs.2019.116596. PubMed DOI
Wong C.C.-L., Wong C.-M., Tung E.K.-K., Au S.L., Lee J.M., Poon R.T., Man K., Ng I.O.-L. The microRNA miR-139 suppresses metastasis and progression of hepatocellular carcinoma by down-regulating Rho-kinase 2. Gastroenterology. 2011;140:322–331. doi: 10.1053/j.gastro.2010.10.006. PubMed DOI
Schofield A.V., Bernard O. Rho-associated coiled-coil kinase (ROCK) signaling and disease. Crit. Rev. Biochem. Mol. Biol. 2013;48:301–316. doi: 10.3109/10409238.2013.786671. PubMed DOI
Julian L., Olson M.F. Rho-associated coiled-coil containing kinases (ROCK): Structure, regulation, and functions. Small GTPases. 2014;5:e29846. doi: 10.4161/sgtp.29846. PubMed DOI PMC
Huang D., Du X., Yuan R., Chen L., Liu T., Wen C., Huang M., Li M., Hao L., Shao J. Rock2 promotes the invasion and metastasis of hepatocellular carcinoma by modifying MMP2 ubiquitination and degradation. Biochem. Biophys. Res. Commun. 2014;453:49–56. doi: 10.1016/j.bbrc.2014.09.061. PubMed DOI
Wong C.C., Wong C.M., Tung E.K., Man K., Ng I.O. Rho-kinase 2 is frequently overexpressed in hepatocellular carcinoma and involved in tumor invasion. Hepatology. 2009;49:1583–1594. doi: 10.1002/hep.22836. PubMed DOI
Du Y., Lu S., Ge J., Long D., Wen C., Tan S., Chen l., Zhou W. ROCK2 disturbs MKP1 expression to promote invasion and metastasis in hepatocellular carcinoma. Am. J. Cancer Res. 2020;10:884–896. PubMed PMC
Croft D.R., Olson M.F. The Rho GTPase effector ROCK regulates cyclin A, cyclin D1, and p27Kip1 levels by distinct mechanisms. Mol. Cell. Biol. 2006;26:4612–4627. doi: 10.1128/MCB.02061-05. PubMed DOI PMC
Montalto F.I., De A.F. Cyclin D1 in Cancer: A Molecular Connection for Cell Cycle Control, Adhesion and Invasion in Tumor and Stroma. Cells. 2020;9:2648. doi: 10.3390/cells9122648. PubMed DOI PMC
Nishida N., Fukuda Y., Komeda T., Kita R., Sando T., Furukawa M., Amenomori M., Shibagaki I., Nakao K., Ikenaga M., et al. Amplification and overexpression of the cyclin D1 gene in aggressive human hepatocellular carcinoma. Cancer Res. 1994;54:3107–3110. PubMed
Zhang Y.J., Jiang W., Chen C.J., Lee C.S., Kahn S.M., Santella R.M., WeinsteinI B. Amplification and overexpression of cyclin D1 in human hepatocellular carcinoma. Biochem. Biophys. Res. Commun. 1993;196:1010–1016. doi: 10.1006/bbrc.1993.2350. PubMed DOI
Dapas B., Farra R., Grassi M., Giansante C., Fiotti N., Uxa L., Rainaldi G., Mercatanti A., Colombatti A., Spessotto P., et al. Role of E2F1-cyclin E1-cyclin E2 circuit in human coronary smooth muscle cell proliferation and therapeutic potential of its downregulation by siRNAs. Mol. Med. 2009;15:297–306. doi: 10.2119/molmed.2009.00030. PubMed DOI PMC
Attwooll C., Lazzerini D.E., Helin K. The E2F family: Specific functions and overlapping interests. EMBO J. 2004;23:4709–4716. doi: 10.1038/sj.emboj.7600481. PubMed DOI PMC
Kent L.N., Bae S., Tsai S.Y., Tang X., Srivastava A., Koivisto C., Martin C., Ridolfi E., Miller G.C., Zorko S.M., et al. Dosage-dependent copy number gains in E2f1 and E2f3 drive hepatocellular carcinoma. J. Clin. Investig. 2017;127:830–842. doi: 10.1172/JCI87583. PubMed DOI PMC
Farra R., Grassi G., Tonon F., Abrami M., Grassi M., Pozzato G., Fiotti N., Forte G., Dapas B. The Role of the Transcription Factor E2F1 in Hepatocellular Carcinoma. Curr. Drug Deliv. 2017;14:272–281. PubMed
Russo G.L., Stampone E., Cervellera C., Borriello A. Regulation of p27Kip1 and p57Kip2 Functions by Natural Polyphenols. Biomolecules. 2020;10:1316. doi: 10.3390/biom10091316. PubMed DOI PMC
Newby A.C. Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovasc. Res. 2006;69:614–624. doi: 10.1016/j.cardiores.2005.08.002. PubMed DOI
Gore S.D., Hermes-DeSantis E.R. Future directions in myelodysplastic syndrome: Newer agents and the role of combination approaches. Cancer Control. 2008;15((Suppl. 4)):40–49. doi: 10.1177/107327480801504s05. PubMed DOI PMC
Bennett R.L., Licht J.D. Targeting Epigenetics in Cancer. Annu. Rev. Pharmacol. Toxicol. 2018;58:187–207. doi: 10.1146/annurev-pharmtox-010716-105106. PubMed DOI PMC
Gailhouste L., Liew L.C., Yasukawa K., Hatada I., Tanaka Y., Nakagama H., Ochiya T. Differentiation Therapy by Epigenetic Reconditioning Exerts Antitumor Effects on Liver Cancer Cells. Mol. Ther. 2018;26:1840–1854. doi: 10.1016/j.ymthe.2018.04.018. PubMed DOI PMC
Nakabayashi H., Taketa K., Miyano K., Yamane T., Sato J. Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. Cancer Res. 1982;42:3858–3863. PubMed
Fujise K., Nagamori S., Hasumura S., Homma S., Sujino H., Matsuura T., Shimizu K., Niiya M., Kameda H., Fujita K. Integration of hepatitis B virus DNA into cells of six established human hepatocellular carcinoma cell lines. Hepatogastroenterology. 1990;37:457–460. PubMed
Nagamori S., Fujise K., Hasumura S., Homma S., Sujino H., Matsuura T., Shimizu K., Niiya M., Kameda H. Protein secretion of human cultured liver cells. Hum. Cell. 1988;1:382–390. PubMed
Lee T.K., Na K.S., Kim J., Jeong H.J. Establishment of animal models with orthotopic hepatocellular carcinoma. Nucl. Med. Mol. Imaging. 2014;48:173–179. doi: 10.1007/s13139-014-0288-y. PubMed DOI PMC
Tonon F., Giobbe G.G., Zambon A., Luni C., Gagliano O., Floreani A., Grassi G., Elvassore N. In vitro metabolic zonation through oxygen gradient on a chip. Sci. Rep. 2019;9:13557. doi: 10.1038/s41598-019-49412-6. PubMed DOI PMC
Garcia-Manero G., Gore S.D., Cogle C., Ward R., Shi T., Macbeth K.J., Laille E., Giordano H., Sakoian S., Jabbour E., et al. Phase I study of oral azacitidine in myelodysplastic syndromes, chronic myelomonocytic leukemia, and acute myeloid leukemia. J. Clin. Oncol. 2011;29:2521–2527. doi: 10.1200/JCO.2010.34.4226. PubMed DOI PMC
Sajadian S.O., Tripura C., Samani F.S., Ruoss M., Dooley S., Baharvand H., Nussler A.K. Vitamin C enhances epigenetic modifications induced by 5-azacytidine and cell cycle arrest in the hepatocellular carcinoma cell lines HLE and Huh7. Clin. Epigenet. 2016;8:46. doi: 10.1186/s13148-016-0213-6. PubMed DOI PMC
Grassi G., Scaggiante B., Farra R., Dapas B., Agostini F., Baiz D., Rosso N., Tiribelli C. The expression levels of the translational factors eEF1A 1/2 correlate with cell growth but not apoptosis in hepatocellular carcinoma cell lines with different differentiation grade. Biochimie. 2007;89:1544–1552. doi: 10.1016/j.biochi.2007.07.007. PubMed DOI
Baiz D., Pozzato G., Dapas B., Farra R., Scaggiante B., Grassi M., .Uxa L., Giansante G., Zennaro C., Guarnieri G.F., et al. Bortezomib arrests the proliferation of hepatocellular carcinoma cells HepG2 and JHH6 by differentially affecting E2F1, p21 and p27 levels. Biochimie. 2009;91:373–382. doi: 10.1016/j.biochi.2008.10.015. PubMed DOI
Perrone F., Craparo E.F., Cemazar M., Kamensek U., Drago S.E., Dapas B., Scaggiante B., Zanconati F., Bonazza D., Grassi M., et al. Targeted delivery of siRNAs against hepatocellular carcinoma-related genes by a galactosylated polyaspartamide copolymer. J. Control Release. 2021;330:1132–1151. doi: 10.1016/j.jconrel.2020.11.020. PubMed DOI
Farra R., Scaggiante B., Guerra C., Pozzato G., Grassi M., Zanconati F., Perrone F., Ferrari C., Trotta F., Grassi G., et al. Dissecting the role of the elongation factor 1A isoforms in hepatocellular carcinoma cells by liposome-mediated delivery of siRNAs. Int. J. Pharm. 2017;525:367–376. doi: 10.1016/j.ijpharm.2017.02.031. PubMed DOI
Nakagawa O., Fujisawa K., Ishizaki T., Saito Y., Nakao K., Narumiya S. ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBS Lett. 1996;392:189–193. doi: 10.1016/0014-5793(96)00811-3. PubMed DOI
Farra R., Dapas B., Pozzato G., Scaggiante B., Agostini F., Zennaro C., Grassi M., Rosso N., Giansante C., Fiotti N., et al. Effects of E2F1-cyclin E1-E2 circuit down regulation in hepatocellular carcinoma cells. Dig. Liver Dis. 2011;43:1006–1104. doi: 10.1016/j.dld.2011.07.007. PubMed DOI
Ascione F., Caserta S., Guido S. The Wound Healing Assay Revisited: A Transport Phenomena Approach. Chem. Eng. Sci. 2017;160:200–209. doi: 10.1016/j.ces.2016.11.014. DOI
Ascione F., Guarino A.M., Calabro V., Guido S., Caserta S. A novel approach to quantify the wound closure dynamic. Exp Cell Res. 2017;352:175–183. doi: 10.1016/j.yexcr.2017.01.005. PubMed DOI
Tonon F., Zennaro C., Dapas B., Carraro M., Mariotti M., Grassi G. Rapid and cost-effective xenograft hepatocellular carcinoma model in Zebrafish for drug testing. Int. J. Pharm. 2016;515:583–591. doi: 10.1016/j.ijpharm.2016.10.070. PubMed DOI
Tonon F., Di Bella S., Grassi G., Luzzati R., Ascenzi P., di Masi A., Zennaro C. Extra-Intestinal Effects of C. difficile Toxin A and B: An In Vivo Study Using the Zebrafish Embryo Model. Cells. 2020;9:2575. doi: 10.3390/cells9122575. PubMed DOI PMC
Farra R., Dapas B., Baiz D., Tonon F., Chiaretti S., Del S.G., Rustighi A., Elvassore N., Pozzato G., Grassi M., et al. mpairment of the Pin1/E2F1 axis in the anti-proliferative effect of bortezomib in hepatocellular carcinoma cells. Biochimie. 2015;112:85–95. doi: 10.1016/j.biochi.2015.02.015. PubMed DOI
Hay D.C., Zhao D., Fletcher J., Hewitt Z.A., McLean D., Urruticoechea-Uriguen A., Black J.R., Elcombe C., Ross J.A., Wolf R., et al. Efficient differentiation of hepatocytes from human embryonic stem cells exhibiting markers recapitulating liver development in vivo. Stem Cells. 2008;26:894–902. doi: 10.1634/stemcells.2007-0718. PubMed DOI
Gunning P.W., Ghoshdastider U., Whitaker S., Popp D., Robinson R.C. The evolution of compositionally and functionally distinct actin filaments. J. Cell Sci. 2015;128:2009–2019. doi: 10.1242/jcs.165563. PubMed DOI
Krishnan K., Steptoe A.L., Martin H.C., Pattabiraman D.R., Nones K., Waddell N., Mariasegaram M., Simpson P.T., Lakhani S.R., Vlassov A., et al. miR-139-5p is a regulator of metastatic pathways in breast cancer. RNA. 2013;19:1767–1780. doi: 10.1261/rna.042143.113. PubMed DOI PMC
Croft D.R., Olson M.F. Conditional regulation of a ROCK-estrogen receptor fusion protein. Methods Enzymol. 2006;406:541–553. PubMed
Venturelli S., Armeanu S., Pathil A., Hsieh C.J., Weiss T.S., Vonthein R., Wehrmann M., Gregor M., Lauer U.M., Bitzer M. Epigenetic combination therapy as a tumor-selective treatment approach for hepatocellular carcinoma. Cancer. 2007;109:2132–2141. doi: 10.1002/cncr.22652. PubMed DOI
Lin S.Y., Lin C.J., Liao J.W., Peir J.J., Chen W.L., Chi C.W., Lin Y.-C., Liu Y.-M., Chou F.-I. Therapeutic efficacy for hepatocellular carcinoma by boric acid-mediated boron neutron capture therapy in a rat model. Anticancer Res. 2013;33:4799–4809. PubMed
Rothschild M.A., Oratz M., Schreiber S.S. Albumin synthesis (second of two parts) N. Engl. J. Med. 1972;286:816–821. doi: 10.1056/NEJM197204132861505. PubMed DOI
Delov V., Muth-Kohne E., Schafers C., Fenske M. Transgenic fluorescent zebrafish Tg(fli1:EGFP)y(1) for the identification of vasotoxicity within the zFET. Aquat. Toxicol. 2014;150:189–200. doi: 10.1016/j.aquatox.2014.03.010. PubMed DOI
Zhao C., Wang X., Zhao Y., Li Z., Lin S., Wei Y., Yang H. A novel xenograft model in zebrafish for high-resolution investigating dynamics of neovascularization in tumors. PLoS ONE. 2011;6:e21768. doi: 10.1371/journal.pone.0021768. PubMed DOI PMC
Caballero M., Candiracci M. Zebrafish as Screening Model for Detecting Toxicity and Drugs Efficacy. J. Unexplored Med. Data. 2018;3:4. doi: 10.20517/2572-8180.2017.15. DOI
Lee S.H., Kim H.R., Han R.X., Oqani R.K., Jin D.I. Cardiovascular risk assessment of atypical antipsychotic drugs in a zebrafish model. J. Appl. Toxicol. 2013;33:466–470. doi: 10.1002/jat.1768. PubMed DOI
Venturelli S., Berger A., Weiland T., Zimmermann M., Hacker S., Peter C., Wesselborg S., Königsrainer A., Weiss T.S., Gregor M., et al. Dual antitumour effect of 5-azacytidine by inducing a breakdown of resistance-mediating factors and epigenetic modulation. Gut. 2011;60:156–165. doi: 10.1136/gut.2010.208041. PubMed DOI
Du S., Song X., Li Y., Cao Y., Chu F., Durojaye O.A., Su Z., Shi X., Wang J., Cheng J., et al. Celastrol inhibits ezrin-mediated migration of hepatocellular carcinoma cells. Sci. Rep. 2020;10:11273. doi: 10.1038/s41598-020-68238-1. PubMed DOI PMC
Li M., Ke J., Wang Q., Qian H., Yang L., Zhang X., Xiao J., Ding H., Shan X., Liu Q., et al. Upregulation of ROCK2 in gastric cancer cell promotes tumor cell proliferation, metastasis and invasion. Clin. Exp. Med. 2017;17:519–529. doi: 10.1007/s10238-016-0444-z. PubMed DOI
Pinca R.S., Manara M.C., Chiadini V., Picci P., Zucchini C., Scotlandi K. Targeting ROCK2 rather than ROCK1 inhibits Ewing sarcoma malignancy. Oncol. Rep. 2017;37:1387–1393. doi: 10.3892/or.2017.5397. PubMed DOI PMC
Kumper S., Mardakheh F.K., McCarthy A., Yeo M., Stamp G.W., Paul A., Worboys J., Sadok A., Jørgensen C., Guichard S., et al. Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis. eLife. 2016;5:e12994. doi: 10.7554/eLife.12203. PubMed DOI PMC
Arnst K.E., Banerjee S., Chen H., Deng S., Hwang D.J., Li W., Miller D.D. Current advances of tubulin inhibitors as dual acting small molecules for cancer therapy. Med. Res. Rev. 2019;39:1398–1426. doi: 10.1002/med.21568. PubMed DOI PMC
Yousef M.H., El-Fawal H.A.N., Abdelnaser A. Hepigenetics: A Review of Epigenetic Modulators and Potential Therapies in Hepatocellular Carcinoma. Biomed. Res. Int. 2020;2020:9593254. doi: 10.1155/2020/9593254. PubMed DOI PMC
Farra R., Musiani F., Perrone F., Čemažar M., Kamenšek U., Tonon F., Abrami M., Ručigaj A., Grassi M., Pozzato G., et al. Polymer-Mediated Delivery of siRNAs to Hepatocellular Carcinoma: Variables Affecting Specificity and Effectiveness. Molecules. 2018;23:777. doi: 10.3390/molecules23040777. PubMed DOI PMC
Scarabel L., Perrone F., Garziera M., Farra R., Grassi M., Musiani F., Spena C.R., Salis B., Stefano L.D., Spena C.R., et al. Strategies to optimize siRNA delivery to hepatocellular carcinoma cells. Expert Opin. Drug Deliv. 2017;14:797–810. doi: 10.1080/17425247.2017.1292247. PubMed DOI