Dislocation avalanches are like earthquakes on the micron scale
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
TKP2020-IKA-05
Emberi Eroforrások Minisztériuma (Ministry of Human Capacities)
NKFIH-K-119561
Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFI Office)
NKFIH-FK-138975
Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFI Office)
NKFIH-K-119561
Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFI Office)
NKFIH-FK-138975
Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFI Office)
NKFIH-K-119561
Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFI Office)
NKFIH-K-119561
Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFI Office)
NKFIH-FK-138975
Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFI Office)
NKFIH-K-119561
Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFI Office)
19-22604S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
PubMed
35418187
PubMed Central
PMC9007997
DOI
10.1038/s41467-022-29044-7
PII: 10.1038/s41467-022-29044-7
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Compression experiments on micron-scale specimens and acoustic emission (AE) measurements on bulk samples revealed that the dislocation motion resembles a stick-slip process - a series of unpredictable local strain bursts with a scale-free size distribution. Here we present a unique experimental set-up, which detects weak AE waves of dislocation slip during the compression of Zn micropillars. Profound correlation is observed between the energies of deformation events and the emitted AE signals that, as we conclude, are induced by the collective dissipative motion of dislocations. The AE data also reveal a two-level structure of plastic events, which otherwise appear as a single stress drop. Hence, our experiments and simulations unravel the missing relationship between the properties of acoustic signals and the corresponding local deformation events. We further show by statistical analyses that despite fundamental differences in deformation mechanism and involved length- and time-scales, dislocation avalanches and earthquakes are essentially alike.
See more in PubMed
Orowan E. Zur Kristallplastizität. iii. Z. Phys. 1934;89:634–659.
Polanyi M. Über eine Art Gitterstörung, die einen Kristall plastisch machen könnte. Z. Phys. 1934;89:660–664.
Taylor GI. The mechanism of plastic deformation of crystals. Part I.-Theoretical. P. R. Soc. Lond. 1934;145:362–387.
Uchic MD, Dimiduk DM, Florando JN, Nix WD. Sample dimensions influence strength and crystal plasticity. Science. 2004;305:986–989. PubMed
Volkert CA, Lilleodden ET. Size effects in the deformation of sub-micron Au columns. Philos. Mag. 2006;86:5567–5579.
Dimiduk DM, Woodward C, LeSar R, Uchic MD. Scale-free intermittent flow in crystal plasticity. Science. 2006;312:1188–1190. PubMed
Csikor FF, Motz C, Weygand D, Zaiser M, Zapperi S. Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale. Science. 2007;318:251–254. PubMed
Scruby CB. An introduction to acoustic emission. J. Phys. E. 1987;20:946–953.
Miguel M-C, Vespignani A, Zapperi S, Weiss J, Grasso J-R. Intermittent dislocation flow in viscoplastic deformation. Nature. 2001;410:667–671. PubMed
Weiss J, Marsan D. Three-dimensional mapping of dislocation avalanches: clustering and space/time coupling. Science. 2003;299:89–92. PubMed
Weiss J, et al. Evidence for universal intermittent crystal plasticity from acoustic emission and high-resolution extensometry experiments. Phys. Rev. B. 2007;76:224110.
Gutenberg B, Richter CF. Magnitude and energy of earthquakes. Ann. Geofis. 1956;9:1–15. PubMed
Utsu T. Represeantation and analysis if the earthquake size distribution: a historical review and some new approaches. Pure Appl. Geophys. 1999;155:509–535.
Utsu T, Ogata Y, Matsu’ura RS. The centenary of the omori formula for a decay law of aftershock activity. J. Phys. Earth. 1995;43:1–33.
Guglielmi AV. Interpretation of the Omori law. Izv., Phys. Solid Earth. 2016;52:785–786.
Helmstetter A. Is earthquake triggering driven by small earthquakes? Phys. Rev. Lett. 2003;91:058501. PubMed
Baró J, et al. Statistical Similarity between the Compression of a Porous Material and Earthquakes. Phys. Rev. Lett. 2013;110:088702. PubMed
Meng F, Wong LNY, Zhou H. Power law relations in earthquakes from microscopic to macroscopic scales. Sci. Rep. 2019;9:10705. PubMed PMC
Jones LM, Molnar P. Some characteristics of foreshocks and their possible relationship to earthquake prediction and premonitory slip on faults. J. Geophys. Res. -Sol. Ea. 1979;84:3596–3608.
Weiss J, Miguel M-C. Dislocation avalanche correlations. Mater. Sci. Eng.: A. 2004;387:292–296.
Bak P, Christensen K, Danon L, Scanlon T. Unified scaling law for earthquakes. Phys. Rev. Lett. 2002;88:178501. PubMed
Karsai M, Kaski K, Barabási A-L, Kertész J. Universal features of correlated bursty behaviour. Sci. Rep. 2012;2:1–7. PubMed PMC
Corral A. Long-term clustering, scaling, and universality in the temporal occurrence of earthquakes. Phys. Rev. Lett. 2004;92:108501. PubMed
Houdoux D, Amon A, Marsan D, Weiss J, Crassous J. Micro-slips in an experimental granular shear band replicate the spatiotemporal characteristics of natural earthquakes. Commun. Earth Environ. 2021;2:1–11.
Ispánovity PD, et al. Avalanches in 2D dislocation systems: Plastic yielding is not depinning. Phys. Rev. Lett. 2014;112:235501. PubMed
Csikor FF, Zaiser M, Ispánovity PD, Groma I. The role of density fluctuations in the relaxation of random dislocation systems. J. Stat. Mech. 2009;2009:P03036.
Zaiser M, Sandfeld S. Scaling properties of dislocation simulations in the similitude regime. Model. Simul. Mater. Sci. 2014;22:065012.
Lehtinen A, Costantini G, Alava MJ, Zapperi S, Laurson L. Glassy features of crystal plasticity. Phys. Rev. B. 2016;94:064101.
Sethna JP, Dahmen KA, Myers CR. Crackling noise. Nature. 2001;410:242–250. PubMed
Weiss J, et al. From mild to wild fluctuations in crystal plasticity. Phys. Rev. Lett. 2015;114:105504. PubMed
Zhang P, et al. Taming intermittent plasticity at small length scales. Acta Materialia. 2017;128:351–364.
Alcalá J, et al. Statistics of dislocation avalanches in FCC and BCC metals: dislocation mechanisms and mean swept distances across microsample sizes and temperatures. Sci. Rep. 2020;10:1–14. PubMed PMC
Uchic M, Shade P, Dimiduk D. Plasticity of micromoter-scale single crystals in compression. Annu. Rev. Mater. Res. 2009;39:361–386.
Britton TB, Wilkinson AJ. High resolution electron backscatter diffraction measurements of elastic strain variations in the presence of larger lattice rotations. Ultramicroscopy. 2012;114:82–95. PubMed
Groma I, Székely F. Analysis of the asymptotic properties of X-ray line broadening caused by dislocations. J. Appl. Cryst. 2000;33:1329–1334.
Borbély A, Groma I. Variance method for the evaluation of particle size and dislocation density from X-ray Bragg peaks. Appl. Phys. Lett. 2001;79:1772–1174.
Groma, I. & Borbély, A. X-ray peak broadening due to inhomogeneous dislocation distributions. In Diffraction Analysis of the Microstructure of Materials, 287–307 (Springer, 2004).
Dragomir IC, Ungár T. Contrast factors of dislocations in the hexagonal crystal system. J. Appl. Crystallogr. 2002;35:556–564.
Borbély A, Dragomir-Cernatescu J, Ribárik G, Ungár T. Computer program ANIZC for the calculation of diffraction contrast factors of dislocations in elastically anisotropic cubic, hexagonal and trigonal crystals. J. Appl. Crystallogr. 2003;36:160–162.
Hegyi AI, et al. Micron-scale deformation: a coupled in situ study of strain bursts and acoustic emission. Microsc. Microanal. 2017;23:1076–1081. PubMed
Kalácska S, et al. Investigation of geometrically necessary dislocation structures in compressed Cu micropillars by 3-dimensional HR-EBSD. Mat. Sci. Eng. A. 2020;770:138499.
Bradski G. The OpenCV Library. Dr. Dobb’s J. 2000;25:120–125.
Tüzes D, Ispánovity PD, Zaiser M. Disorder is good for you: the influence of local disorder on strain localization and ductility of strain softening materials. Int. J. Fract. 2017;205:139–150.
ISO 12716:2001(E): Non-destructive testing – Acoustic emission inspection – Vocabulary. Standard, International Organization for Standardization, Geneva, Switzerland (2001).
Heiple CR, Carpenter SH. Acoustic emission produced by deformation of metals and alloys - A review. J. Acoust. Emiss. 1987;6:177–237.
Grosse, C. & Ohtsu, M. (eds.) Acoustic Emission Testing (Springer Berlin Heidelberg, Berlin, Heidelberg, 2008).
Jordi B, et al. Experimental evidence of accelerated seismic release without critical failure in acoustic emissions of compressed nanoporous materials. Phys. Rev. Lett. 2018;120:245501. PubMed
Vu CC, Weiss J. Assymetric damage avalanche shape in quasibrittle materials and subavalanche (aftershock) clusters. Phys. Rev. Lett. 2020;125:105502. PubMed
Kanamori H, Brodsky EE. The physics of earthquakes. Rep. Prog. Phys. 2004;68:1429.
Hirth, J. P. & Lothe, J. Theory of Dislocations (John Willey & Sons, New York, 1982), 2nd edn.
Bakó B, Groma I, Györgyi G, Zimányi G. Dislocation patterning: the role of climb in meso-scale simulations. Comp. Mater. Sci. 2006;38:22–28.
Péterffy G, Ispánovity PD. An efficient implicit time integration method for discrete dislocation dynamics. Model. Simul. Mater. Sci. 2020;28:035013.
Shan Z, Mishra RK, Asif SS, Warren OL, Minor AM. Mechanical annealing and source-limited deformation in submicrometre-diameter ni crystals. Nat. Mater. 2008;7:115–119. PubMed
Tang H, Schwarz K, Espinosa H. Dislocation-source shutdown and the plastic behavior of single-crystal micropillars. Phys. Rev. Lett. 2008;100:185503. PubMed
Harris CR, et al. Array programming with NumPy. Nature. 2020;585:357–362. PubMed PMC