Statistics of dislocation avalanches in FCC and BCC metals: dislocation mechanisms and mean swept distances across microsample sizes and temperatures

. 2020 Nov 04 ; 10 (1) : 19024. [epub] 20201104

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33149199
Odkazy

PubMed 33149199
PubMed Central PMC7642400
DOI 10.1038/s41598-020-75934-5
PII: 10.1038/s41598-020-75934-5
Knihovny.cz E-zdroje

Plastic deformation in crystalline materials consists of an ensemble of collective dislocation glide processes, which lead to strain burst emissions in micro-scale samples. To unravel the combined role of crystalline structure, sample size and temperature on these processes, we performed a comprehensive set of strict displacement-controlled micropillar compression experiments in conjunction with large-scale molecular dynamics and physics-based discrete dislocation dynamics simulations. The results indicate that plastic strain bursts consist of numerous individual dislocation glide events, which span over minuscule time intervals. The size distributions of these events exhibit a gradual transition from an incipient power-law slip regime (spanning [Formula: see text] 2.5 decades of slip sizes) to a large avalanche domain (spanning [Formula: see text] 4 decades of emission probability) at a cut-off slip magnitude [Formula: see text]. This cut-off slip provides a statistical measure to the characteristic mean dislocation swept distance, which allows for the scaling of the avalanche distributions vis-à-vis the archetypal dislocation mechanisms in face-centered cubic (FCC) and body-centered cubic (BCC) metals. Our statistical findings provide a new pathway to characterizing metal plasticity and towards comprehension of the sample size effects that limit the mechanical reliability in small-scale structures.

Zobrazit více v PubMed

Miguel MC, Vespignani A, Zapperi S, Weiss J, Grasso JR. Complexity in dislocation dynamics: model. Mater. Sci. Eng. 2001;A309–310:324–327. doi: 10.1016/S0921-5093(00)01681-6. DOI

Dimiduk DM, Woodward C, LeSar R, Uchic MD. Scale-free intermittent flow in crystal plasticity. Science. 2006;312:1188–1190. doi: 10.1126/science.1123889. PubMed DOI

Zaiser M. Scale invariance in plastic flow of crystalline solids. Adv. Phys. 2006;55:185. doi: 10.1080/00018730600583514. DOI

Csikor FF, Motz C, Weygand D, Zaiser M, Zapperi S. Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale. Science. 2007;318:251–254. doi: 10.1126/science.1143719. PubMed DOI

Weiss J, Richeton T, Louchet F, Chmelik P, Dobron D, Entemeyer M, Lebyodkin T, Lebedkina Fressengeas C, McDonald RJ. Evidence from universal intermittent crystal plasticity from acoustic emission and high-resolution extensometry measurements. Phys. Rev. B. 2007;76:224110. doi: 10.1103/PhysRevB.76.224110. DOI

Ng KS, Ngan AHW. Stochastic nature of plasticity of aluminum micro-pillars. Acta Mater. 2008;56:1712–1720. doi: 10.1016/j.actamat.2007.12.016. DOI

Dahmen KA, Ben-Zion Y, Uhl JT. Micromechanical model for deformation in solids with universal predictions for stress-strain curves and slip avalanches. Phys. Rev. Lett. 2009;102:175501. doi: 10.1103/PhysRevLett.102.175501. PubMed DOI

Friedman N, Jennings AT, Tsekenis G, Kim J-Y, Tao M, Uhl JT, Greer JR, Dahmen KA. Statistics of dislocation slip avalanches in nanosized single crystals show tuned critical behavior predicted by a simple mean field model. Phys. Rev. Lett. 2012;109:095507. doi: 10.1103/PhysRevLett.109.095507. PubMed DOI

Tsekenis G, Uhl JT, Goldenfeld N, Dahmen KA. Determination of the universality class of crystal plasticity. EPL. 2013;101:36003. doi: 10.1209/0295-5075/101/36003. DOI

Moretti P, Miguel MC, Zaiser M, Zapperi S. Depinning transition of dislocation assembles: pileups and low-angle grain boundaries. Phys. Rev. B. 2004;69:214103. doi: 10.1103/PhysRevB.69.214103. DOI

Maaß R, Wraith M, Uhl JT, Greer JR, Dahmen KA. Slip statistics of dislocation avalanches under different loading modes. Phys. Rev. E. 2015;91:042403. doi: 10.1103/PhysRevE.91.042403. PubMed DOI

Zaiser, M. & Moretti, P. Fluctuation phenomena in crystal plasticity—a continuum model, J. Stat Mech. P08004 (2005).

Ispánovity PD, Laurson L, Zaiser M, Groma I, Zapperi S, Alava MJ. Avalanches in 2D dislocation systems: plastic yielding is not depinning. Phys. Rev. Lett. 2014;112:235501. doi: 10.1103/PhysRevLett.112.235501. PubMed DOI

Lehtinen A, Costantini G, Alava MJ, Zapperi S, Laurson L. Glassy features of crystal plasticity. Phys. Rev. B. 2016;94:064101. doi: 10.1103/PhysRevB.94.064101. DOI

Markovic D, Gros C. Power laws and self-organized criticality in theory and nature. Phys. Rep. 2014;536:41–74. doi: 10.1016/j.physrep.2013.11.002. DOI

Miguel MC, Vespignani A, Zapperi S, Weiss J, Grasso JR. Intermittent dislocation flow in viscoplastic deformation. Nature. 2001;410:667–671. doi: 10.1038/35070524. PubMed DOI

Laurson L, Miguel MC, Alava MJ. Dynamical correlations near dislocation jamming. Phys. Rev. Lett. 2010;105:015501. doi: 10.1103/PhysRevLett.105.015501. PubMed DOI

Alcalá J, Ocenasek J, Nowag K, de los Ojos DE, Ghisleny R, Michler J. Strain hardening and dislocation avalanches in micrometer-sized dimensions. Acta Mater. 2015;91:255–266. doi: 10.1016/j.actamat.2015.02.027. DOI

Devincre B, Hoc T, Kubin L. Dislocation mean free paths and strain hardening of crystals. Science. 2008;320:1745–1748. doi: 10.1126/science.1156101. PubMed DOI

Weinberger CR, Tucker GJ. Atomistic simulations of dislocation pinning points in pure face-centered-cubic nanopillars. Modell. Simul. Mater. Sci. Eng. 2012;20:075001. doi: 10.1088/0965-0393/20/7/075001. DOI

Kiener D, Minor AM. Source truncation and exhaustion: insights from quantitative in situ TEM tensile testing. Nano Lett. 2011;11:3816–3820. doi: 10.1021/nl201890s. PubMed DOI PMC

El-Awady JA, Wen M, Ghoniem NM. The role of the weakest-link mechanism in controlling the plasticity of micropillars. J. Mech. Phys. Solids. 2009;59:32–50. doi: 10.1016/j.jmps.2008.10.004. DOI

Kiener D, Guruprasad PJ, Keralavarma SM, Dehm G, Benzerga AA. Work hardening in micropillar compression: in situ experiments and modeling. Acta Mater. 2011;59:3825–3840. doi: 10.1016/j.actamat.2011.03.003. DOI

Greer JR, Nix WD. Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B. 2006;73:245410. doi: 10.1103/PhysRevB.73.245410. DOI

Benzerga AA. An analysis of exhaustion hardening in micron-scale plasticity. Int. J. Plast. 2008;24:1128–1157. doi: 10.1016/j.ijplas.2007.08.010. DOI

Ryu I, Nix WD, Cai W. Plasticity of bcc micropillars controlled by competition between dislocation multiplication and depletion. Acta Mater. 2013;61:3233–3241. doi: 10.1016/j.actamat.2013.02.011. DOI

Ryu I, Cai W, Nix WD, Gao H. Stochastic behaviors in plastic deformation of face-centered cubic micropillars governed by surface nucleation and truncated source operation. Acta Mater. 2015;95:176–183. doi: 10.1016/j.actamat.2015.05.032. DOI

Sansoz F. Atomistic processes controlling flow stress scaling during compression of nanoscale face-centered-cubic crystals. Acta Mater. 2011;59:3364–3372. doi: 10.1016/j.actamat.2011.02.011. DOI

El-Awady JA. Unraveling the physics of size-dependent dislocation-mediated plasticity. Nat. Commun. 2015;6:5926. doi: 10.1038/ncomms6926. PubMed DOI PMC

Hussein AM, Rao SI, Uchic MD, Dimiduk DM, El-Awady JA. Microstructurally based cross-slip mechanisms and their effects on dislocation microstructure evolution in fcc crystals. Acta Mater. 2015;85:180–190. doi: 10.1016/j.actamat.2014.10.067. DOI

Wheeler JM, Kirchlechner C, Micha JS, Michler J, Kiener D. The effect of size on the strength of FCC metals at elevated temperatures: annealed copper. Philos. Mag. 2016;96:3379–3395. doi: 10.1080/14786435.2016.1224945. PubMed DOI PMC

Wheeler JM, Michler J. Elevated temperature, nano-mechanical testing in situ in the scanning electron microscope. Rev. Sci. Instrum. 2013;84(4):045103. doi: 10.1063/1.4795829. PubMed DOI

Abad OT, Wheeler JM, Michler J, Schneider AS, Arzt E. Temperature-dependent size effects in the strength of Ta and W micropillars. Acta Mater. 2016;103:483–494. doi: 10.1016/j.actamat.2015.10.016. DOI

Mishinm Y, Farkas D, Mehl M, Papaconstantopoulos D. Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B. 1999;59:3393–3407. doi: 10.1103/PhysRevB.59.3393. DOI

Li Y, Siegel D, Adams J, Liu X-Y. Embedded-atom-method tantalum potential developed by the force-matching method. Phys. Rev. B. 2003;67:1251011.

Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J Comput. Phys, 1–19 (1995).

Varillas J, Oenáek J, Torner J, Alcalá J. Unraveling deformation mechanisms around FCC and BCC nanocontacts through slip trace and pileup topography analyses. Acta Mater. 2017;125:431–441. doi: 10.1016/j.actamat.2016.11.067. DOI

Basinski, S.J. & Basinski, Z.S. Plastic deformation and work hardening. In Dislocations in Solids 4, (North-Holland Publishing Company, 1979).

Arsenlis A, Cai W, Tang M, Rhee M, Oppelstrup T, Hommes G, Pierce TG, Bulatov VV. Enabling strain hardening simulations with dislocation dynamics. Mod. Sim. Mater. Sci. Eng. 2007;15:553–595. doi: 10.1088/0965-0393/15/6/001. DOI

El-Awady JA, Biner SB, Ghoniem NM. A self-consistent boundary element, parametric dislocation dynamics formulation of plastic flow in finite volumes. J. Mech. Phys. Solids. 2008;56:2019–2035. doi: 10.1016/j.jmps.2007.11.002. DOI

Tang H, Schwarz KW, Espinosa HD. Dislocation-source shutdown and the plastic nehavior of single-crystal micropillars. Phys. Rev. Lett. 2008;100:185503. doi: 10.1103/PhysRevLett.100.185503. PubMed DOI

Cui Y, Po G, Ghoniem NM. Controling strain bursts and avalanches at the nano-to-micro scale. Phys. Rev. Lett. 2016;117:155502. doi: 10.1103/PhysRevLett.117.155502. PubMed DOI

Argon AS. Strengthening Mechanisms in Crystal Plasticity. Oxford: Oxford University Press; 2008.

Clauset A, Shalizi CR, Newman MEJ. Power-law distributions in empirical data. SIAM Rev. 2009;51:661–703. doi: 10.1137/070710111. DOI

Kocks UF, Mecking H. Physics and phenomenology of strain hardening: the FCC case. Prog. Mater. Sci. 2003;48:171–273. doi: 10.1016/S0079-6425(02)00003-8. DOI

Kubin L, Devincre B, Hoc T. Modeling of dislocation storage rates and mean free paths in face-centered cubic crystals. Acta Mater. 2008;56:6040–6049. doi: 10.1016/j.actamat.2008.08.012. DOI

Kubin L, Hoc T, Devincre B. Dynamic recovery and its orientation dependence in face-centered cubic crystals. Acta Mater. 2009;57:2567–2575. doi: 10.1016/j.actamat.2009.02.013. DOI

Cai W, Bulatov VV, Chang J, Li J, Yip S. Dislocation core effects on mobility. In: Nabarro FRN, Hirth JP, editors. Dislocations in Solids, vol 12, 1–80. Amsterdam: Elsevier; 2005.

Kang K, Bulatov VV, Cai W. Singular orientations and faceted motion of dislocations in body-centered cubic crystals. Proc. Natl. Acad. Sci. USA. 2012;109:15174–15178. doi: 10.1073/pnas.1206079109. PubMed DOI PMC

Ciu Y, Po G, Ghoniem NM. Temperature insensitivity of the flow stress in body-centered cubic micropillar crystals. Acta Mater. 2016;108:128–137. doi: 10.1016/j.actamat.2016.02.008. DOI

Marian J, Cai W, Bulatov VV. Dynamic transitions from smooth to rough to twinning in dislocation motion. Nat. Mater. 2004;3:158–163. doi: 10.1038/nmat1072. PubMed DOI

Tang M, Kubin L, Canova GR. Dislocation mobility and the mechanical response of B.C.C. single crystals: a mesoscopic approach. Acta Mater. 1998;46:3221–3235. doi: 10.1016/S1359-6454(98)00006-8. DOI

Luft A. Microstructural processes of plastic instabilities in strengthened metals. Prog. Mater. Sci. 1991;35:97–204. doi: 10.1016/0079-6425(91)90002-B. DOI

Maaß R, Derlet PM. Micro-plasticity and recent insights from intermittent and small-scale plasticity. Acta. Mater. 2018;143:338–363. doi: 10.1016/j.actamat.2017.06.023. DOI

Richeton T, Weiss J, Louchet F. Dislocation avalanches: role of temperature, grain size and strain hardening. Acta Mater. 2005;53:4463–4471. doi: 10.1016/j.actamat.2005.06.007. DOI

Zhang P, Salman OU, Zhang J-Y, Liu G, Weiss J, Truskinovsky L, Sun J. Taming intermittent plasticity at small scales. Acta Mater. 2017;128:351–364. doi: 10.1016/j.actamat.2017.02.039. DOI

Ispanovity PD, Hegyi A, Groma I, Györgyi G, Ratter K, Weigand D. Average yielding and weakest link statistics in micron-scale plasticity. Acta Mater. 2013;61:6234–6245. doi: 10.1016/j.actamat.2013.07.007. DOI

Papanikolaou S, Papanikolaoua H, Songa E, Van der Giessen E. Obstacles and sources in dislocation dynamics: Strengthening and statistics of abrupt plastic events in nanopillar compression. J. Mech. Phys. Solids. 2017;102:17–29. doi: 10.1016/j.jmps.2017.02.004. DOI

Papanikolaou S, Cui Y, Ghoniem NM. Avalanches and plastic flow in crystal plasticity: an overview. Modell. Simul. Mater. Sci. Eng. 2018;26:013001. doi: 10.1088/1361-651X/aa97ad. DOI

Hong SI, Laird C. Mechanisms of slip mode modification in F.C.C. solid solutions. Acta Metal. Mater. 1990;38:1581–1594. doi: 10.1016/0956-7151(90)90126-2. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Dislocation avalanches are like earthquakes on the micron scale

. 2022 Apr 13 ; 13 (1) : 1975. [epub] 20220413

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...