Possible Mechanisms Underlying Neurological Post-COVID Symptoms and Neurofeedback as a Potential Therapy

. 2022 ; 16 () : 837972. [epub] 20220331

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35431842

Theoretical considerations related to neurological post-COVID complications have become a serious issue in the COVID pandemic. We propose 3 theoretical hypotheses related to neurological post-COVID complications. First, pathophysiological processes responsible for long-term neurological complications caused by COVID-19 might have 2 phases: (1) Phase of acute Sars-CoV-2 infection linked with the pathogenesis responsible for the onset of COVID-19-related neurological complications and (2) the phase of post-acute Sars-CoV-2 infection linked with the pathogenesis responsible for long-lasting persistence of post-COVID neurological problems and/or exacerbation of another neurological pathologies. Second, post-COVID symptoms can be described and investigated from the perspective of dynamical system theory exploiting its fundamental concepts such as system parameters, attractors and criticality. Thirdly, neurofeedback may represent a promising therapy for neurological post-COVID complications. Based on the current knowledge related to neurofeedback and what is already known about neurological complications linked to acute COVID-19 and post-acute COVID-19 conditions, we propose that neurofeedback modalities, such as functional magnetic resonance-based neurofeedback, quantitative EEG-based neurofeedback, Othmer's method of rewarding individual optimal EEG frequency and heart rate variability-based biofeedback, represent a potential therapy for improvement of post-COVID symptoms.

Zobrazit více v PubMed

Alexeeva M. V., Balios N. V., Muravlyova K. B., Sapina E. V., Bazanova O. M. (2012). Training for voluntarily increasing individual upper α power as a method for cognitive enhancement. Hum. Physiol. 38 40–48. 10.1134/S0362119711060028 DOI

Alhempi R. R., Salamah I., Lastriani E. (2021). Effect of positive thinking on Covid-19 patient healing. Ann. Romanian Soc. Cell Biol. 25 5546–5554.

Ameres M., Brandstetter S., Toncheva A. A., Kabesch M., Leppert D., Kuhle J., et al. (2020). Association of neuronal injury blood marker neurofilament light chain with mild-to-moderate COVID-19. J. Neurol. 267 3476–3478. 10.1007/s00415-020-10050-y PubMed DOI PMC

Andersson J. (2005). The inflammatory reflex - Introduction. J. Intern. Med. 257 122–125. 10.1111/j.1365-2796.2004.01440.x PubMed DOI

Asadi-Pooya A. A., Simani L. (2020). Central nervous system manifestations of COVID-19: a systematic review. J. Neurol. Sci. 413:116832. 10.1016/j.jns.2020.116832 PubMed DOI PMC

Askew J. H. (2001). The Diagnosis of Depression Using Psychometric Instruments and Quantitative Measures of Electroencephalographic Activity. ProQuest Dissertations. Knoxville, TN: The University of Tennessee.

Ayache S. S., Bardel B., Lefaucheur J. P., Chalah M. A. (2021). Neurofeedback therapy for the management of multiple sclerosis symptoms: current knowledge and future perspectives. NeuroSignals 20 745–754. 10.31083/j.jin2003079 PubMed DOI

Ayat P., Burza A., Habeeb C. (2021). Hypocortisolism in a patient with Covid-19: a case report and discussion on management. Chest 160:A715. 10.1016/j.chest.2021.07.678 DOI

Baptista A. F., Baltar A., Okano A. H., Moreira A., Campos A. C. P., Fernandes A. M., et al. (2020). Applications of non-invasive neuromodulation for the management of disorders related to COVID-19. Front. Neurol. 11:573718. 10.3389/fneur.2020.573718 PubMed DOI PMC

Barizien N., Le Guen M., Russel S., Touche P., Huang F., Vallée A. (2021). Clinical characterization of dysautonomia in long COVID-19 patients. Sci. Rep. 11:14042. 10.1038/s41598-021-93546-5 PubMed DOI PMC

Bauer C. C. C., Okano K., Gosh S. S., Lee Y. J., Melero H., Angeles C., et al. (2020). Real-time fMRI neurofeedback reduces auditory hallucinations and modulates resting state connectivity of involved brain regions: part 2: default mode network -preliminary evidence. Psychiatry Res. 284:112770. 10.1016/j.psychres.2020.112770 PubMed DOI PMC

Becker R. C. (2021). Autonomic dysfunction in SARS-COV-2 infection acute and long-term implications COVID-19 editor’s page series. J. Thromb. Thrombolysis 52 692–707. 10.1007/s11239-021-02549-6 PubMed DOI PMC

Beltrán A. R., Arce-Álvarez A., Ramirez-Campillo R., Vásquez-Muñoz M., von Igel M., Ramírez M. A., et al. (2020). Baroreflex modulation during acute high-altitude exposure in rats. Front. Physiol. 11:1049. 10.3389/fphys.2020.01049 PubMed DOI PMC

Berman I., Viegner B., Merson A., Allan E., Pappas D., Green A. I. (1997). Differential relationships between positive and negative symptoms and neuropsychological deficits in schizophrenia. Schizophr. Res. 25 1–10. 10.1016/S0920-9964(96)00098-9 PubMed DOI

Bilgin A., Kesik G., Ozdemir L. (2021). ‘The body seems to have no life’: the experiences and perceptions of fatigue among patients after COVID-19. J. Clin. Nurs. 1–11. 10.1111/jocn.16153 PubMed DOI

Blazhenets G., Schroeter N., Bormann T., Thurow J., Wagner D., Frings L., et al. (2021). Slow but evident recovery from neocortical dysfunction and cognitive impairment in a series of chronic COVID-19 patients. J. Nucl. Med. 62 910–915. 10.2967/jnumed.121.262128 PubMed DOI PMC

Blitshteyn S., Whitelaw S. (2021). Postural orthostatic tachycardia syndrome (POTS) and other autonomic disorders after COVID-19 infection: a case series of 20 patients. Immunol. Res. 69 205–211. 10.1007/s12026-021-09185-5 PubMed DOI PMC

Bobermin L. D., Quincozes-Santos A. (2021). COVID-19 and hyperammonemia: potential interplay between liver and brain dysfunctions. Brain Behav. Immun. - Heallth 14:100257. 10.1016/j.bbih.2021.100257 PubMed DOI PMC

Bodnar B., Patel K., Ho W., Luo J. J., Hu W. (2021). Cellular mechanisms underlying neurological/neuropsychiatric manifestations of COVID-19. J. Med. Virol. 93 1983–1998. 10.1002/jmv.26720 PubMed DOI PMC

Bould H., Collin S. M., Lewis G., Rimes K., Crawley E. (2013). Depression in paediatric chronic fatigue syndrome. Arch. Dis. Child. 98 425–428. 10.1136/archdischild-2012-303396 PubMed DOI

Brown R. G., Pluck G. (2000). Negative symptoms: the “pathology” of motivation and goal-directed behaviour. Trends Neurosci. 23 412–417. 10.1016/S0166-2236(00)01626-X PubMed DOI

Bryche B., St Albin A., Murri S., Lacôte S., Pulido C., Ar Gouilh M., et al. (2020). Massive transient damage of the olfactory epithelium associated with infection of sustentacular cells by SARS-CoV-2 in golden Syrian hamsters. Brain. Behav. Immun. 89 579–586. 10.1016/j.bbi.2020.06.032 PubMed DOI PMC

Buchanan T. W., Tranel D., Adolphs R. (2003). A specific role for the human amygdala in olfactory memory. Learn. Mem. 10 319–325. 10.1101/lm.62303 PubMed DOI PMC

Burrows D. R., Diana G., Pimpel B., Moeller F., Richardson M. P., Bassett D. S., et al. (2021). Single-cell networks reorganise to facilitate whole-brain supercritical dynamics during epileptic seizures. bioRxiv [preprint] 10.1101/2021.10.14.464473 DOI

Caldwell Y. T., Steffen P. R. (2018). Adding HRV biofeedback to psychotherapy increases heart rate variability and improves the treatment of major depressive disorder. Int. J. Psychophysiol. 131 96–101. 10.1016/j.ijpsycho.2018.01.001 PubMed DOI

Capuron L., Pagnoni G., Drake D. F., Woolwine B. J., Spivey J. R., Crowe R. J., et al. (2012). Dopaminergic mechanisms of reduced basal ganglia responses to hedonic reward during interferon alfa administration. Arch. Gen. Psychiatry 69 1044–1053. 10.1001/archgenpsychiatry.2011.2094 PubMed DOI PMC

Carlson J., Ross G. W. (2021). Neurofeedback impact on chronic headache, sleep, and attention disorders experienced by veterans with mild traumatic brain injury: a pilot study. Biofeedback 49 2–9. 10.5298/1081-5937-49.01.01 DOI

Caronna E., Alpuente A., Torres-Ferrus M., Pozo-Rosich P. (2021). Toward a better understanding of persistent headache after mild COVID-19: three migraine-like yet distinct scenarios. Headache 61 1277–1280. 10.1111/head.14197 PubMed DOI PMC

Carroll E., Neumann H., Aguero-Rosenfeld M. E., Lighter J., Czeisler B. M., Melmed K., et al. (2020). Post–COVID-19 inflammatory syndrome manifesting as refractory status epilepticus. Epilepsia 61 e135–e139. 10.1111/epi.16683 PubMed DOI PMC

Chaparro-Huerta V., Rivera-Cervantes M. C., Flores-Soto M. E., Gómez-Pinedo U., Beas-Zárate C. (2005). Proinflammatory cytokines and apoptosis following glutamate-induced excitotoxicity mediated by p38 MAPK in the hippocampus of neonatal rats. J. Neuroimmunol. 165 53–62. 10.1016/j.jneuroim.2005.04.025 PubMed DOI

Chiu A., Fischbein N., Wintermark M., Zaharchuk G., Yun P. T., Zeineh M. (2021). COVID-19-induced anosmia associated with olfactory bulb atrophy. Neuroradiology 63 147–148. 10.1007/s00234-020-02554-1 PubMed DOI PMC

Collantes M. E. V., Espiritu A. I., Sy M. C. C., Anlacan V. M. M., Jamora R. D. G. (2021). Neurological manifestations in COVID-19 infection: a systematic review and meta-analysis. Can. J. Neurol. Sci. 48 66–76. 10.1017/cjn.2020.146 PubMed DOI PMC

Collura T. F. (2017). Quantitative EEG and Live Z -Score neurofeedback—current clinical and scientific context. Biofeedback 45 25–29. 10.5298/1081-5937-45.1.07 DOI

Coolen T., Lolli V., Sadeghi N., Rovai A., Trotta N., Taccone F. S., et al. (2020). Early postmortem brain MRI findings in COVID-19 non-survivors. Neurology 95 e2016–e2027. 10.1212/WNL.0000000000010116 PubMed DOI

Cowley A. W., Guyton A. C. (1975). Baroreceptor reflex effects on transient and steady state hemodynamics of salt loading hypertension in dogs. Circ. Res. 36 536–546. 10.1161/01.RES.36.4.536 PubMed DOI

Crunfli F., Carregari V. C., Veras F. P., Vendramini P. H., Valença G. F., Saraiva A., et al. (2021). SARS-CoV-2 infects brain astrocytes of COVID-19 patients and impairs neuronal viability. medRxiv [preprint] 10.1101/2020.10.09.20207464 DOI

de Melo G. D., Lazarini F., Levallois S., Hautefort C., Michel V., Larrous F., et al. (2021). COVID-19-related anosmia is associated with viral persistence and inflammation in human olfactory epithelium and brain infection in hamsters. Sci. Transl. Med. 13:eabf8396. 10.1126/scitranslmed.abf8396 PubMed DOI PMC

Delorme C., Houot M., Rosso C., Carvalho S., Nedelec T., Maatoug R., et al. (2021). The wide spectrum of Covid-19 neuropsychiatric complications within a multidisciplinary center. Brain Commun. 3:fcab135. 10.1093/braincomms/fcab135 PubMed DOI PMC

Dennis A., Wamil M., Alberts J., Oben J., Cuthbertson D. J., Wootton D., et al. (2021). Multiorgan impairment in low-risk individuals with post-COVID-19 syndrome: a prospective, community-based study. BMJ Open 11 2–7. 10.1136/bmjopen-2020-048391 PubMed DOI PMC

Díaz G. F., Virués T., San Martín M., Ruiz M., Galán L., Paz L., et al. (1998). Generalized background qEEG abnormalities in localized symptomatic epilepsy. Electroencephalogr. Clin. Neurophysiol. 106 501–507. 10.1016/S0013-4694(98)00026-1 PubMed DOI

Díaz H. M., Cid F. M., Otárola J., Rojas R., Alarcón O., Cañete L. (2019). EEG Beta band frequency domain evaluation for assessing stress and anxiety in resting, eyes closed, basal conditions. Procedia Comput. Sci. 162 974–981. 10.1016/j.procs.2019.12.075 DOI

Dono F., Carrarini C., Russo M., De Angelis M. V., Anzellotti F., Onofrj M., et al. (2021). New-onset refractory status epilepticus (NORSE) in post SARS-CoV-2 autoimmune encephalitis: a case report. Neurol. Sci. 42 35–38. 10.1007/s10072-020-04846-z PubMed DOI PMC

Douaud G., Lee S., Alfaro-Almagro F., Arthofer C., Wang C., Lange F., et al. (2021). Brain imaging before and after COVID-19 in UK Biobank. medRxiv [preprint] 10.1101/2021.06.11.21258690 PubMed DOI PMC

Du Y.-Y., Zhao W., Zhou X. L., Zeng M., Yang D. H., Xie X. Z., et al. (2022). Survivors of COVID-19 exhibit altered amplitudes of low frequency fluctuation in the brain: a resting-state functional magnetic resonance imaging study at 1-year follow-up. Neural Regen. Res. 17 1576–1581. 10.4103/1673-5374.327361 PubMed DOI PMC

Effenberger M., Grander C., Grabherr F., Griesmacher A., Ploner T., Hartig F., et al. (2021). Systemic inflammation as fuel for acute liver injury in COVID-19. Dig. Liver Dis. 53 158–165. 10.1016/j.dld.2020.08.004 PubMed DOI PMC

El Sayed S., Shokry D., Gomaa S. M. (2021). Post-COVID-19 fatigue and anhedonia: a cross-sectional study and their correlation to post-recovery period. Neuropsychopharmacol. Rep. 41 50–55. 10.1002/npr2.12154 PubMed DOI PMC

Ellul M. A., Benjamin L., Singh B., Lant S., Michael B. D., Easton A., et al. (2020). Neurological associations of COVID-19. Lancet Neurol. 19 767–783. 10.1016/S1474-4422(20)30221-0 PubMed DOI PMC

Enriquez-Geppert S., Huster R. J., Herrmann C. S. (2017). EEG-neurofeedback as a tool to modulate cognition and behavior: a review tutorial. Front. Hum. Neurosci. 11:51. 10.3389/fnhum.2017.00051 PubMed DOI PMC

Felger J. C. (2017). Imaging the role of inflammation in mood and anxiety-related disorders. Curr. Neuropharmacol. 15 533–558. 10.2174/1570159x15666171123201142 PubMed DOI PMC

Fernández-De-las-Peñas C., Gómez-Mayordomo V., de-la-Llave-Rincón A. I., Palacios-Ceña M., Rodríguez-Jiménez J., Florencio L. L., et al. (2021c). Anxiety, depression and poor sleep quality as long-term post-COVID sequelae in previously hospitalized patients: a multicenter study. J. Infect. 83 496–522. 10.1016/j.jinf.2021.06.022 PubMed DOI PMC

Fernández-De-las-Peñas C., Navarro-Santana M., Gómez-Mayordomo V., Cuadrado M. L., García-Azorín D., Arendt-Nielsen L., et al. (2021d). Headache as an acute and post-COVID-19 symptom in COVID-19 survivors: a meta-analysis of the current literature. Eur. J. Neurol. 28 3820–3825. 10.1111/ene.15040 PubMed DOI PMC

Fernández-De-las-Peñas C., Florencio L. L., Gómez-Mayordomo V., Cuadrado M. L., Palacios-Ceña D., Raveendran A. V. (2021a). Proposed integrative model for post-COVID symptoms. Diabetes Metab. Syndr. Clin. Res. Rev. 15 15–17. 10.1016/j.dsx.2021.05.032 PubMed DOI PMC

Fernández-De-las-peñas C., Palacios-Ceña D., Gómez-Mayordomo V., Cuadrado M. L., Florencio L. L. (2021e). Defining post-covid symptoms (Post-acute covid, long covid, persistent post-covid): an integrative classification. Int. J. Environ. Res. Public Health 18:2621. 10.3390/ijerph18052621 PubMed DOI PMC

Fernández-de-las-Peñas C., Gómez-Mayordomo V., Cuadrado M. L., Palacios-Ceña D., Florencio L. L., Guerrero A. L., et al. (2021b). The presence of headache at onset in SARS-CoV-2 infection is associated with long-term post-COVID headache and fatigue: a case-control study. Cephalalgia 41 1332–1341. 10.1177/03331024211020404 PubMed DOI PMC

Ferrandi P. J., Alway S. E., Mohamed J. S. (2020). The interaction between SARS-CoV-2 and ACE2 may have consequences for skeletal muscle viral susceptibility and myopathies. J. Appl. Physiol. 129 864–867. 10.1152/applphysiol.00321.2020 PubMed DOI PMC

Fischer D., Threlkeld Z. D., Bodien Y. G., Kirsch J. E., Huang S. Y., Schaefer P. W., et al. (2020). Intact brain network function in an unresponsive patient with COVID-19. Ann. Neurol. 88 851–854. 10.1002/ana.25838 PubMed DOI PMC

Flamand M., Perron A., Buron Y., Szurhaj W. (2020). Pay more attention to EEG in COVID-19 pandemic. Clin. Neurophysiol. 131 2062–2064. 10.1016/j.clinph.2020.05.011 PubMed DOI PMC

Freyer F., Roberts J. A., Becker R., Robinson P. A., Ritter P., Breakspear M. (2011). Biophysical mechanisms of multistability in resting-state cortical rhythms. J. Neurosci. 31 6353–6361. 10.1523/JNEUROSCI.6693-10.2011 PubMed DOI PMC

Fu Z., Tu Y., Calhoun V. D., Zhang Y., Zhao Q., Chen J., et al. (2021). Dynamic functional network connectivity associated with post-traumatic stress symptoms in COVID-19 survivors. Neurobiol. Stress 15:100377. 10.1016/j.ynstr.2021.100377 PubMed DOI PMC

Funakoshi H., Belluardo N., Arenas E., Yamamoto Y., Casabona A., Persson H., et al. (1995). Muscle-derived neurotrophin-4 as an activity-dependent trophic signal for adult motor neurons. Science 268 1495–1499. 10.1126/science.7770776 PubMed DOI

Gagliardi S., Poloni E. T., Pandini C., Garofalo M., Dragoni F., Medici V., et al. (2021). Detection of SARS-CoV-2 genome and whole transcriptome sequencing in frontal cortex of COVID-19 patients. Brain. Behav. Immun. 97 13–21. 10.1016/j.bbi.2021.05.012 PubMed DOI PMC

Gevirtz R. (2013). The promise of heart rate variability biofeedback: evidence-based applications. Biofeedback 41 110–120. 10.5298/1081-5937-41.3.01 DOI

Ghasemi N., Razavi S., Nikzad E. (2017). Multiple sclerosis: pathogenesis, symptoms, diagnoses and cell-based therapy. Cell J. 19 1–10. 10.22074/cellj.2016.4867 PubMed DOI PMC

Ghaziri J., Tucholka A., Larue V., Blanchette-Sylvestre M., Reyburn G., Gilbert G., et al. (2013). Neurofeedback training induces changes in white and gray matter. Clin. EEG Neurosci. 44 265–272. 10.1177/1550059413476031 PubMed DOI

Goërtz Y. M. J., Van Herck M., Delbressine J. M., Vaes A. W., Meys R., Machado F. V. C., et al. (2020). Persistent symptoms 3 months after a SARS-CoV-2 infection: the post-COVID-19 syndrome? ERJ Open Res. 6 00542–02020. 10.1183/23120541.00542-2020 PubMed DOI PMC

Goodman B. P., Khoury J. A., Blair J. E., Grill M. F. (2021). COVID-19 Dysautonomia. Front. Neurol. 12:624968. 10.3389/fneur.2021.624968 PubMed DOI PMC

Gruzelier J. H. (2014). Neuroscience and biobehavioral reviews EEG-neurofeedback for optimising performance. III?: a review of methodological and theoretical considerations. Neurosci. Biobehav. Rev. 44 159–182. 10.1016/j.neubiorev.2014.03.015 PubMed DOI

Guedj E., Million M., Dudouet P., Tissot-Dupont H., Bregeon F., Cammilleri S., et al. (2021a). 18F-FDG brain PET hypometabolism in post-SARS-CoV-2 infection: substrate for persistent/delayed disorders? Eur. J. Nucl. Med. Mol. Imaging 48 592–595. 10.1007/s00259-020-04973-x PubMed DOI PMC

Guedj E., Campion J. Y., Dudouet P., Kaphan E., Bregeon F., Tissot-Dupont H., et al. (2021b). 18F-FDG brain PET hypometabolism in patients with long COVID. Eur. J. Nucl. Med. Mol. Imaging 48 2823–2833. 10.1007/s00259-021-05215-4 PubMed DOI PMC

Guth L. (1968). “Trophic” influences of nerve on muscle. Physiol. Rev. 48 645–687. 10.1152/physrev.1968.48.4.645 PubMed DOI

Haddad W. M. (2013). A unification between dynamical system theory and thermodynamics involving an energy, mass, and entropy state space formalism. Entropy 15 1821–1846. 10.3390/e15051821 DOI

Haller S., Kopel R., Jhooti P., Haas T., Scharnowski F., Lovblad K. O., et al. (2013). Dynamic reconfiguration of human brain functional networks through neurofeedback. Neuroimage 81 243–252. 10.1016/j.neuroimage.2013.05.019 PubMed DOI

Hammer B. U., Colbert A. P., Brown K. A., Ilioi E. C. (2011). Neurofeedback for insomnia: a pilot study of Z-score SMR and individualized protocols. Appl. Psychophysiol. Biofeedback 36 251–264. 10.1007/s10484-011-9165-y PubMed DOI

Hammond D. C. (2001). Treatment of chronic fatigue with neurofeedback and self-hypnosis. NeuroRehabilitation 16 295–300. 10.3233/nre-2001-16415 PubMed DOI

Hassett A. L., Radvanski D. C., Vaschillo E. G., Vaschillo B., Sigal L. H., Karavidas M. K., et al. (2007). A pilot study of the efficacy of heart rate variability (HRV) biofeedback in patients with fibromyalgia. Appl. Psychophysiol. Biofeedback 32 1–10. 10.1007/s10484-006-9028-0 PubMed DOI

Hellyer P. J., Shanahan M., Scott G., Wise R. J. S., Sharp D. J., Leech R. (2014). The control of global brain dynamics: opposing actions of frontoparietal control and default mode networks on attention. J. Neurosci. 34 451–461. 10.1523/JNEUROSCI.1853-13.2014 PubMed DOI PMC

Hepsomali P., Groeger J. A., Nishihira J., Scholey A. (2020). Effects of Oral Gamma-Aminobutyric Acid (GABA) administration on stress and sleep in humans: a systematic review. Front. Neurosci. 14:923. 10.3389/fnins.2020.00923 PubMed DOI PMC

Hesse J., Gross T. (2014). Self-organized criticality as a fundamental property of neural systems. Front. Syst. Neurosci. 8:166. 10.3389/fnsys.2014.00166 PubMed DOI PMC

Hilderman M., Qureshi A. R., Abtahi F., Witt N., Jägren C., Olbers J., et al. (2019). The cholinergic anti-inflammatory pathway in resistant hypertension treated with renal denervation. Mol. Med. 25:39. 10.1186/s10020-019-0097-y PubMed DOI PMC

Hosp J. A., Dressing A., Blazhenets G., Bormann T., Rau A., Schwabenland M., et al. (2021). Cognitive impairment and altered cerebral glucose metabolism in the subacute stage of COVID-19. Brain 144 1263–1276. 10.1093/brain/awab009 PubMed DOI PMC

Hu C. C., Huang J. W., Wei N., Hu S. H., Hu J. B., Li S. G., et al. (2020). Interpersonal psychotherapy-based psychological intervention for patient suffering from COVID-19: a case report. World J. Clin. Cases 8 6064–6070. 10.12998/wjcc.v8.i23.6064 PubMed DOI PMC

Huang C., Huang L., Wang Y., Li X., Ren L., Gu X., et al. (2021). 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet 397 220–232. 10.1016/S0140-6736(20)32656-8 PubMed DOI PMC

Hunter S. K. (2018). Performance fatigability: mechanisms and task specificity. Cold Spring Harb. Perspect. Med. 8 1–22. 10.1101/cshperspect.a029728 PubMed DOI PMC

Hussman J. P. (2021). Severe clinical worsening in COVID-19 and potential mechanisms of immune-enhanced disease. Front. Med. 8:949. 10.3389/fmed.2021.637642 PubMed DOI PMC

Inagaki T. K., Muscatell K. A., Irwin M. R., Cole S. W., Eisenberger N. I. (2012). Inflammation selectively enhances amygdala activity to socially threatening images. Neuroimage 59 3222–3226. 10.1016/j.neuroimage.2011.10.090 PubMed DOI PMC

Johnson L. (1992). An ecological approach to biosystem thermodynamics. Biol. Philos. 7 35–60. 10.1007/BF00130163 DOI

Kamal M., Abo Omirah M., Hussein A., Saeed H. (2021). Assessment and characterisation of post-COVID-19 manifestations. Int. J. Clin. Pract. 75:e13746. 10.1111/ijcp.13746 PubMed DOI PMC

Kanberg N., Ashton N. J., Andersson L. M., Yilmaz A., Lindh M., Nilsson S., et al. (2020). Neurochemical evidence of astrocytic and neuronal injury commonly found in COVID-19. Neurology 95 e1754–e1759. 10.1212/WNL.0000000000010111 PubMed DOI

Karavidas M. K., Lehrer P. M., Vaschillo E., Vaschillo B., Marin H., Buyske S., et al. (2007). Preliminary results of an open label study of heart rate variability biofeedback for the treatment of major depression. Appl. Psychophysiol. Biofeedback 32 19–30. 10.1007/s10484-006-9029-z PubMed DOI

Kayaaslan B., Eser F., Kalem A. K., Kaya G., Kaplan B., Kacar D., et al. (2021). Post-COVID syndrome: a single-center questionnaire study on 1007 participants recovered from COVID-19. J. Med. Virol. 93 6566–6574. 10.1002/jmv.27198 PubMed DOI PMC

Kerson C., Sherman R. A., Kozlowski G. P. (2009). Alpha suppression and symmetry training for generalized anxiety symptoms. J. Neurother. 13 146–155. 10.1080/10874200903107405 DOI

Kevetter G. A., Winans S. S. (1981). Connections of the corticomedial amygdala in the golden hamster. II. Efferents of the “olfactory amygdala.”. J. Comp. Neurol. 197 99–111. 10.1002/cne.901970108 PubMed DOI

Kim M. J., Loucks R. A., Palmer A. L., Brown A. C., Solomon K. M., Marchante A. N., et al. (2011). The structural and functional connectivity of the amygdala: from normal emotion to pathological anxiety. Behav. Brain Res. 223 403–410. 10.1016/j.bbr.2011.04.025 PubMed DOI PMC

Kincaid K. J., Kung J. C., Senetar A. J., Mendoza D., Bonnin D. A., Purtlebaugh W. L., et al. (2021). Post-COVID seizure: a new feature of “long-COVID.”. eNeurologicalSci 23:100340. 10.1016/j.ensci.2021.100340 PubMed DOI PMC

Klimesch W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Rev. 29 169–195. 10.1016/S0165-0173(98)00056-3 PubMed DOI

Komaroff A. L., Lipkin W. I. (2021). Insights from myalgic encephalomyelitis/chronic fatigue syndrome may help unravel the pathogenesis of postacute COVID-19 syndrome. Trends Mol. Med. 27 895–906. 10.1016/j.molmed.2021.06.002 PubMed DOI PMC

Koush Y., Rosa M. J., Robineau F., Heinen K., Rieger S. W., Weiskopf N., et al. (2013). Connectivity-based neurofeedback: dynamic causal modeling for real-time fMRI. Neuroimage 81 422–430. 10.1016/j.neuroimage.2013.05.010 PubMed DOI PMC

Koutroumanidis M., Gratwicke J., Sharma S., Whelan A., Tan S. V., Glover G. (2021). Alpha coma EEG pattern in patients with severe COVID-19 related encephalopathy. Clin. Neurophysiol. 132 218–225. 10.1016/j.clinph.2020.09.008 PubMed DOI PMC

Kubota T., Gajera P. K., Kuroda N. (2021). Meta-analysis of EEG findings in patients with COVID-19. Epilepsy Behav. 115:107682. 10.1016/j.yebeh.2020.107682 PubMed DOI PMC

Kumar A., Pareek V., Prasoon P., Faiq M. A., Kumar P., Kumari C., et al. (2020). Possible routes of SARS-CoV-2 invasion in brain: in context of neurological symptoms in COVID-19 patients. J. Neurosci. Res. 98 2376–2383. 10.1002/jnr.24717 PubMed DOI

Lafrance C., Dumont M. (2000). Diurnal variations in the waking EEG: comparisons with sleep latencies and subjective alertness. J. Sleep Res. 9 243–248. 10.1046/j.1365-2869.2000.00204.x PubMed DOI

Legarda S. B., McMahon D., Othmer S., Othmer S. (2011). Clinical neurofeedback: case studies, proposed mechanism, and implications for pediatric neurology practice. J. Child Neurol. 26 1045–1051. 10.1177/0883073811405052 PubMed DOI

Lehrer P., Karavidas M. K., Lu S. E., Coyle S. M., Oikawa L. O., MacOr M., et al. (2010). Voluntarily produced increases in heart rate variability modulate autonomic effects of endotoxin induced systemic inflammation: an exploratory study. Appl. Psychophysiol. Biofeedback 35 303–315. 10.1007/s10484-010-9139-5 PubMed DOI

Lehrer P., Kaur K., Sharma A., Shah K., Huseby R., Bhavsar J., et al. (2020). Heart rate variability biofeedback improves emotional and physical health and performance: a systematic review and meta analysis. Appl. Psychophysiol. Biofeedback 45 109–129. 10.1007/s10484-020-09466-z PubMed DOI

Lehrer P. M., Gevirtz R. (2014). Heart rate variability biofeedback: how and why does it work? Front. Psychol. 5:756. 10.3389/fpsyg.2014.00756 PubMed DOI PMC

Lehrer P. M., Vaschillo E., Vaschillo B., Lu S. E., Eckberg D. L., Edelberg R., et al. (2003). Heart rate variability biofeedback increases baroreflex gain and peak expiratory flow. Psychosom. Med. 65 796–805. 10.1097/01.PSY.0000089200.81962.19 PubMed DOI

Libby P., Lüscher T. (2020). COVID-19 is, in the end, an endothelial disease. Eur. Heart J. 41 3038–3044. 10.1093/eurheartj/ehaa623 PubMed DOI PMC

Lim S. T., Janaway B., Costello H., Trip A., Price G. (2020). Persistent psychotic symptoms following COVID-19 infection. BJPsych Open 6:e105. 10.1192/bjo.2020.76 PubMed DOI PMC

Lin I. M., Fan S. Y., Yen C. F., Yeh Y. C., Tang T. C., Huang M. F., et al. (2019). Erratum: and improved symptoms of depression and insomnia among patients with major depression disorder. Clin. Psychopharmacol. Neurosci. 17:458. PubMed PMC

Lin L. H., Moore S. A., Jones S. Y., McGlashon J., Talman W. T. (2013). Astrocytes in the rat nucleus tractus solitarii are critical for cardiovascular reflex control. J. Neurosci. 33 18608–18617. 10.1523/JNEUROSCI.3257-13.2013 PubMed DOI PMC

Lorkiewicz P., Waszkiewicz N. (2021). Biomarkers of post-COVID depression. J. Clin. Med. 10:4142. 10.3390/jcm10184142 PubMed DOI PMC

Lu Y., Li X., Geng D., Mei N., Wu P. Y., Huang C. C., et al. (2020). Cerebral micro-structural changes in COVID-19 patients – an MRI-based 3-month follow-up study: a brief title: cerebral changes in COVID-19. EClinicalMedicine 25:100484. 10.1016/j.eclinm.2020.100484 PubMed DOI PMC

Lukiw W. J., Pogue A., Hill J. M. (2020). SARS-CoV-2 infectivity and neurological targets in the brain. Cell. Mol. Neurobiol. 42 217–224. 10.1007/s10571-020-00947-7 PubMed DOI PMC

Ma Z., Turrigiano G. G., Wessel R., Hengen K. B. (2019). Cortical circuit dynamics are homeostatically tuned to criticality in vivo. Neuron 104 655.e4–664.e4. 10.1016/j.neuron.2019.08.031 PubMed DOI PMC

Mahmud R., Rahman M. M., Rassel M. A., Monayem F. B., Sayeed S. K. J. B., Islam M. S., et al. (2021). Post-COVID-19 syndrome among symptomatic COVID-19 patients: a prospective cohort study in a tertiary care center of Bangladesh. PLoS One 16:e249644. 10.1371/journal.pone.0249644 PubMed DOI PMC

Mao L., Jin H., Wang M., Hu Y., Chen S., He Q., et al. (2020). Neurological manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 77, 683–690. 10.1001/jamaneurol.2020.1127 PubMed DOI PMC

Markiewicz R., Dobrowolska B. (2020). Cognitive and social rehabilitation in schizophrenia—from neurophysiology to neuromodulation. Pilot study. Int. J. Environ. Res. Public Health 17 7–10. 10.3390/ijerph17114034 PubMed DOI PMC

Mather M., Thayer J. F. (2018). How heart rate variability affects emotion regulation brain networks. Curr. Opin. Behav. Sci. 19 98–104. 10.1016/j.cobeha.2017.12.017 PubMed DOI PMC

May R. W., Seibert G. S., Sanchez-Gonzalez M. A., Fincham F. D. (2019). Self-regulatory biofeedback training: an intervention to reduce school burnout and improve cardiac functioning in college students. Stress 22 1–8. 10.1080/10253890.2018.1501021 PubMed DOI

Mayi B. S., Leibowitz J. A., Woods A. T., Ammon K. A., Liu A. E., Raja A. (2021). The role of Neuropilin-1 in COVID-19. PLoS Pathog. 17:e1009153. 10.1371/journal.ppat.1009153 PubMed DOI PMC

Meinhardt J., Radke J., Dittmayer C., Franz J., Thomas C., Mothes R., et al. (2021). Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat. Neurosci. 24 168–175. 10.1038/s41593-020-00758-5 PubMed DOI

Meini S., Suardi L. R., Busoni M., Roberts A. T., Fortini A. (2020). Olfactory and gustatory dysfunctions in 100 patients hospitalized for COVID-19: sex differences and recovery time in real-life. Eur. Arch. Oto-Rhino-Laryngology 277 3519–3523. 10.1007/s00405-020-06102-8 PubMed DOI PMC

Möhler H. (2006). GABAA receptors in central nervous system disease: anxiety, epilepsy, and insomnia. J. Recept. Signal Transduct. 26 731–740. 10.1080/10799890600920035 PubMed DOI

Morand A., Campion J. Y., Lepine A., Bosdure E., Luciani L., Cammilleri S., et al. (2021). Similar patterns of [18F]-FDG brain PET hypometabolism in paediatric and adult patients with long COVID: a paediatric case series. Eur. J. Nucl. Med. Mol. Imaging [Online ahead of print] 1–8. 10.1007/s00259-021-05528-4 PubMed DOI PMC

Morbelli S., Chiola S., Donegani M. I., Arnaldi D., Pardini M., Mancini R., et al. (2022). Metabolic correlates of olfactory dysfunction in COVID-19 and Parkinson’s disease (PD) do not overlap. Eur. J. Nucl. Med. Mol. Imaging [Online ahead of print] 10.1007/s00259-021-05666-9 PubMed DOI PMC

Morgul E., Bener A., Atak M., Akyel S., Aktaş S., Bhugra D., et al. (2021). COVID-19 pandemic and psychological fatigue in Turkey. Int. J. Soc. Psychiatry 67 128–135. 10.1177/0020764020941889 PubMed DOI PMC

Mottaz A., Solcà M., Magnin C., Corbet T., Schnider A., Guggisberg A. G. (2015). Clinical Neurophysiology Neurofeedback training of alpha-band coherence enhances motor performance. Clin. Neurophysiol. 126 1754–1760. 10.1016/j.clinph.2014.11.023 PubMed DOI

Najjar S., Najjar A., Chong D. J., Pramanik B. K., Kirsch C., Kuzniecky R. I., et al. (2020). Central nervous system complications associated with SARS-CoV-2 infection: integrative concepts of pathophysiology and case reports. J. Neuroinflammation 17:231. 10.1186/s12974-020-01896-0 PubMed DOI PMC

Nemzer L. R., Cravens G. D., Worth R. M., Motta F., Placzek A., Castro V., et al. (2021). Critical and Ictal Phases in Simulated EEG Signals on a Small-World Network. Front. Comput. Neurosci. 14:583350. 10.3389/fncom.2020.583350 PubMed DOI PMC

Niesen M., Trotta N., Noel A., Coolen T., Fayad G., Leurkin-Sterk G., et al. (2021). Structural and metabolic brain abnormalities in COVID-19 patients with sudden loss of smell. Eur. J. Nucl. Med. Mol. Imaging 48 1890–1901. 10.1007/s00259-020-05154-6 PubMed DOI PMC

Othmer S., Othmer S. F. (2017). Toward a Frequency-Based Theory of Neurofeedback. Woodland Hills, CA: The EEG Institute, 10.1016/B978-0-12-803726-3.00008-0 DOI

Othmer S. F. (2020). “History of the Othmer method: an evolving clinical model and process,” in Neurofeedback, eds Evans J. R., Dellinger M. B., Russell H. L. (Cambridge, MA: Academic Press; ), 327–334.

Paquette V., Beauregard M., Beaulieu-Prévost D. (2009). Effect of a psychoneurotherapy on brain electromagnetic tomography in individuals with major depressive disorder. Psychiatry Res. - Neuroimag. 174 231–239. 10.1016/j.pscychresns.2009.06.002 PubMed DOI

Park S., Majoka H., Sheikh A., Ali I. (2021). A presumed case of new-onset focal seizures as a delayed complication of COVID-19 infection. Epilepsy Behav. Rep. 16:100447. 10.1016/j.ebr.2021.100447 PubMed DOI PMC

Pasini E., Bisulli F., Volpi L., Minardi I., Tappatà M., Muccioli L., et al. (2020). EEG findings in COVID-19 related encephalopathy. Clin. Neurophysiol. 131 2265–2267. 10.1016/j.clinph.2020.07.003 PubMed DOI PMC

Pastukhov A., García-Rodríguez P. E., Haenicke J., Guillamon A., Deco G., Braun J. (2013). Multi-stable perception balances stability and sensitivity. Front. Comput. Neurosci. 7:17. 10.3389/fncom.2013.00017 PubMed DOI PMC

Patel K., Sutherland H., Henshaw J., Taylor J. R., Brown C. A., Casson A. J., et al. (2020). Effects of neurofeedback in the management of chronic pain: a systematic review and meta-analysis of clinical trials. Eur. J. Pain (United Kingdom) 24 1440–1457. 10.1002/ejp.1612 PubMed DOI

Paterson R. W., Brown R. L., Benjamin L., Nortley R., Wiethoff S., Bharucha T., et al. (2020). The emerging spectrum of COVID-19 neurology: clinical, radiological and laboratory findings. Brain 143 3104–3120. 10.1093/brain/awaa240 PubMed DOI PMC

Pattnaik J. I., Deepthi R. A., Dua S., Padhan P., Ravan J. R. (2021). Role of tofisopam in post COVID neuro-psychiatric sequelae: a case series. Indian J. Psychol. Med. 43 174–176. 10.1177/0253717621994285 PubMed DOI PMC

Pellinen J., Carroll E., Friedman D., Boffa M., Dugan P., Friedman D. E., et al. (2020). Continuous EEG findings in patients with COVID-19 infection admitted to a New York academic hospital system. Epilepsia 61 2097–2105. 10.1111/epi.16667 PubMed DOI

Perlis M. L., Merica H., Smith M. T., Giles D. E. (2001). Beta EEG activity and insomnia. Sleep Med. Rev. 5 365–376. 10.1053/smrv.2001.0151 PubMed DOI

Pilotto A., Cristillo V., Cotti Piccinelli S., Zoppi N., Bonzi G., Sattin D., et al. (2021). Long-term neurological manifestations of COVID-19: prevalence and predictive factors. Neurol. Sci. 42 4903–4907. 10.1007/s10072-021-05586-4 PubMed DOI PMC

Pittman Q. J. (2011). A neuro-endocrine-immune symphony. J. Neuroendocrinol. 23 1296–1297. 10.1111/j.1365-2826.2011.02176.x PubMed DOI

Poel W., Daniels B. C., Sosna M. M. G., Twomey C. R., Leblanc S. P., Couzin I. D., et al. (2021). Subcritical escape waves in schooling fish. arXiv [Preprint]. arXiv:2108.05537 PubMed PMC

Putman (2004). Supported Projects Presented at the 12th Annual ISNR Conference, Vol. 9. Abu Dhabi: International Society for Neuroregulation & Research, 99–101.

Reiner R. (2008). Integrating a portable biofeedback device into clinical practice for patients with anxiety disorders: results of a pilot study. Appl. Psychophysiol. Biofeedback 33 55–61. 10.1007/s10484-007-9046-6 PubMed DOI

Reisert M., Weiller C., Hosp J. A. (2021). Displaying the autonomic processing network in humans – a global tractography approach. Neuroimage 231:117852. 10.1016/j.neuroimage.2021.117852 PubMed DOI

Ros T., Baars B. J., Lanius R. A., Vuilleumier P. (2014). Tuning pathological brain oscillations with neurofeedback: a systems neuroscience framework. Front. Hum. Neurosci. 8:1008. 10.3389/fnhum.2014.01008 PubMed DOI PMC

Ros T., Frewen P., Théberge J., Michela A., Kluetsch R., Mueller A., et al. (2017). Neurofeedback tunes scale-free dynamics in spontaneous brain activity. Cereb. Cortex 27 4911–4922. 10.1093/cercor/bhw285 PubMed DOI

Rudroff T., Kamholz J., Fietsam A. C., Deters J. R., Bryant A. D. (2020). Post-covid-19 fatigue: potential contributing factors. Brain Sci. 10:1012. 10.3390/brainsci10121012 PubMed DOI PMC

Rudroff T., Workman C. D., Ponto L. L. B. (2021). 18 F-FDG-PET imaging for post-COVID-19 brain and skeletal muscle alterations. Viruses 13:2283. 10.3390/v13112283 PubMed DOI PMC

Samkaria A., Punjabi K., Sharma S., Joon S., Sandal K., Dasgupta T., et al. (2021). Brain stress mapping in COVID-19 survivors using MR spectroscopy: new avenue of mental health status monitoring. J. Alzheimer’s Dis. 83 523–530. 10.3233/JAD-210287 PubMed DOI

Sangare A., Dong A., Valente M., Pyatigorskaya N., Cao A., Altmayer V., et al. (2020). Neuroprognostication of consciousness recovery in a patient with covid-19 related encephalitis: preliminary findings from a multimodal approach. Brain Sci. 10:845. 10.3390/brainsci10110845 PubMed DOI PMC

Sauseng P., Klimesch W., Schabus M., Doppelmayr M. (2005). Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. Int. J. Psychophysiol. 57 97–103. 10.1016/j.ijpsycho.2005.03.018 PubMed DOI

Schiene K., Bruehl C., Zilles K., Qü M., Hagemann G., Kraemer M., et al. (1996). Neuronal hyperexcitability and reduction of GABA(A)-receptor expression in the surround of cerebral photothrombosis. J. Cereb. Blood Flow Metab. 16 906–914. 10.1097/00004647-199609000-00014 PubMed DOI

Selvaraj K., Ravichandran S., Krishnan S., Radhakrishnan R. K., Manickam N., Kandasamy M. (2021). Testicular atrophy and hypothalamic pathology in COVID-19: possibility of the incidence of male infertility and HPG axis abnormalities. Reprod. Sci. 28 2735–2742. 10.1007/s43032-020-00441-x PubMed DOI PMC

Shaikh A. G., Hong S., Liao K., Tian J., Solomon D., Zee D. S., et al. (2010). Oculopalatal tremor explained by a model of inferior olivary hypertrophy and cerebellar plasticity. Brain 133 923–940. 10.1093/brain/awp323 PubMed DOI PMC

Shibata K., Lisi G., Cortese A., Watanabe T., Sasaki Y., Kawato M. (2019). Toward a comprehensive understanding of the neural mechanisms of decoded neurofeedback. Neuroimage 188 539–556. 10.1016/j.neuroimage.2018.12.022 PubMed DOI PMC

Sime A. (2004). Case study of trigeminal neuralgia using neurofeedback and peripheral biofeedback. J. Neurother. 8 59–71. 10.1300/J184v08n01_05 DOI

Slaats J., ten Oever J., van de Veerdonk F. L., Netea M. G. (2016). IL-1β/IL-6/CRP and IL-18/ferritin: distinct inflammatory programs in infections. PLoS Pathog. 12:e1005973. 10.1371/journal.ppat.1005973 PubMed DOI PMC

Slevin M., Elisa Garcia-Lara E., Capitanescu B., Sanfeliu C., Zeinolabediny Y., Albaradie R., et al. (2020). Monomeric c-reactive protein aggravates secondary degeneration after intracerebral haemorrhagic stroke and may function as a sensor for systemic inflammation. J. Clin. Med. 9:3053. 10.3390/jcm9093053 PubMed DOI PMC

Sollini M., Morbelli S., Ciccarelli M., Cecconi M., Aghemo A., Morelli P., et al. (2021). Long COVID hallmarks on [18F]FDG-PET/CT: a case-control study. Eur. J. Nucl. Med. Mol. Imaging 48 3187–3197. 10.1007/s00259-021-05294-3 PubMed DOI PMC

Solomon I. H., Normandin E., Bhattacharyya S., Mukerji S. S., Keller K., Ali A. S., et al. (2020). Neuropathological features of Covid-19. N. Engl. J. Med. 383 989–992. 10.1056/NEJMc2019373 PubMed DOI PMC

Spielmanns M., Pekacka-Egli A. M., Schoendorf S., Windisch W., Hermann M. (2021). Effects of a comprehensive pulmonary rehabilitation in severe post-covid-19 patients. Int. J. Environ. Res. Public Health 18:2695. 10.3390/ijerph18052695 PubMed DOI PMC

Stam C. J. (2005). Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin. Neurophysiol. 116 2266–2301. 10.1016/j.clinph.2005.06.011 PubMed DOI

Stavem K., Ghanima W., Olsen M. K., Gilboe H. M., Einvik G. (2021). Prevalence and determinants of fatigue after covid-19 in non-hospitalized subjects: a population-based study. Int. J. Environ. Res. Public Health 18:2030. 10.3390/ijerph18042030 PubMed DOI PMC

Steiner I., Nisipianu P., Wirguin I. (2001). Infection and the etiology and pathogenesis of multiple sclerosis. Curr. Neurol. Neurosci. Rep. 1 271–276. 10.1007/s11910-001-0030-x PubMed DOI PMC

Strauss G. P., Cohen A. S. (2017). A transdiagnostic review of negative symptom phenomenology and etiology. Schizophr. Bull. 43 712–729. 10.1093/schbul/sbx066 PubMed DOI PMC

Sun B., Tang N., Peluso M. J., Iyer N. S., Torres L., Donatelli J. L., et al. (2021). Characterization and biomarker analyses of post-covid-19 complications and neurological manifestations. Cells 10:386. 10.3390/cells10020386 PubMed DOI PMC

Swenne C. A. (2013). Baroreflex sensitivity: mechanisms and measurement. Netherlands Hear. J. 21 58–60. 10.1007/s12471-012-0346-y PubMed DOI PMC

Takagishi M., Waki H., Bhuiyan M. E. R., Gouraud S. S., Kohsaka A., Cui H., et al. (2010). IL-6 microinjected in the nucleus tractus solitarii attenuates cardiac baroreceptor reflex function in rats. Am. J. Physiol. - Regul. Integr. Comp. Physiol. 298 183–190. 10.1152/ajpregu.00176.2009 PubMed DOI

Takahashi T., Ellingson M. K., Wong P., Israelow B., Lucas C., Klein J., et al. (2020). Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature 588 315–320. 10.1038/s41586-020-2700-3 PubMed DOI PMC

Takeuchi N., Izumi S. I. (2012). Maladaptive plasticity for motor recovery after stroke: mechanisms and approaches. Neural Plast. 2012:359728. 10.1155/2012/359728 PubMed DOI PMC

Tan T., Khoo B., Mills E. G., Phylactou M., Patel B., Eng P. C., et al. (2020). Association between high serum total cortisol concentrations and mortality from COVID-19. Lancet Diabetes Endocrinol. 8 659–660. 10.1016/S2213-8587(20)30216-3 PubMed DOI PMC

Tang Z., Ye G., Chen X., Pan M., Fu J., Fu T., et al. (2018). Peripheral proinflammatory cytokines in Chinese patients with generalised anxiety disorder. J. Affect. Disord. 225 593–598. 10.1016/j.jad.2017.08.082 PubMed DOI

Tay M. Z., Poh C. M., Rénia L., MacAry P. A., Ng L. F. P. (2020). The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol. 20 363–374. 10.1038/s41577-020-0311-8 PubMed DOI PMC

Teigen K. H. (1994). Yerkes-Dodson: a law for all seasons. Theory Psychol. 4 525–547. 10.1177/0959354394044004 DOI

Thye A. Y.-K., Law J. W. F., Tan L. T. H., Pusparajah P., Ser H. L., Thurairajasingam S., et al. (2022). Psychological symptoms in COVID-19 Patients (2022): insights into pathophysiology and risk factors of long COVID-19. Biology 11:61. 10.3390/biology11010061 PubMed DOI PMC

Townsend L., Dyer A. H., Jones K., Dunne J., Mooney A., Gaffney F., et al. (2020). Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS One 15:e0240784. 10.1371/journal.pone.0240784 PubMed DOI PMC

Townsend L., Moloney D., Finucane C., McCarthy K., Bergin C., Bannan C., et al. (2021). Fatigue following COVID-19 infection is not associated with autonomic dysfunction. PLoS One 16:e0247280. 10.1371/journal.pone.0247280 PubMed DOI PMC

Tracy L. M., Ioannou L., Baker K. S., Gibson S. J., Georgiou-Karistianis N., Giummarra M. J. (2016). Meta-analytic evidence for decreased heart rate variability in chronic pain implicating parasympathetic nervous system dysregulation. Pain 157 7–29. 10.1097/j.pain.0000000000000360 PubMed DOI

Trotti L. M., Saini P., Bliwise D. L., Freeman A. A., Jenkins A., Rye D. B. (2015). Clarithromycin in γ-aminobutyric acid-Related hypersomnolence: a randomized, crossover trial. Ann. Neurol. 78 454–465. 10.1002/ana.24459 PubMed DOI PMC

Tsuchiyagaito A., Smith J. L., El-Sabbagh N., Zotev V., Misaki M., Al Zoubi O., et al. (2021). Real-time fMRI neurofeedback amygdala training may influence kynurenine pathway metabolism in major depressive disorder. NeuroImage Clin. 29:102559. 10.1016/j.nicl.2021.102559 PubMed DOI PMC

Turrigiano G. G., Nelson S. B. (2000). Hebb and homeostasis in neuronal plasticity. Curr. Opin. Neurobiol. 10 358–364. 10.1016/S0959-4388(00)00091-X PubMed DOI

Van Boxtel G. J. M., Denissen A. J. M., Jäger M., Vernon D., Dekker M. K. J., Mihajlović V., et al. (2012). A novel self-guided approach to alpha activity training. Int. J. Psychophysiol. 83 282–294. 10.1016/j.ijpsycho.2011.11.004 PubMed DOI

van der Zwan J. E., de Vente W., Huizink A. C., Bögels S. M., de Bruin E. I. (2015). Physical activity, mindfulness meditation, or heart rate variability biofeedback for stress reduction: a randomized controlled trial. Appl. Psychophysiol. Biofeedback 40 257–268. 10.1007/s10484-015-9293-x PubMed DOI PMC

Vaschillo E., Vaschillo B., Buckman J., Bates M. (2019). New approach for brain stimulation. Brain Stimul. 12:393. 10.1016/j.brs.2018.12.263 DOI

Visvabharathy L., Hanson B., Orban Z., Lim P. H., Palacio N. M., Jain R., et al. (2021). Neuro-COVID long-haulers exhibit broad dysfunction in T cell memory generation and responses to vaccination. medRxiv [Preprint]. 10.1101/2021.08.08.21261763 PubMed DOI PMC

Walker J. E. (2010). Recent advances in quantitative EEG as an aid to diagnosis and as a guide to neurofeedback training for cortical hypofunctions, hyperfunctions, disconnections, and hyperconnections: improving efficacy in complicated neurological and psychological disorder. Appl. Psychophysiol. Biofeedback 35 25–27. 10.1007/s10484-009-9107-0 PubMed DOI

Walker J. E. (2011). QEEG-guided neurofeedback for recurrent migraine headaches. Clin. EEG Neurosci. 42 59–61. 10.1177/155005941104200112 PubMed DOI

Walker J. E., Kozlowski G. P. (2005). Neurofeedback treatment of epilepsy. Child Adolesc. Psychiatr. Clin. N. Am. 14 163–176. 10.1016/j.chc.2004.07.009 PubMed DOI

Walsh-Messinger J., Manis H., Vrabec A., Sizemore, Bs J., Bishof K., Debidda M., et al. (2021). The kids are not alright: a preliminary report of Post-COVID syndrome in university students. J. Am. Coll. Health [Online ahead of print] 1–7. 10.1080/07448481.2021.1927053 PubMed DOI PMC

Wang R., Chen J., Gao K., Hozumi Y., Yin C., Wei G. W. (2021). Analysis of SARS-CoV-2 mutations in the United States suggests presence of four substrains and novel variants. Commun. Biol. 4:228. 10.1038/s42003-021-01754-6 PubMed DOI PMC

Wang X., Tan L., Wang X., Liu W., Lu Y., Cheng L., et al. (2020). Comparison of nasopharyngeal and oropharyngeal swabs for SARS-CoV-2 detection in 353 patients received tests with both specimens simultaneously. Int. J. Infect. Dis. 94 107–109. 10.1016/j.ijid.2020.04.023 PubMed DOI PMC

Watanabe M., Maemura K., Kanbara K., Tamayama T., Hayasaki H. (2002). GABA and GABA receptors in the central nervous system and other organs. Int. Rev. Cytol. 213 1–47. 10.1016/S0074-7696(02)13011-7 PubMed DOI

Watanabe T., Sasaki Y., Shibata K., Kawato M. (2017). Advances in fMRI Real-Time Neurofeedback. Trends Cogn. Sci. 21 997–1010. 10.1016/j.tics.2017.09.010 PubMed DOI PMC

Wenting A., Gruters A., van Os Y., Verstraeten S., Valentijn S., Ponds R., et al. (2020). COVID-19 neurological manifestations and underlying mechanisms: a scoping review. Front. Psychiatry 11:860. 10.3389/fpsyt.2020.00860 PubMed DOI PMC

Wichmann D., Sperhake J. P., Lütgehetmann M., Steurer S., Edler C., Heinemann A., et al. (2020). Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann. Intern. Med. 173 268–277. 10.7326/M20-2003 PubMed DOI PMC

Windthorst P., Mazurak N., Kuske M., Hipp A., Giel K. E., Enck P., et al. (2017). Heart rate variability biofeedback therapy and graded exercise training in management of chronic fatigue syndrome: an exploratory pilot study. J. Psychosom. Res. 93 6–13. 10.1016/j.jpsychores.2016.11.014 PubMed DOI

Workman C., Boles-Ponto L., Kamholz J., Bryant A., Rudroff T. (2021). Transcranial direct current stimulation and Post-COVID-19-Fatigue. Brain Stimul. 14 1672–1673. 10.1016/j.brs.2021.10.268 DOI

Workman C. D., Kamholz J., Rudroff T. (2020). Transcranial direct current stimulation (tDCS) for the treatment of a Multiple Sclerosis symptom cluster. Brain Stimul. 13 263–264. 10.1016/j.brs.2019.09.012 PubMed DOI

Wostyn P. (2021). COVID-19 and chronic fatigue syndrome: is the worst yet to come? Med. Hypotheses 146:110469. 10.1016/j.mehy.2020.110469 PubMed DOI PMC

Wu T., Zuo Z., Kang S., Jiang L., Luo X., Xia Z., et al. (2020). Multi-organ dysfunction in patients with COVID-19: a systematic review and meta-analysis. Aging Dis. 11 874–894. 10.14336/AD.2020.0520 PubMed DOI PMC

Wyler A. R., Lockard J. S., Ward A. A., Finch C. A. (1976). Conditioned EEG desynchronization and seizure occurrence in patients. Electroencephalogr. Clin. Neurophysiol. 41 501–512. 10.1016/0013-4694(76)90062-6 PubMed DOI

Xiong Q., Xu M., Li J., Liu Y., Zhang J., Xu Y., et al. (2021). Clinical sequelae of COVID-19 survivors in Wuhan, China: a single-centre longitudinal study. Clin. Microbiol. Infect. 27 89–95. 10.1016/j.cmi.2020.09.023 PubMed DOI PMC

Yamada T., Hashimoto R. I., Yahata N., Ichikawa N., Yoshihara Y., Okamot Y., et al. (2017). Resting-state functional connectivity-based biomarkers and functional MRI-based neurofeedback for psychiatric disorders: a challenge for developing theranostic biomarkers. Int. J. Neuropsychopharmacol. 20 769–781. 10.1093/ijnp/pyx059 PubMed DOI PMC

Yang X., Yang X., Kumar P., Cao B., Ma X., Li T. (2020). Social support and clinical improvement in COVID-19 positive patients in China. Nurs. Outlook 68 830–837. 10.1016/j.outlook.2020.08.008 PubMed DOI PMC

Yong S. J. (2021). Persistent brainstem dysfunction in long-COVID: a hypothesis. ACS Chem. Neurosci. 12 573–580. 10.1021/acschemneuro.0c00793 PubMed DOI

Young J. J., Bruno D., Pomara N. (2014). A review of the relationship between proinflammatory cytokines and major depressive disorder. J. Affect. Disord. 169 15–20. 10.1016/j.jad.2014.07.032 PubMed DOI

Younger D. S. (2021). Post-acute sequelae of SARS-Cov-2 infection associating peripheral, autonomic and central nervous system disturbances: case report and review of the literature. World J. Neurosci. 11 17–21. 10.4236/wjns.2021.111003 DOI

Zald D. H., Pardo J. V. (1997). Emotion, olfaction, and the human amygdala: amygdala activation during aversive olfactory stimulation. Proc. Natl. Acad. Sci. U.S.A. 94 4119–4124. 10.1073/pnas.94.8.4119 PubMed DOI PMC

Zarei M., Bose D., Nouri-Vaskeh M., Tajiknia V., Zand R., Ghasemi M. (2021). Long-term side effects and lingering symptoms post COVID-19 recovery. Rev. Med. Virol. e2289. 10.1002/rmv.2289 PubMed DOI PMC

Zhigalov A., Kaplan A., Palva J. M. (2016). Modulation of critical brain dynamics using closed-loop neurofeedback stimulation. Clin. Neurophysiol. 127 2882–2889. 10.1016/j.clinph.2016.04.028 PubMed DOI

Zhou M., Cai J., Sun W., Wu J., Wang Y., Gamber M., et al. (2021). Do post-COVID-19 symptoms exist? A longitudinal study of COVID-19 sequelae in Wenzhou, China. Ann. Med. Psychol. (Paris). 179 818–821. 10.1016/j.amp.2021.03.003 PubMed DOI PMC

Zimmern V. (2020). Why brain criticality is clinically relevant: a scoping review. Front. Neural Circuits 14:54. 10.3389/fncir.2020.00054 PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...