Occupational Exposure to Polycyclic Aromatic Hydrocarbons and Lung Cancer Risk: Results from a Pooled Analysis of Case-Control Studies (SYNERGY)
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
001
World Health Organization - International
PubMed
35437574
PubMed Central
PMC9377765
DOI
10.1158/1055-9965.epi-21-1428
PII: 694483
Knihovny.cz E-zdroje
- MeSH
- karcinogeny MeSH
- lidé MeSH
- nádory plic * chemicky indukované epidemiologie MeSH
- plíce MeSH
- polycyklické aromatické uhlovodíky * škodlivé účinky MeSH
- pracovní expozice * škodlivé účinky analýza MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- karcinogeny MeSH
- polycyklické aromatické uhlovodíky * MeSH
BACKGROUND: Exposure to polycyclic aromatic hydrocarbons (PAH) occurs widely in occupational settings. We investigated the association between occupational exposure to PAH and lung cancer risk and joint effects with smoking within the SYNERGY project. METHODS: We pooled 14 case-control studies with information on lifetime occupational and smoking histories conducted between 1985 and 2010 in Europe and Canada. Exposure to benzo[a]pyrene (BaP) was used as a proxy of PAH and estimated from a quantitative general population job-exposure matrix. Multivariable unconditional logistic regression models, adjusted for smoking and exposure to other occupational lung carcinogens, estimated ORs, and 95% confidence intervals (CI). RESULTS: We included 16,901 lung cancer cases and 20,965 frequency-matched controls. Adjusted OR for PAH exposure (ever) was 1.08 (CI, 1.02-1.15) in men and 1.20 (CI, 1.04-1.38) in women. When stratified by smoking status and histologic subtype, the OR for cumulative exposure ≥0.24 BaP μg/m3-years in men was higher in never smokers overall [1.31 (CI, 0.98-1.75)], for small cell [2.53 (CI, 1.28-4.99)] and squamous cell cancers [1.33 (CI, 0.80-2.21)]. Joint effects between PAH and smoking were observed. Restricting analysis to the most recent studies showed no increased risk. CONCLUSIONS: Elevated lung cancer risk associated with PAH exposure was observed in both sexes, particularly for small cell and squamous cell cancers, after accounting for cigarette smoking and exposure to other occupational lung carcinogens. IMPACT: The lack of association between PAH and lung cancer in more recent studies merits further research under today's exposure conditions and worker protection measures.
Cancer Epidemiology Unit Department of Medical Sciences University of Turin Turin Italy
Comprehensive Pneumology Center Munich Munich Germany
Dalla Lana School of Public Health University of Toronto Toronto Canada
Department of Environmental Epidemiology The Nofer Institute of Occupational Medicine Lodz Poland
Department of Epidemiology ASL Roma E Rome Italy
Department of Medical and Surgical Sciences University of Bologna Bologna Italy
Department of Public Health University of Oviedo ISPA and CIBERESP Oviedo Spain
Department of Social and Preventive Medicine University of Montreal Montreal Canada
Division of Cancer Epidemiology and Genetics NCI NIH Bethesda Maryland
Epidemiology Unit Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
Faculty of Health Catholic University Ružomberok Slovakia
Faculty of Health Sciences Palacky University Olomouc Czechia
Institute for Medical Informatics Biometry and Epidemiology University Hospital Essen Essen Germany
Institute for Risk Assessment Sciences Utrecht University Utrecht the Netherlands
Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
Institute of Hygiene and Epidemiology 1st Faculty of Medicine Charles University Prague Czechia
International Agency for Research on Cancer Lyon France
Leibniz Institute for Prevention Research and Epidemiology BIPS Bremen Germany
Masaryk Memorial Cancer Institute Brno Czechia
National Institute of Public Health Bucharest Romania
National Public Health Center Budapest Hungary
Occupational Cancer Research Centre Ontario Health Toronto Canada
Regional Authority of Public Health Banská Bystrica Slovakia
Stony Brook Cancer Center Stony Brook University Stony Brook New York
Univ Rennes Inserm EHESP Irset UMR_S 1085 Pointe à Pitre France
Zobrazit více v PubMed
Boström CE, Gerde P, Hanberg A, Jernström B, Johansson C, Kyrklund T, et al. . Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect 2002;110:451–88. PubMed PMC
Straif K, Baan R, Grosse Y, Secretan B, El Ghissassi F, Cogliano V. Carcinogenicity of polycyclic aromatic hydrocarbons. Lancet Oncol 2005;6:931–2. PubMed
IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 92. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related occupational exposures. Lyon, France: IARC Press; Geneva: Distributed by World Health Organization; 2010. PubMed PMC
Olsson AC, Vermeulen R, Schuz J, Kromhout H, Pesch B, Peters S, et al. . Exposure-response analyses of asbestos and lung cancer subtypes in a pooled analysis of case-control studies. Epidemiology 2017;28:288–99. PubMed PMC
Ge C, Peters S, Olsson A, Portengen L, Schüz J, Almansa J, et al. . Respirable crystalline silica exposure, smoking, and lung cancer subtype risks. a pooled analysis of case-control studies. Am J Respir Crit Care Med 2020;202:412–21. PubMed PMC
Brenner DR, Boffetta P, Duell EJ, Bickeböller H, Rosenberger A, McCormack V, et al. . Previous lung diseases and lung cancer risk: a pooled analysis from the International Lung Cancer Consortium. Am J Epidemiol 2012;176:573–85. PubMed PMC
Brüske-Hohlfeld I, Möhner M, Pohlabeln H, Ahrens W, Bolm-Audorff U, Kreienbrock L, et al. . Occupational lung cancer risk for men in Germany: results from a pooled case-control study. Am J Epidemiol 2000;151:384–95. PubMed
Consonni D, De Matteis S, Lubin JH, Wacholder S, Tucker M, Pesatori AC, et al. . Lung cancer and occupation in a population-based case-control study. Am J Epidemiol 2010;171:323–33. PubMed PMC
Fortes C, Forastiere F, Farchi S, Mallone S, Trequattrinni T, Anatra F, et al. . The protective effect of the mediterranean diet on lung cancer. Nutr Cancer 2003;46:30–7. PubMed
Guida F, Papadopoulos A, Menvielle G, Matrat M, Févotte J, Cénée S, et al. . Risk of lung cancer and occupational history: results of a French population-based case-control study, the ICARE study. J Occup Environ Med 2011;53:1068–77. PubMed
Gustavsson P, Jakobsson R, Nyberg F, Pershagen G, Järup L, Schéele P. Occupational exposure and lung cancer risk: a population-based case-referent study in Sweden. Am J Epidemiol 2000;152:32–40. PubMed
Jöckel KH, Ahrens W, Jahn I, Pohlabeln H, Bolm-Audorff U. Occupational risk factors for lung cancer: a case-control study in West Germany. Int J Epidemiol 1998;27:549–60. PubMed
Kazma R, Babron MC, Gaborieau V, Génin E, Brennan P, Hung RJ, et al. . Lung cancer and DNA repair genes: multilevel association analysis from the International Lung Cancer Consortium. Carcinogenesis 2012;33:1059–64. PubMed PMC
López-Cima MF, González-Arriaga P, García-Castro L, Pascual T, Marrón MG, Puente XS, et al. . Polymorphisms in XPC, XPD, XRCC1, and XRCC3 DNA repair genes and lung cancer risk in a population of northern Spain. BMC Cancer 2007;7:162. PubMed PMC
Ramanakumar AV, Parent ME, Siemiatycki J. Risk of lung cancer from residential heating and cooking fuels in Montreal, Canada. Am J Epidemiol 2007;165:634–42. PubMed
Riboli E, Kaaks R. The EPIC Project: rationaleand study design. European prospective investigation into cancer and nutrition. Int J Epidemiol 1997;26:S6–14. PubMed
Richiardi L, Boffetta P, Simonato L, Forastiere F, Zambon P, Fortes C, et al. . Occupational risk factors for lung cancer in men and women: a population-based case-control study in Italy. Cancer Causes Control 2004;15:285–94. PubMed
Scélo G, Constantinescu V, Csiki I, Zaridze D, Szeszenia-Dabrowska N, Rudnai P, et al. . Occupational exposure to vinyl chloride, acrylonitrile and styrene and lung cancer risk (Europe). Cancer Causes Control 2004;15:445–52. PubMed
Stücker I, Hirvonen A, de Waziers I, Cabelguenne A, Mitrunen K, Cénée S, et al. . Genetic polymorphisms of glutathione S-transferases as modulators of lung cancer susceptibility. Carcinogenesis 2002;23:1475–81. PubMed
Peters S, Vermeulen R, Olsson A, Van Gelder R, Kendzia B, Vincent R, et al. . Development of an exposure measurement database on five lung carcinogens (ExpoSYN) for quantitative retrospective occupational exposure assessment. Ann Occup Hyg 2012;56:70–9. PubMed
Peters S, Vermeulen R, Portengen L, Olsson A, Kendzia B, Vincent R, et al. . SYN-JEM: a quantitative job-exposure matrix for five lung carcinogens. Ann Occup Hyg 2016;60:795–811. PubMed
Lubin JH, Colt JS, Camann D, Davis S, Cerhan JR, Severson RK, et al. . Epidemiologic evaluation of measurement data in the presence of detection limits. Environ Health Perspect 2004;112:1691–6. PubMed PMC
Ahrens W, Merletti F. A standard tool for the analysis of occupational lung cancer in epidemiologic studies. Int J Occup Environ Health 1998;4:236–40. PubMed
Mirabelli D, Chiusolo M, Calisti R, Massacesi S, Richiardi L, Nesti M, et al. . [ Database of occupations and industrial activities that involve the risk of pulmonary tumors]. Epidemiol Prev 2001;25:215–21. PubMed
Boffetta P, Jourenkova N, Gustavsson P. Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes Control 1997;8:444–72. PubMed
Bosetti C, Boffetta P. Occupational exposures to polycyclic aromatic hydrocarbons, and respiratory and urinary tract cancers: a quantitative review to 2005. Ann Oncol 2007;18:431–46. PubMed
Petit P, Maître A, Persoons R, Bicout DJ. Lung cancer risk assessment for workers exposed to polycyclic aromatic hydrocarbons in various industries. Environ Int 2019;124:109–20. PubMed
Armstrong BG, Gibbs G. Exposure-response relationship between lung cancer and polycyclic aromatic hydrocarbons (PAHs). Occup Environ Med 2009;66:740–6. PubMed
Armstrong B, Hutchinson E, Unwin J, Fletcher T. Lung cancer risk after exposure to polycyclic aromatic hydrocarbons: a review and meta-analysis. Environ Health Perspect 2004;112:970–8. PubMed PMC
Mollerup S, Berge G, Baera R, Skaug V, Hewer A, Phillips DH, et al. . Sex differences in risk of lung cancer: expression of genes in the PAH bioactivation pathway in relation to smoking and bulky DNA adducts. Int J Cancer 2006;119:741–4. PubMed
Uppstad H, Osnes GH, Cole KJ, Phillips DH, Haugen A, Mollerup S. Sex differences in susceptibility to PAHs is an intrinsic property of human lung adenocarcinoma cells. Lung Cancer 2011;71:264–70. PubMed
Guo H, Huang K, Zhang X, Zhang W, Guan L, Kuang D, et al. . Women are more susceptible than men to oxidative stress and chromosome damage caused by polycyclic aromatic hydrocarbons exposure. Environ Mol Mutagen 2014;55:472–81. PubMed
Ge C, Peters S, Olsson A, Portengen L, Schüz J, Almansa J, et al. . Diesel engine exhaust exposure, smoking, and lung cancer subtype risks. a pooled exposure-response analysis of 14 case-control studies. Am J Respir Crit Care Med 2020;202:402–11. PubMed PMC
Teschke K, Olshan AF, Daniels JL, De Roos AJ, Parks CG, Schulz M, et al. . Occupational exposure assessment in case-control studies: opportunities for improvement. Occup Environ Med 2002;59:575–93. PubMed PMC
Occupational Benzene Exposure and Lung Cancer Risk: A Pooled Analysis of 14 Case-Control Studies