Providing Biological Plausibility for Exposure-Health Relationships for the Mycotoxins Deoxynivalenol (DON) and Fumonisin B1 (FB1) in Humans Using the AOP Framework
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35448888
PubMed Central
PMC9030459
DOI
10.3390/toxins14040279
PII: toxins14040279
Knihovny.cz E-zdroje
- Klíčová slova
- AOP: adverse outcome pathway, DON: deoxynivalenol, FB1: fumonisin B1, HBM4EU, HBM: human biomonitoring, human biomonitoring for Europe, mycotoxins,
- MeSH
- dráhy škodlivých účinků * MeSH
- fumonisiny * toxicita MeSH
- lidé MeSH
- mykotoxiny * farmakologie MeSH
- trichotheceny MeSH
- viabilita buněk MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- deoxynivalenol MeSH Prohlížeč
- fumonisin B1 MeSH Prohlížeč
- fumonisiny * MeSH
- mykotoxiny * MeSH
- trichotheceny MeSH
Humans are chronically exposed to the mycotoxins deoxynivalenol (DON) and fumonisin B1 (FB1), as indicated by their widespread presence in foods and occasional exposure in the workplace. This exposure is confirmed by human biomonitoring (HBM) studies on (metabolites of) these mycotoxins in human matrices. We evaluated the exposure-health relationship of the mycotoxins in humans by reviewing the available literature. Since human studies did not allow the identification of unequivocal chronic health effects upon exposure to DON and FB1, the adverse outcome pathway (AOP) framework was used to structure additional mechanistic evidence from in vitro and animal studies on the identified adverse effects. In addition to a preliminary AOP for DON resulting in the adverse outcome (AO) 'reduced body weight gain', we developed a more elaborated AOP for FB1, from the molecular initiating event (MIE) 'inhibition of ceramide synthases' leading to the AO 'neural tube defects'. The mechanistic evidence from AOPs can be used to support the limited evidence from human studies, to focus FB1- and DON-related research in humans to identify related early biomarkers of effect. In order to establish additional human exposure-health relationships in the future, recommendations are given to maximize the information that can be obtained from HBM.
Institut National de Recherche et de Sécurité 54500 Vandoeuvre Lés Nancy France
Institute for Public Health and the Environment 3720 BA Bilthoven The Netherlands
Istituto Superiore di Sanità 00161 Rome Italy
Norwegian Institute of Public Health 0213 Oslo Norway
RECETOX Faculty of Science Masaryk University Kotlarska 2 611 37 Brno Czech Republic
Wageningen Food Safety Research 6708 WB Wageningen The Netherlands
Zobrazit více v PubMed
CAST . Mycotoxins: Risks in Plant, Animal and Human Systems. Council for Agricultural Science and Technology; Ames, IA, USA: 2003.
Bernhoft A., Eriksen G.S., Sundheim L., Berntssen M., Brantsæter A.L., Brodal G., Tronsmo A.M. Risk Assessment of Mycotoxins in Cereal Grain in Norway. Opinion of the Scientific Steering Committee of the Norwegian Scientific Committee for Food Safety. Volume 21. VKM; Oslo, Norway: 2013. pp. 1–287. VKM Report.
EFSA Scientific Opinion on the risks for human and animal health related to the presence of modified forms of certain mycotoxins in food and feed. EFSA J. 2014;12:3916.
EFSA. CONTAM. Knutsen H.K., Alexander J., Barregard L., Bignami M., Brüschweiler B., Ceccatelli S., Cottrill B., Dinovi M., et al. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J. 2017;15:e04718. PubMed PMC
Viegas S., Assunção R., Martins C., Nunes C., Osteresch B., Twarużek M., Kosicki R., Grajewski J., Ribeiro E., Viegas C. Occupational Exposure to Mycotoxins in Swine Production: Environmental and Biological Monitoring Approaches. Toxins. 2019;11:78. doi: 10.3390/toxins11020078. PubMed DOI PMC
Viegas S., Assunção R., Nunes C., Osteresch B., Twarużek M., Kosicki R., Grajewski J., Martins C., Alvito P., Almeida A., et al. Exposure Assessment to Mycotoxins in a Portuguese Fresh Bread Dough Company by Using a Multi-Biomarker Approach. Toxins. 2018;10:342. doi: 10.3390/toxins10090342. PubMed DOI PMC
De Boevre M., Di Mavungu J.D., Maene P., Audenaert K., Deforce D., Haesaert G., Eeckhout M., Callebaut A., Berthiller F., Van Peteghem C., et al. Development and validation of an LC-MS/MS method for the simultaneous determination of deoxynivalenol, zearalenone, T-2-toxin and some masked metabolites in different cereals and cereal-derived food. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2012;29:819–835. doi: 10.1080/19440049.2012.656707. PubMed DOI
Tolosa J., Rodríguez-Carrasco Y., Graziani G., Gaspari A., Ferrer E., Mañes J., Ritieni A. Mycotoxin Occurrence and Risk Assessment in Gluten-Free Pasta through UHPLC-Q-Exactive Orbitrap MS. Toxins. 2021;13:305. doi: 10.3390/toxins13050305. PubMed DOI PMC
López P., De Rijk T., Sprong R., Mengelers M., Castenmiller J., Alewijn M. A mycotoxin-dedicated total diet study in the Netherlands in 2013: Part II—Occurrence. World Mycotoxin J. 2016;9:89–108. doi: 10.3920/WMJ2015.1906. DOI
Pleadin J., Frece J., Lešić T., Zadravec M., Vahčić N., Staver M.M., Markov K. Deoxynivalenol and zearalenone in unprocessed cereals and soybean from different cultivation regions in Croatia. Food Addit. Contam. Part B Surveill. 2017;10:268–274. doi: 10.1080/19393210.2017.1345991. PubMed DOI
Torović L. Fusarium toxins in corn food products: A survey of the Serbian retail market. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2018;35:1596–1609. doi: 10.1080/19440049.2017.1419581. PubMed DOI
Warth B., Parich A., Atehnkeng J., Bandyopadhyay R., Schuhmacher R., Sulyok M., Krska R. Quantitation of Mycotoxins in Food and Feed from Burkina Faso and Mozambique Using a Modern LC-MS/MS Multitoxin Method. J. Agric. Food Chem. 2012;60:9352–9363. doi: 10.1021/jf302003n. PubMed DOI
Streit E., Schwab C., Sulyok M., Naehrer K., Krska R., Schatzmayr G. Multi-Mycotoxin Screening Reveals the Occurrence of 139 Different Secondary Metabolites in Feed and Feed Ingredients. Toxins. 2013;5:504–523. doi: 10.3390/toxins5030504. PubMed DOI PMC
Maggiore A., Afonso A., Barrucci F., De Sanctis G. Climate change as a driver of emerging risks for food and feed safety, plant, animal health and nutritional quality. EFSA Support. Publ. 2020;17:E1881. doi: 10.2903/sp.efsa.2020.en-1881. DOI
HBM4EU . Deliverable 4.9 Scoping Documents for 2021 for the First and Second Second Round HBM4EU Priority Substances. HBM4EU; Brussels, Belgium: 2019.
Luo X.Y., Li Y.W., Wen S.F., Hu X. Food poisoning caused by scabby wheat and the detection of Fusarium mycotoxins. J. Hyg. Res. 1987;16:33–37.
JECFA . Evaluation of Certain Contaminants in Food—Seventy-Second Report of the Joint FAO/WHO Expert Committee on Food Additives. WHO; Geneva, Switzerland: 2011. (WHO Technical Report Series 959).
JECFA . Safety Evaluation of Certain Contaminants in Food—Prepared by the Seventy-Second Report of the Joint FAO/WHO Expert Committee on Food Additives—Deoxynivalenol Addendum. WHO; Geneva, Switzerland: 2011. pp. 317–485. (WHO Food Additives Series 63).
EFSA. CONTAM. Knutsen H.K., Barregard L., Bignami M., Bruschweiler B., Ceccatelli S., Cottrill B., Dinovi M., Edler L., et al. Appropriateness to set a group health-based guidance value for fumonisins and their modified forms. EFSA J. 2018;16:e05172. PubMed PMC
Bondy G., Mehta R., Caldwell D., Coady L., Armstrong C., Savard M., Miller J.D., Chomyshyn E., Bronson R., Zitomer N., et al. Effects of long term exposure to the mycotoxin fumonisin B1 in p53 heterozygous and p53 homozygous transgenic mice. Food Chem. Toxicol. 2012;50:3604–3613. doi: 10.1016/j.fct.2012.07.024. PubMed DOI
Iverson F., Armstrong C., Nera E., Truelove J., Fernie S., Scott P., Stapley R., Hayward S., Gunner S. Chronic feeding study of deoxynivalenol in B6C3F1 male and female mice. Teratog Carcinog Mutagen. 1995;15:283–306. doi: 10.1002/tcm.1770150606. PubMed DOI
EFSA Cadmium in food Scientific Opinion of the Panel on Contaminants in the Food Chain. EFSA J. 2009;7:980. PubMed PMC
EFSA. CONTAM. Schrenk D., Bignami M., Bodin L., Chipman J.K., del Mazo J., Grasl-Kraupp B., Hogstrand C., Hoogenboom L., et al. Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA J. 2020;18:e06223. PubMed PMC
EFSA. CONTAM. Knutsen H.K., Alexander J., Barregard L., Bignami M., Brüschweiler B., Ceccatelli S., Cottrill B., Dinovi M., et al. Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food. EFSA J. 2018;16:e05333. PubMed PMC
Leist M., Ghallab A., Graepel R., Marchan R., Hassan R., Bennekou S.H., Limonciel A., Vinken M., Schildknecht S., Waldmann T., et al. Adverse outcome pathways: Opportunities, limitations and open questions. Arch. Toxicol. 2017;91:3477–3505. doi: 10.1007/s00204-017-2045-3. PubMed DOI
Vidal A., Claeys L., Mengelers M., Vanhoorne V., Vervaet C., Huybrechts B., De Saeger S., De Boevre M. Humans significantly metabolize and excrete the mycotoxin deoxynivalenol and its modified form deoxynivalenol-3-glucoside within 24 hours. Sci. Rep. 2018;8:5255. doi: 10.1038/s41598-018-23526-9. PubMed DOI PMC
Gratz S.W., Currie V., Richardson A.J., Duncan G., Holtrop G., Farquharson F., Louis P., Pinton P., Oswald I.P. Porcine Small and Large Intestinal Microbiota Rapidly Hydrolyze the Masked Mycotoxin Deoxynivalenol-3-Glucoside and Release Deoxynivalenol in Spiked Batch Cultures In Vitro. Appl. Environ. Microbiol. 2018;84:e02106-17. doi: 10.1128/AEM.02106-17. PubMed DOI PMC
Wu F., Bhatnagar D., Bui-Klimke T., Carbone I., Hellmich R., Munkvold G., Paul P., Payne G., Takle E. Climate change impacts on mycotoxin risks in US maize. World Mycotoxin J. 2011;4:79–93. doi: 10.3920/WMJ2010.1246. DOI
Halstensen A.S., Nordby K.-C., Eduard W., Klemsdal S.S. Real-time PCR detection of toxigenic Fusarium in airborne and settled grain dust and associations with trichothecene mycotoxins. J. Environ. Monit. 2006;8:1235–1241. doi: 10.1039/b609840a. PubMed DOI
Straumfors A., Uhlig S., Eriksen G.S., Heldal K., Eduard W., Krska R., Sulyok M. Mycotoxins and other fungal metabolites in grain dust from Norwegian grain elevators and compound feed mills. World Mycotoxin J. 2015;8:361–373. doi: 10.3920/WMJ2014.1799. DOI
Tangni E.K., Pussemier L. Ergosterol and mycotoxins in grain dusts from fourteen Belgian cereal storages: A preliminary screening survey. J. Sci. Food Agric. 2007;87:1263–1270. doi: 10.1002/jsfa.2838. DOI
Viegas C., Fleming G.T.A., Kadir A., Almeida B., Caetano L.A., Gomes A.Q., Twarużek M., Kosicki R., Viegas S., Coggins A.M., et al. Occupational Exposures to Organic Dust in Irish Bakeries and a Pizzeria Restaurant. Microorganisms. 2020;8:118. doi: 10.3390/microorganisms8010118. PubMed DOI PMC
Niculita-Hirzel H., Hantier G., Storti F., Plateel G., Roger T. Frequent Occupational Exposure to Fusarium Mycotoxins of Workers in the Swiss Grain Industry. Toxins. 2016;8:370. doi: 10.3390/toxins8120370. PubMed DOI PMC
Ndaw S., Remy A., Jargot D., Antoine G., Denis F., Robert A. Mycotoxins Exposure of French Grain Elevator Workers: Biomonitoring and Airborne Measurements. Toxins. 2021;13:382. doi: 10.3390/toxins13060382. PubMed DOI PMC
Ndaw S., Jargot D., Antoine G., Denis F., Melin S., Robert A. Investigating Multi-Mycotoxin Exposure in Occupational Settings: A Biomonitoring and Airborne Measurement Approach. Toxins. 2021;13:54. doi: 10.3390/toxins13010054. PubMed DOI PMC
Föllmann W., Ali N., Blaszkewicz M., Degen G.H. Biomonitoring of Mycotoxins in Urine: Pilot Study in Mill Workers. J. Toxicol. Environ. Health Part A. 2016;79:1015–1025. doi: 10.1080/15287394.2016.1219540. PubMed DOI
LaKind J.S., Sobus J.R., Goodman M., Barr D.B., Furst P., Albertini R.J., Arbuckle T.E., Schoeters G., Tan Y.M., Teeguarden J., et al. A proposal for assessing study quality: Biomonitoring, Environmental Epidemiology, and Short-lived Chemicals (BEES-C) instrument. Environ. Int. 2014;73:195–207. doi: 10.1016/j.envint.2014.07.011. PubMed DOI PMC
Riley R.T., Torres O., Showker J.L., Zitomer N.C., Matute J., Voss K.A., Waes J.G.-V., Maddox J.R., Gregory S.G., Ashley-Koch A.E. The kinetics of urinary fumonisin B1 excretion in humans consuming maize-based diets. Mol. Nutr. Food Res. 2012;56:1445–1455. doi: 10.1002/mnfr.201200166. PubMed DOI PMC
De Santis B., Raggi M.E., Moretti G., Facchiano F., Mezzelani A., Villa L., Bonfanti A., Campioni A., Rossi S., Camposeo S., et al. Study on the Association among Mycotoxins and other Variables in Children with Autism. Toxins. 2017;9:203. doi: 10.3390/toxins9070203. PubMed DOI PMC
Persson E.C., Sewram V., Evans A.A., London W.T., Volkwyn Y., Shen Y.-J., Van Zyl J.A., Chen G., Lin W., Shephard G.S., et al. Fumonisin B1 and risk of hepatocellular carcinoma in two Chinese cohorts. Food Chem. Toxicol. 2012;50:679–683. doi: 10.1016/j.fct.2011.11.029. PubMed DOI PMC
Howard P.C., Eppley R.M., Stack M.E., Warbritton A., Voss K.A., Lorentzen R.J., Kovach R.M., Bucci T.J. Fumonisin b1 carcinogenicity in a two-year feeding study using F344 rats and B6C3F1 mice. Environ. Health Perspect. 2001;109((Suppl. 2)):277–282. doi: 10.1289/ehp.01109s2277. PubMed DOI PMC
Gelderblom W., Marasas W., Lebepe-Mazur S., Swanevelder S., Abel S. Cancer initiating properties of fumonisin B1 in a short-term rat liver carcinogenesis assay. Toxicology. 2008;250:89–95. doi: 10.1016/j.tox.2008.06.004. PubMed DOI
EPHPP, Project EPHP . Quality Assessment Tool for Quantitative Studies. Effective Public Health Practice Project; Amilton, ON, Canada: 1998.
Claeys L., Romano C., De Ruyck K., Wilson H., Fervers B., Korenjak M., Zavadil J., Gunter M.J., De Saeger S., De Boevre M., et al. Mycotoxin exposure and human cancer risk: A systematic review of epidemiological studies. Compr. Rev. Food Sci. Food Saf. 2020;19:1449–1464. doi: 10.1111/1541-4337.12567. PubMed DOI
Missmer S.A., Suarez L., Felkner M., Wang E., Merrill A.H., Jr., Rothman K.J., Hendricks K.A. Exposure to Fumonisins and the Occurrence of Neural Tube Defects along the Texas–Mexico Border. Environ. Health Perspect. 2006;114:237–241. doi: 10.1289/ehp.8221. PubMed DOI PMC
Gelineau-van Waes J., Voss K.A., Stevens V.L., Speer M.C., Riley R.T. Chapter 5 Maternal Fumonisin Exposure as a Risk Factor for Neural Tube Defects. Adv. Food Nutr. Res. 2019;56:145–181. PubMed
A Venter P., Christianson A.L., Hutamo C.M., Makhura M.P., Gericke G.S. Congenital anomalies in rural black South African neonates—A silent epidemic? S. Afr. Med. J. 1995;85:15–20. PubMed
Moore C.A., Li S., Li Z., Hong S.X., Gu H.Q., Berry R.J., Mulinare J., Erickson J.D. Elevated rates of severe neural tube defects in a high-prevalence area in northern China. Am. J. Med. Genet. 1997;73:113–118. doi: 10.1002/(SICI)1096-8628(19971212)73:2<113::AID-AJMG2>3.0.CO;2-V. PubMed DOI
Lian Z.H., Yang H.Y., Li Z. Neural tube defects in Beijing-Tianjin area of China. Urban-rural distribution and some other epidemiological characteristics. J. Epidemiol. Community Health. 1987;41:259–262. doi: 10.1136/jech.41.3.259. PubMed DOI PMC
Ncayiyana D.J. Neural tube defects among rural blacks in a Transkei district—A preliminary report and analysis. S. Afr. Med. J. 1986;69:618–620. PubMed
Flynn T.J., Stack M.E., Troy A.L., Chirtel S.J. Assessment of the embryotoxic potential of total hydrolysis product of Fumonisin B1 using cultured organegenesis-staged rat embyros. Food Chem. Toxicol. 1997;35:1135–1141. doi: 10.1016/S0278-6915(97)85466-X. PubMed DOI
Gelineau-van Waes J., Rainey M.A., Maddox J.R., Voss K.A., Sachs A.J., Gardner N.M., Wilberding J.D., Riley R.T. Increased sphingoid base-1-phosphates and failure of neural tube closure after exposure to fumonisin or FTY720. Birth Defects Res. Part A Clin. Mol. Teratol. 2012;94:790–803. doi: 10.1002/bdra.23074. PubMed DOI
Gelineau-van Waes J., Starr L., Maddox J., Aleman F., Voss K.A., Wilberding J., Riley R.T. Maternal fumonisin exposure and risk for neural tube defects: Mechanisms in an in vivo mouse model. Birth Defects Res. Part A Clin. Mol. Teratol. 2005;73:487–497. doi: 10.1002/bdra.20148. PubMed DOI
Voss K.A., Riley R.T., Gelineau-van Waes J.G.-V. Fumonisin B1 induced neural tube defects were not increased in LM/Bc mice fed folate-deficient diet. Mol. Nutr. Food Res. 2014;58:1190–1198. doi: 10.1002/mnfr.201300720. PubMed DOI
Voss K., Riley R., Gelineau-van Waes J.G.-V. Fetotoxicity and neural tube defects in CD1 mice exposed to the mycotoxin fumonisin. BJSM Mycotoxins. 2006;2006:67–72. doi: 10.2520/myco1975.2006.Suppl4_67. DOI
Voss K.A., Riley R.T., Snook M.E., Waes J.G.-V. Reproductive and Sphingolipid Metabolic Effects of Fumonisin B1 and its Alkaline Hydrolysis Product in LM/Bc Mice: Hydrolyzed Fumonisin B1 Did Not Cause Neural Tube Defects. Toxicol. Sci. 2009;112:459–467. doi: 10.1093/toxsci/kfp215. PubMed DOI
Liao Y.J., Yang J.R., Chen S.E., Wu S.J., Huang S.Y., Lin J.J., Chen L.R., Tang P.C. Inhibition of fumonisin B1 cytotoxicity by nanosilicate platelets during mouse embryo development. PLoS ONE. 2014;9:e112290. doi: 10.1371/journal.pone.0112290. PubMed DOI PMC
Sadler T., Merrill A.H., Stevens V.L., Sullards M.C., Wang E., Wang P. Prevention of fumonisin B1-induced neural tube defects by folic acid. Teratology. 2002;66:169–176. doi: 10.1002/tera.10089. PubMed DOI
Bryła M., Waśkiewicz A., Ksieniewicz-Woźniak E., Szymczyk K., Ędrzejczak R.J. Modified Fusarium Mycotoxins in Cereals and Their Products—Metabolism, Occurrence, and Toxicity: An Updated Review. Molecules. 2018;23:963. doi: 10.3390/molecules23040963. PubMed DOI PMC
Chen L., Peng Z., Nüssler A.K., Liu L., Yang W. Current and prospective sights in mechanism of deoxynivalenol-induced emesis for future scientific study and clinical treatment. J. Appl. Toxicol. 2017;37:784–791. doi: 10.1002/jat.3433. PubMed DOI
Payros D., Alassane-Kpembi I., Pierron A., Loiseau N., Pinton P., Oswald I.P. Toxicology of deoxynivalenol and its acetylated and modified forms. Arch. Toxicol. 2016;90:2931–2957. doi: 10.1007/s00204-016-1826-4. PubMed DOI
Terciolo C., Maresca M., Pinton P., Oswald I.P. Review article: Role of satiety hormones in anorexia induction by Trichothecene mycotoxins. Food Chem. Toxicol. 2018;121:701–714. doi: 10.1016/j.fct.2018.09.034. PubMed DOI
Wu Q., Wang X., Nepovimova E., Wang Y., Yang H., Li L., Zhang X., Kuca K. Antioxidant agents against trichothecenes: New hints for oxidative stress treatment. Oncotarget. 2017;8:110708–110726. doi: 10.18632/oncotarget.22800. PubMed DOI PMC
Chlebicz A., Śliżewska K. In Vitro Detoxification of Aflatoxin B1, Deoxynivalenol, Fumonisins, T-2 Toxin and Zearalenone by Probiotic Bacteria from Genus Lactobacillus and Saccharomyces cerevisiae Yeast. Probiotics Antimicrob. Proteins. 2020;12:289–301. doi: 10.1007/s12602-018-9512-x. PubMed DOI PMC
Heusinkveld H.J., Staal Y.C.M., Baker N.C., Daston G., Knudsen T.B., Piersma A. An ontology for developmental processes and toxicities of neural tube closure. Reprod. Toxicol. 2021;99:160–167. doi: 10.1016/j.reprotox.2020.09.002. PubMed DOI PMC
Copp A.J., Greene N. Genetics and development of neural tube defects. J. Pathol. 2009;220:217–230. doi: 10.1002/path.2643. PubMed DOI PMC
Greene N.D., Copp A.J. Neural tube defects. Annu. Rev. Neurosci. 2014;37:221–242. doi: 10.1146/annurev-neuro-062012-170354. PubMed DOI PMC
Blom H.J., Shaw G.M., den Heijer M.D., Finnell R.H. Neural tube defects and folate: Case far from closed. Nat. Rev. Neurosci. 2006;7:724–731. doi: 10.1038/nrn1986. PubMed DOI PMC
Murko C., Lagger S., Steiner M., Seiser C., Schoefer C., Pusch O. Histone deacetylase inhibitor Trichostatin A induces neural tube defects and promotes neural crest specification in the chicken neural tube. Differentiation. 2013;85:55–66. doi: 10.1016/j.diff.2012.12.001. PubMed DOI
Voss K.A., Riley R.T., Moore N.D., Burns T.D. Alkaline cooking (nixtamalisation) and the reduction in the in vivo toxicity of fumonisin-contaminated corn in a rat feeding bioassay. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2013;30:1415–1421. doi: 10.1080/19440049.2012.712064. PubMed DOI
Sassa T., Hirayama T., Kihara A. Enzyme Activities of the Ceramide Synthases CERS2–6 Are Regulated by Phosphorylation in the C-terminal Region. J. Biol. Chem. 2016;291:7477–7487. doi: 10.1074/jbc.M115.695858. PubMed DOI PMC
Riley R.T., Enongene E., Voss K.A., Norred W.P., Meredith F.I., Sharma R.P., Spitsbergen J., Williams D.E., Carlson D.B., Merrill A.H., Jr. Sphingolipid perturbations as mechanisms for fumonisin carcinogenesis. Environ. Health Perspect. 2001;109((Suppl. 2)):301–308. PubMed PMC
Merrill A.H., Jr., Sullards M.C., Wang E., Voss K.A., Riley R.T. Sphingolipid Metabolism: Roles in Signal Transduction and Disruption by Fumonisins. Environ. Health Perspect. 2001;109:283. doi: 10.2307/3435020. PubMed DOI PMC
Turner N., Lim X.Y., Toop H.D., Osborne B., Brandon A.E., Taylor E.N., Fiveash C.E., Govindaraju H., Teo J.D., McEwen H.P., et al. A selective inhibitor of ceramide synthase 1 reveals a novel role in fat metabolism. Nat. Commun. 2018;9:3165. doi: 10.1038/s41467-018-05613-7. PubMed DOI PMC
Wang E., Norred W.P., Bacon C.W., Riley R.T., Merrill A.H., Jr. Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with Fusarium moniliforme. J. Biol. Chem. 1991;266:14486–14490. doi: 10.1016/S0021-9258(18)98712-0. PubMed DOI
Riley R.T., Merrill A.H., Jr. Ceramide synthase inhibition by fumonisins: A perfect storm of perturbed sphingolipid metabolism, signaling, and disease. J. Lipid Res. 2019;60:1183–1189. doi: 10.1194/jlr.S093815. PubMed DOI PMC
Wangia R.N., Githanga D.P., Xue K.S., Tang L., Anzala O.A., Wang J.-S. Validation of urinary sphingolipid metabolites as biomarker of effect for fumonisins exposure in Kenyan children. Biomarkers. 2019;24:379–388. doi: 10.1080/1354750X.2019.1587510. PubMed DOI
Riley R.T., Torres O., Matute J., Gregory S.G., Ashley-Koch A.E., Showker J.L., Mitchell T.R., Voss K.A., Maddox J.R., Waes J.B.G.-V. Evidence for fumonisin inhibition of ceramide synthase in humans consuming maize-based foods and living in high exposure communities in Guatemala. Mol. Nutr. Food Res. 2015;59:2209–2224. doi: 10.1002/mnfr.201500499. PubMed DOI PMC
Czeizel A.E., Dudás I., Vereczkey A., Bánhidy F. Folate Deficiency and Folic Acid Supplementation: The Prevention of Neural-Tube Defects and Congenital Heart Defects. Nutrients. 2013;5:4760–4775. doi: 10.3390/nu5114760. PubMed DOI PMC
Sato K. Why is folate effective in preventing neural tube closure defects? Med. Hypotheses. 2019;134:109429. doi: 10.1016/j.mehy.2019.109429. PubMed DOI
Stevens V.L., Tang L. Fumonisin B1-induced sphingolipid depletion inhibits vitamin uptake via the glycosylphosphatidylinositol-anchored folate receptor. J. Biol. Chem. 1997;272:18020–18025. doi: 10.1074/jbc.272.29.18020. PubMed DOI
Chatterjee S., Smith E.R., Hanada K., Stevens V.L., Mayor S. GPI anchoring leads to sphingolipid-dependent retention of endocytosed proteins in the recycling endosomal compartment. EMBO J. 2001;20:1583–1592. doi: 10.1093/emboj/20.7.1583. PubMed DOI PMC
Marasas W.F.O., Riley R.T., Hendricks K.A., Stevens V.L., Sadler T.W., Gelineau-van Waes J., Missmer S.A., Cabrera J., Torres O., Gelderblom W.C.A., et al. Fumonisins Disrupt Sphingolipid Metabolism, Folate Transport, and Neural Tube Development in Embryo Culture and In Vivo: A Potential Risk Factor for Human Neural Tube Defects among Populations Consuming Fumonisin-Contaminated Maize. J. Nutr. 2004;134:711–716. doi: 10.1093/jn/134.4.711. PubMed DOI
Mullen T.D., Hannun Y.A., Obeid L.M. Ceramide synthases at the centre of sphingolipid metabolism and biology. Biochem. J. 2012;441:789–802. doi: 10.1042/BJ20111626. PubMed DOI PMC
Futerman A.H., Hannun Y.A. The complex life of simple sphingolipids. EMBO Rep. 2004;5:777–782. doi: 10.1038/sj.embor.7400208. PubMed DOI PMC
Naslavsky N., Shmeeda H., Friedlander G., Yanai A., Futerman A.H., Barenholz Y., Taraboulos A. Sphingolipid Depletion Increases Formation of the Scrapie Prion Protein in Neuroblastoma Cells Infected with Prions. J. Biol. Chem. 1999;274:20763–20771. doi: 10.1074/jbc.274.30.20763. PubMed DOI
Yoo H.-S., Norred W.P., Showker J., Riley R.T. Elevated Sphingoid Bases and Complex Sphingolipid Depletion as Contributing Factors in Fumonisin-Induced Cytotoxicity. Toxicol. Appl. Pharmacol. 1996;138:211–218. doi: 10.1006/taap.1996.0119. PubMed DOI
Mitsuda T., Furukawa K., Fukumoto S., Miyazaki H., Urano T., Furukawa K. Overexpression of Ganglioside GM1 Results in the Dispersion of Platelet-derived Growth Factor Receptor from Glycolipid-enriched Microdomains and in the Suppression of Cell Growth Signals. J. Biol. Chem. 2002;277:11239–11246. doi: 10.1074/jbc.M107756200. PubMed DOI
Puff N., Watanabe C., Seigneuret M., Angelova M.I., Staneva G. Lo/Ld phase coexistence modulation induced by GM1. Biochim. Biophys. Acta Biomembr. 2014;1838:2105–2114. doi: 10.1016/j.bbamem.2014.05.002. PubMed DOI
Mayor S., Sabharanjak S., Maxfield F.R. Cholesterol-dependent retention of GPI-anchored proteins in endosomes. EMBO J. 1998;17:4626–4638. doi: 10.1093/emboj/17.16.4626. PubMed DOI PMC
Refaei M., Leventis R., Silvius J.R. Assessment of the Roles of Ordered Lipid Microdomains in Post-Endocytic Trafficking of Glycosyl-Phosphatidylinositol-Anchored Proteins in Mammalian Fibroblasts. Traffic. 2011;12:1012–1024. doi: 10.1111/j.1600-0854.2011.01206.x. PubMed DOI
Sharom F.J., Lehto M.T. Glycosylphosphatidylinositol-anchored proteins: Structure, function, and cleavage by phosphatidylinositol-specific phospholipase C. Biochem. Cell Biol. 2002;80:535–549. doi: 10.1139/o02-146. PubMed DOI
Menegola E., Di Renzo F., Broccia M.L., Prudenziati M., Minucci S., Massa V., Giavini E. Inhibition of histone deacetylase activity on specific embryonic tissues as a new mechanism for teratogenicity. Birth Defects Res. Part B Dev. Reprod. Toxicol. 2005;74:392–398. doi: 10.1002/bdrb.20053. PubMed DOI
AOPwiki Histone Deacetylase Inhibition Leads to Neural Tube Defects 2021. [(accessed on 1 January 2022)]. Available online: https://aopwiki.org/aops/275.
Gardner N.M., Riley R.T., Showker J.L., Voss K.A., Sachs A.J., Maddox J.R., Waes J.B.G.-V. Elevated nuclear sphingoid base-1-phosphates and decreased histone deacetylase activity after fumonisin B1 treatment in mouse embryonic fibroblasts. Toxicol. Appl. Pharmacol. 2016;298:56–65. doi: 10.1016/j.taap.2016.02.018. PubMed DOI
Hait N.C., Allegood J., Maceyka M., Strub G.M., Harikumar K.B., Singh S.K., Luo C., Marmorstein R., Kordula T., Milstien S., et al. Regulation of Histone Acetylation in the Nucleus by Sphingosine-1-Phosphate. Science. 2009;325:1254–1257. doi: 10.1126/science.1176709. PubMed DOI PMC
Riccio A. New Endogenous Regulators of Class I Histone Deacetylases. Sci. Signal. 2010;3:pe1. doi: 10.1126/scisignal.3103pe1. PubMed DOI
Blaho V.A., Hla T. An update on the biology of sphingosine 1-phosphate receptors. J. Lipid Res. 2014;55:1596–1608. doi: 10.1194/jlr.R046300. PubMed DOI PMC
Igarashi N., Okada T., Hayashi S., Fujita T., Jahangeer S., Nakamura S.-I. Sphingosine Kinase 2 Is a Nuclear Protein and Inhibits DNA Synthesis. J. Biol. Chem. 2003;278:46832–46839. doi: 10.1074/jbc.M306577200. PubMed DOI
Mizugishi K., Yamashita T., Olivera A., Miller G.F., Spiegel S., Proia R.L. Essential Role for Sphingosine Kinases in Neural and Vascular Development. Mol. Cell. Biol. 2005;25:11113–11121. doi: 10.1128/MCB.25.24.11113-11121.2005. PubMed DOI PMC
Mengelers M., Zeilmaker M., Vidal A., De Boevre M., De Saeger S., Hoogenveen R. Biomonitoring of Deoxynivalenol and Deoxynivalenol-3-glucoside in Human Volunteers: Renal Excretion Profiles. Toxins. 2019;11:466. doi: 10.3390/toxins11080466. PubMed DOI PMC
van den Brand A.D., Hoogenveen R., Mengelers M.J.B., Zeilmaker M., Eriksen G.S., Uhlig S., Brantsæter A.L., Dirven H.A., Husøy T. Modelling the Renal Excretion of the Mycotoxin Deoxynivalenol in Humans in an Everyday Situation. Toxins. 2021;13:675. doi: 10.3390/toxins13100675. PubMed DOI PMC
Shephard G.S., Thiel P.G., Sydenham E.W., Alberts J.F. Biliary excretion of the mycotoxin fumonisin B1 in rats. Food Chem. Toxicol. 1994;32:489–491. doi: 10.1016/0278-6915(94)90047-7. PubMed DOI
Prelusky D.B., Trenholm H.L., Savard M.E. Pharmacokinetic fate of 14C-Labelled fumonisin B1 in Swine. Nat. Toxins. 1994;2:73–80. doi: 10.1002/nt.2620020205. PubMed DOI
Wild C.P., Gong Y.Y. Mycotoxins and human disease: A largely ignored global health issue. Carcinogenesis. 2010;31:71–82. doi: 10.1093/carcin/bgp264. PubMed DOI PMC
Li M., Sun M., Hong X., Duan J., Du D. Survey of Deoxynivalenol Contamination in Agricultural Products in the Chinese Market Using An ELISA Kit. Toxins. 2018;11:6. doi: 10.3390/toxins11010006. PubMed DOI PMC
Tantaoui-Elaraki A., Riba A., Oueslati S., Zinedine A. Toxigenic fungi and mycotoxin occurrence and prevention in food and feed in northern Africa—A review. World Mycotoxin J. 2018;11:385–400. doi: 10.3920/WMJ2017.2290. DOI
HBM4EU . ICI Report 2nd Round Substances—Mycotoxins/Round_01/2020—Deoxynivalenol Biomarkers in Urine. HBM4EU; Brussels, Belgium: 2020.
Turner P.C., White K.L., Burley V.J., Hopton R.P., Rajendram A., Fisher J., Cade J.E., Wild C.P. A comparison of deoxynivalenol intake and urinary deoxynivalenol in UK adults. Biomarkers. 2010;15:553–562. doi: 10.3109/1354750X.2010.495787. PubMed DOI
HBM4EU . D14.5—Selection Criteria and Inventory of Effect Biomarkers for the 2nd Set of Substances. HBM4EU; Brussels, Belgium: 2020.
Al-Jaal B.A., Jaganjac M., Barcaru A., Horvatovich P., Latiff A. Aflatoxin, fumonisin, ochratoxin, zearalenone and deoxynivalenol biomarkers in human biological fluids: A systematic literature review, 2001–2008. Food Chem. Toxicol. 2019;129:211–228. doi: 10.1016/j.fct.2019.04.047. PubMed DOI
Shephard G.S., Van Der Westhuizen L., Sewram V. Biomarkers of exposure to fumonisin mycotoxins: A review. Food Addit. Contam. 2007;24:1196–1201. doi: 10.1080/02652030701513818. PubMed DOI
Voss K.A., Bacon C.W., Norred W.P., Chapin R.E., Chamberlain W.J., Plattner R.D., Meredith F.I. Studies on the reproductive effects of Fusarium moniliforme culture material in rats and the biodistribution of [14C] fumonisin B1 in pregnant rats. Nat. Toxins. 1996;4:24–33. doi: 10.1002/19960401NT4. PubMed DOI
Cortinovis C., Pizzo F., Spicer L., Caloni F. Fusarium mycotoxins: Effects on reproductive function in domestic animals—A review. Theriogenology. 2013;80:557–564. doi: 10.1016/j.theriogenology.2013.06.018. PubMed DOI
Voss K.A., Riley R.T., Norred W.P., Bacon C.W., Meredith F.I., Howard P.C., Plattner R.D., Collins T.F., Hansen D.K., Porter J.K. An overview of rodent toxicities: Liver and kidney effects of fumonisins and Fusarium moniliforme. Environ. Health Perspect. 2001;109((Suppl. 2)):259–266. PubMed PMC
Lumsangkul C., Chiang H.-I., Lo N.-W., Fan Y.-K., Ju J.-C. Developmental Toxicity of Mycotoxin Fumonisin B1 in Animal Embryogenesis: An Overview. Toxins. 2019;11:114. doi: 10.3390/toxins11020114. PubMed DOI PMC
Del Gaudio I., Sasset L., Lorenzo A.D., Wadsack C. Sphingolipid Signature of Human Feto-Placental Vasculature in Preeclampsia. Int. J. Mol. Sci. 2020;21:1019. doi: 10.3390/ijms21031019. PubMed DOI PMC
Padmanabhan R. Etiology, pathogenesis and prevention of neural tube defects. Congenit. Anom. 2006;46:55–67. doi: 10.1111/j.1741-4520.2006.00104.x. PubMed DOI
Babenko N.A., Kharchenko V.S. Effects of inhibitors of key enzymes of sphingolipid metabolism on insulin-induced glucose uptake and glycogen synthesis in liver cells of old rats. Biochemistry. 2015;80:104–112. doi: 10.1134/S0006297915010125. PubMed DOI
Scarlatti F., Bauvy C., Ventruti A., Sala G., Cluzeaud F., Vandewalle A., Ghidoni R., Codogno P. Ceramide-mediated Macroautophagy Involves Inhibition of Protein Kinase B and Up-regulation of Beclin 1. J. Biol. Chem. 2004;279:18384–18391. doi: 10.1074/jbc.M313561200. PubMed DOI
Ross M.M., Piorczynski T.B., Harvey J., Burnham T.S., Francis M., Larsen M.W., Roe K., Hansen J.M., Stark M.R. Ceramide: A novel inducer for neural tube defects. Dev. Dyn. 2019;248:979–996. doi: 10.1002/dvdy.93. PubMed DOI
Kong J.-N., Zhu Z., Itokazu Y., Wang G., Dinkins M.B., Zhong L., Lin H.-P., Elsherbini A., Leanhart S., Jiang X., et al. Novel function of ceramide for regulation of mitochondrial ATP release in astrocytes. J. Lipid Res. 2018;59:488–506. doi: 10.1194/jlr.M081877. PubMed DOI PMC
Shulpekova Y., Nechaev V., Kardasheva S., Sedova A., Kurbatova A., Bueverova E., Kopylov A., Malsagova K., Dlamini J., Ivashkin V. The Concept of Folic Acid in Health and Disease. Molecules. 2021;26:3731. doi: 10.3390/molecules26123731. PubMed DOI PMC
Mollinedo F., Gajate C. Lipid rafts as signaling hubs in cancer cell survival/death and invasion: Implications in tumor progression and therapy: Thematic review series: Biology of lipid rafts. J. Lipid Res. 2020;61:611–635. doi: 10.1194/jlr.TR119000439. PubMed DOI PMC
D’Aprile C., Prioni S., Mauri L., Prinetti A., Grassi S. Lipid rafts as platforms for sphingosine 1-phosphate metabolism and signalling. Cell. Signal. 2021;80:109929. doi: 10.1016/j.cellsig.2021.109929. PubMed DOI
Renwick J.H., Claringbold W.D.B., Earthy M.E., Few J.D., Carolines A., McLean S. Neural-tube defects produced in Syrian hamsters by potato glycoalkaloids. Teratology. 1984;30:371–381. doi: 10.1002/tera.1420300309. PubMed DOI
Ni W., Tian T., Zhang L., Li Z., Wang L., Ren A. Maternal periconceptional consumption of sprouted potato and risks of neural tube defects and orofacial clefts. Nutr. J. 2018;17:112. doi: 10.1186/s12937-018-0420-4. PubMed DOI PMC
Mandimika T., Baykus H., Poortman J., Garza C., Kuiper H., Peijnenburg A. Induction of the cholesterol biosynthesis pathway in differentiated Caco-2 cells by the potato glycoalkaloid alpha-chaconine. Food Chem. Toxicol. 2007;45:1918–1927. doi: 10.1016/j.fct.2007.04.009. PubMed DOI
Meena M., Samal S. Alternaria host-specific (HSTs) toxins: An overview of chemical characterization, target sites, regulation and their toxic effects. Toxicol. Rep. 2019;6:745–758. doi: 10.1016/j.toxrep.2019.06.021. PubMed DOI PMC
Topi D., Tavčar-Kalcher G., Pavšič-Vrtač K., Babič J., Jakovac-Strajn B. Alternaria mycotoxins in grains from Albania: Alternariol, alternariol monomethyl ether, tenuazonic acid and tentoxin. World Mycotoxin J. 2019;12:89–99. doi: 10.3920/WMJ2018.2342. DOI
Gruber-Dorninger C., Jenkins T., Schatzmayr G. Multi-mycotoxin screening of feed and feed raw materials from Africa. World Mycotoxin J. 2018;11:369–383. doi: 10.3920/WMJ2017.2292. DOI
HBM4EU . HBM4EU ICI Report Mycotoxins (DON) in Urine Round 3. HBM4EU; Brussels, Belgium: 2020.
Zare Jeddi M., Boon P.E., Cubadda F., Hoogenboom L.R., Mol H., Verhagen H., Sijm D.T. A vision on the ‘foodture’ role of dietary exposure sciences in the interplay between food safety and nutrition. Trends Food Sci. Technol. 2022;120:288–300. doi: 10.1016/j.tifs.2022.01.024. DOI
Sewram V., Mshicileli N., Shephard G.S., Marasas W.F.O. Fumonisin mycotoxins in human hair. Biomarkers. 2003;8:110–118. doi: 10.1080/1354750031000081002. PubMed DOI
Sewram V., Nair J.J., Nieuwoudt T.W., Gelderblom W.C.A., Marasas W.F.O., Shephard G.S. Assessing chronic exposure to fumonisin mycotoxins: The use of hair as a suitable noninvasive matrix. J. Anal. Toxicol. 2001;25:450–455. doi: 10.1093/jat/25.6.450. PubMed DOI