Providing Biological Plausibility for Exposure-Health Relationships for the Mycotoxins Deoxynivalenol (DON) and Fumonisin B1 (FB1) in Humans Using the AOP Framework

. 2022 Apr 13 ; 14 (4) : . [epub] 20220413

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35448888

Humans are chronically exposed to the mycotoxins deoxynivalenol (DON) and fumonisin B1 (FB1), as indicated by their widespread presence in foods and occasional exposure in the workplace. This exposure is confirmed by human biomonitoring (HBM) studies on (metabolites of) these mycotoxins in human matrices. We evaluated the exposure-health relationship of the mycotoxins in humans by reviewing the available literature. Since human studies did not allow the identification of unequivocal chronic health effects upon exposure to DON and FB1, the adverse outcome pathway (AOP) framework was used to structure additional mechanistic evidence from in vitro and animal studies on the identified adverse effects. In addition to a preliminary AOP for DON resulting in the adverse outcome (AO) 'reduced body weight gain', we developed a more elaborated AOP for FB1, from the molecular initiating event (MIE) 'inhibition of ceramide synthases' leading to the AO 'neural tube defects'. The mechanistic evidence from AOPs can be used to support the limited evidence from human studies, to focus FB1- and DON-related research in humans to identify related early biomarkers of effect. In order to establish additional human exposure-health relationships in the future, recommendations are given to maximize the information that can be obtained from HBM.

Zobrazit více v PubMed

CAST . Mycotoxins: Risks in Plant, Animal and Human Systems. Council for Agricultural Science and Technology; Ames, IA, USA: 2003.

Bernhoft A., Eriksen G.S., Sundheim L., Berntssen M., Brantsæter A.L., Brodal G., Tronsmo A.M. Risk Assessment of Mycotoxins in Cereal Grain in Norway. Opinion of the Scientific Steering Committee of the Norwegian Scientific Committee for Food Safety. Volume 21. VKM; Oslo, Norway: 2013. pp. 1–287. VKM Report.

EFSA Scientific Opinion on the risks for human and animal health related to the presence of modified forms of certain mycotoxins in food and feed. EFSA J. 2014;12:3916.

EFSA. CONTAM. Knutsen H.K., Alexander J., Barregard L., Bignami M., Brüschweiler B., Ceccatelli S., Cottrill B., Dinovi M., et al. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J. 2017;15:e04718. PubMed PMC

Viegas S., Assunção R., Martins C., Nunes C., Osteresch B., Twarużek M., Kosicki R., Grajewski J., Ribeiro E., Viegas C. Occupational Exposure to Mycotoxins in Swine Production: Environmental and Biological Monitoring Approaches. Toxins. 2019;11:78. doi: 10.3390/toxins11020078. PubMed DOI PMC

Viegas S., Assunção R., Nunes C., Osteresch B., Twarużek M., Kosicki R., Grajewski J., Martins C., Alvito P., Almeida A., et al. Exposure Assessment to Mycotoxins in a Portuguese Fresh Bread Dough Company by Using a Multi-Biomarker Approach. Toxins. 2018;10:342. doi: 10.3390/toxins10090342. PubMed DOI PMC

De Boevre M., Di Mavungu J.D., Maene P., Audenaert K., Deforce D., Haesaert G., Eeckhout M., Callebaut A., Berthiller F., Van Peteghem C., et al. Development and validation of an LC-MS/MS method for the simultaneous determination of deoxynivalenol, zearalenone, T-2-toxin and some masked metabolites in different cereals and cereal-derived food. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2012;29:819–835. doi: 10.1080/19440049.2012.656707. PubMed DOI

Tolosa J., Rodríguez-Carrasco Y., Graziani G., Gaspari A., Ferrer E., Mañes J., Ritieni A. Mycotoxin Occurrence and Risk Assessment in Gluten-Free Pasta through UHPLC-Q-Exactive Orbitrap MS. Toxins. 2021;13:305. doi: 10.3390/toxins13050305. PubMed DOI PMC

López P., De Rijk T., Sprong R., Mengelers M., Castenmiller J., Alewijn M. A mycotoxin-dedicated total diet study in the Netherlands in 2013: Part II—Occurrence. World Mycotoxin J. 2016;9:89–108. doi: 10.3920/WMJ2015.1906. DOI

Pleadin J., Frece J., Lešić T., Zadravec M., Vahčić N., Staver M.M., Markov K. Deoxynivalenol and zearalenone in unprocessed cereals and soybean from different cultivation regions in Croatia. Food Addit. Contam. Part B Surveill. 2017;10:268–274. doi: 10.1080/19393210.2017.1345991. PubMed DOI

Torović L. Fusarium toxins in corn food products: A survey of the Serbian retail market. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2018;35:1596–1609. doi: 10.1080/19440049.2017.1419581. PubMed DOI

Warth B., Parich A., Atehnkeng J., Bandyopadhyay R., Schuhmacher R., Sulyok M., Krska R. Quantitation of Mycotoxins in Food and Feed from Burkina Faso and Mozambique Using a Modern LC-MS/MS Multitoxin Method. J. Agric. Food Chem. 2012;60:9352–9363. doi: 10.1021/jf302003n. PubMed DOI

Streit E., Schwab C., Sulyok M., Naehrer K., Krska R., Schatzmayr G. Multi-Mycotoxin Screening Reveals the Occurrence of 139 Different Secondary Metabolites in Feed and Feed Ingredients. Toxins. 2013;5:504–523. doi: 10.3390/toxins5030504. PubMed DOI PMC

Maggiore A., Afonso A., Barrucci F., De Sanctis G. Climate change as a driver of emerging risks for food and feed safety, plant, animal health and nutritional quality. EFSA Support. Publ. 2020;17:E1881. doi: 10.2903/sp.efsa.2020.en-1881. DOI

HBM4EU . Deliverable 4.9 Scoping Documents for 2021 for the First and Second Second Round HBM4EU Priority Substances. HBM4EU; Brussels, Belgium: 2019.

Luo X.Y., Li Y.W., Wen S.F., Hu X. Food poisoning caused by scabby wheat and the detection of Fusarium mycotoxins. J. Hyg. Res. 1987;16:33–37.

JECFA . Evaluation of Certain Contaminants in Food—Seventy-Second Report of the Joint FAO/WHO Expert Committee on Food Additives. WHO; Geneva, Switzerland: 2011. (WHO Technical Report Series 959).

JECFA . Safety Evaluation of Certain Contaminants in Food—Prepared by the Seventy-Second Report of the Joint FAO/WHO Expert Committee on Food Additives—Deoxynivalenol Addendum. WHO; Geneva, Switzerland: 2011. pp. 317–485. (WHO Food Additives Series 63).

EFSA. CONTAM. Knutsen H.K., Barregard L., Bignami M., Bruschweiler B., Ceccatelli S., Cottrill B., Dinovi M., Edler L., et al. Appropriateness to set a group health-based guidance value for fumonisins and their modified forms. EFSA J. 2018;16:e05172. PubMed PMC

Bondy G., Mehta R., Caldwell D., Coady L., Armstrong C., Savard M., Miller J.D., Chomyshyn E., Bronson R., Zitomer N., et al. Effects of long term exposure to the mycotoxin fumonisin B1 in p53 heterozygous and p53 homozygous transgenic mice. Food Chem. Toxicol. 2012;50:3604–3613. doi: 10.1016/j.fct.2012.07.024. PubMed DOI

Iverson F., Armstrong C., Nera E., Truelove J., Fernie S., Scott P., Stapley R., Hayward S., Gunner S. Chronic feeding study of deoxynivalenol in B6C3F1 male and female mice. Teratog Carcinog Mutagen. 1995;15:283–306. doi: 10.1002/tcm.1770150606. PubMed DOI

EFSA Cadmium in food Scientific Opinion of the Panel on Contaminants in the Food Chain. EFSA J. 2009;7:980. PubMed PMC

EFSA. CONTAM. Schrenk D., Bignami M., Bodin L., Chipman J.K., del Mazo J., Grasl-Kraupp B., Hogstrand C., Hoogenboom L., et al. Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA J. 2020;18:e06223. PubMed PMC

EFSA. CONTAM. Knutsen H.K., Alexander J., Barregard L., Bignami M., Brüschweiler B., Ceccatelli S., Cottrill B., Dinovi M., et al. Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food. EFSA J. 2018;16:e05333. PubMed PMC

Leist M., Ghallab A., Graepel R., Marchan R., Hassan R., Bennekou S.H., Limonciel A., Vinken M., Schildknecht S., Waldmann T., et al. Adverse outcome pathways: Opportunities, limitations and open questions. Arch. Toxicol. 2017;91:3477–3505. doi: 10.1007/s00204-017-2045-3. PubMed DOI

Vidal A., Claeys L., Mengelers M., Vanhoorne V., Vervaet C., Huybrechts B., De Saeger S., De Boevre M. Humans significantly metabolize and excrete the mycotoxin deoxynivalenol and its modified form deoxynivalenol-3-glucoside within 24 hours. Sci. Rep. 2018;8:5255. doi: 10.1038/s41598-018-23526-9. PubMed DOI PMC

Gratz S.W., Currie V., Richardson A.J., Duncan G., Holtrop G., Farquharson F., Louis P., Pinton P., Oswald I.P. Porcine Small and Large Intestinal Microbiota Rapidly Hydrolyze the Masked Mycotoxin Deoxynivalenol-3-Glucoside and Release Deoxynivalenol in Spiked Batch Cultures In Vitro. Appl. Environ. Microbiol. 2018;84:e02106-17. doi: 10.1128/AEM.02106-17. PubMed DOI PMC

Wu F., Bhatnagar D., Bui-Klimke T., Carbone I., Hellmich R., Munkvold G., Paul P., Payne G., Takle E. Climate change impacts on mycotoxin risks in US maize. World Mycotoxin J. 2011;4:79–93. doi: 10.3920/WMJ2010.1246. DOI

Halstensen A.S., Nordby K.-C., Eduard W., Klemsdal S.S. Real-time PCR detection of toxigenic Fusarium in airborne and settled grain dust and associations with trichothecene mycotoxins. J. Environ. Monit. 2006;8:1235–1241. doi: 10.1039/b609840a. PubMed DOI

Straumfors A., Uhlig S., Eriksen G.S., Heldal K., Eduard W., Krska R., Sulyok M. Mycotoxins and other fungal metabolites in grain dust from Norwegian grain elevators and compound feed mills. World Mycotoxin J. 2015;8:361–373. doi: 10.3920/WMJ2014.1799. DOI

Tangni E.K., Pussemier L. Ergosterol and mycotoxins in grain dusts from fourteen Belgian cereal storages: A preliminary screening survey. J. Sci. Food Agric. 2007;87:1263–1270. doi: 10.1002/jsfa.2838. DOI

Viegas C., Fleming G.T.A., Kadir A., Almeida B., Caetano L.A., Gomes A.Q., Twarużek M., Kosicki R., Viegas S., Coggins A.M., et al. Occupational Exposures to Organic Dust in Irish Bakeries and a Pizzeria Restaurant. Microorganisms. 2020;8:118. doi: 10.3390/microorganisms8010118. PubMed DOI PMC

Niculita-Hirzel H., Hantier G., Storti F., Plateel G., Roger T. Frequent Occupational Exposure to Fusarium Mycotoxins of Workers in the Swiss Grain Industry. Toxins. 2016;8:370. doi: 10.3390/toxins8120370. PubMed DOI PMC

Ndaw S., Remy A., Jargot D., Antoine G., Denis F., Robert A. Mycotoxins Exposure of French Grain Elevator Workers: Biomonitoring and Airborne Measurements. Toxins. 2021;13:382. doi: 10.3390/toxins13060382. PubMed DOI PMC

Ndaw S., Jargot D., Antoine G., Denis F., Melin S., Robert A. Investigating Multi-Mycotoxin Exposure in Occupational Settings: A Biomonitoring and Airborne Measurement Approach. Toxins. 2021;13:54. doi: 10.3390/toxins13010054. PubMed DOI PMC

Föllmann W., Ali N., Blaszkewicz M., Degen G.H. Biomonitoring of Mycotoxins in Urine: Pilot Study in Mill Workers. J. Toxicol. Environ. Health Part A. 2016;79:1015–1025. doi: 10.1080/15287394.2016.1219540. PubMed DOI

LaKind J.S., Sobus J.R., Goodman M., Barr D.B., Furst P., Albertini R.J., Arbuckle T.E., Schoeters G., Tan Y.M., Teeguarden J., et al. A proposal for assessing study quality: Biomonitoring, Environmental Epidemiology, and Short-lived Chemicals (BEES-C) instrument. Environ. Int. 2014;73:195–207. doi: 10.1016/j.envint.2014.07.011. PubMed DOI PMC

Riley R.T., Torres O., Showker J.L., Zitomer N.C., Matute J., Voss K.A., Waes J.G.-V., Maddox J.R., Gregory S.G., Ashley-Koch A.E. The kinetics of urinary fumonisin B1 excretion in humans consuming maize-based diets. Mol. Nutr. Food Res. 2012;56:1445–1455. doi: 10.1002/mnfr.201200166. PubMed DOI PMC

De Santis B., Raggi M.E., Moretti G., Facchiano F., Mezzelani A., Villa L., Bonfanti A., Campioni A., Rossi S., Camposeo S., et al. Study on the Association among Mycotoxins and other Variables in Children with Autism. Toxins. 2017;9:203. doi: 10.3390/toxins9070203. PubMed DOI PMC

Persson E.C., Sewram V., Evans A.A., London W.T., Volkwyn Y., Shen Y.-J., Van Zyl J.A., Chen G., Lin W., Shephard G.S., et al. Fumonisin B1 and risk of hepatocellular carcinoma in two Chinese cohorts. Food Chem. Toxicol. 2012;50:679–683. doi: 10.1016/j.fct.2011.11.029. PubMed DOI PMC

Howard P.C., Eppley R.M., Stack M.E., Warbritton A., Voss K.A., Lorentzen R.J., Kovach R.M., Bucci T.J. Fumonisin b1 carcinogenicity in a two-year feeding study using F344 rats and B6C3F1 mice. Environ. Health Perspect. 2001;109((Suppl. 2)):277–282. doi: 10.1289/ehp.01109s2277. PubMed DOI PMC

Gelderblom W., Marasas W., Lebepe-Mazur S., Swanevelder S., Abel S. Cancer initiating properties of fumonisin B1 in a short-term rat liver carcinogenesis assay. Toxicology. 2008;250:89–95. doi: 10.1016/j.tox.2008.06.004. PubMed DOI

EPHPP, Project EPHP . Quality Assessment Tool for Quantitative Studies. Effective Public Health Practice Project; Amilton, ON, Canada: 1998.

Claeys L., Romano C., De Ruyck K., Wilson H., Fervers B., Korenjak M., Zavadil J., Gunter M.J., De Saeger S., De Boevre M., et al. Mycotoxin exposure and human cancer risk: A systematic review of epidemiological studies. Compr. Rev. Food Sci. Food Saf. 2020;19:1449–1464. doi: 10.1111/1541-4337.12567. PubMed DOI

Missmer S.A., Suarez L., Felkner M., Wang E., Merrill A.H., Jr., Rothman K.J., Hendricks K.A. Exposure to Fumonisins and the Occurrence of Neural Tube Defects along the Texas–Mexico Border. Environ. Health Perspect. 2006;114:237–241. doi: 10.1289/ehp.8221. PubMed DOI PMC

Gelineau-van Waes J., Voss K.A., Stevens V.L., Speer M.C., Riley R.T. Chapter 5 Maternal Fumonisin Exposure as a Risk Factor for Neural Tube Defects. Adv. Food Nutr. Res. 2019;56:145–181. PubMed

A Venter P., Christianson A.L., Hutamo C.M., Makhura M.P., Gericke G.S. Congenital anomalies in rural black South African neonates—A silent epidemic? S. Afr. Med. J. 1995;85:15–20. PubMed

Moore C.A., Li S., Li Z., Hong S.X., Gu H.Q., Berry R.J., Mulinare J., Erickson J.D. Elevated rates of severe neural tube defects in a high-prevalence area in northern China. Am. J. Med. Genet. 1997;73:113–118. doi: 10.1002/(SICI)1096-8628(19971212)73:2<113::AID-AJMG2>3.0.CO;2-V. PubMed DOI

Lian Z.H., Yang H.Y., Li Z. Neural tube defects in Beijing-Tianjin area of China. Urban-rural distribution and some other epidemiological characteristics. J. Epidemiol. Community Health. 1987;41:259–262. doi: 10.1136/jech.41.3.259. PubMed DOI PMC

Ncayiyana D.J. Neural tube defects among rural blacks in a Transkei district—A preliminary report and analysis. S. Afr. Med. J. 1986;69:618–620. PubMed

Flynn T.J., Stack M.E., Troy A.L., Chirtel S.J. Assessment of the embryotoxic potential of total hydrolysis product of Fumonisin B1 using cultured organegenesis-staged rat embyros. Food Chem. Toxicol. 1997;35:1135–1141. doi: 10.1016/S0278-6915(97)85466-X. PubMed DOI

Gelineau-van Waes J., Rainey M.A., Maddox J.R., Voss K.A., Sachs A.J., Gardner N.M., Wilberding J.D., Riley R.T. Increased sphingoid base-1-phosphates and failure of neural tube closure after exposure to fumonisin or FTY720. Birth Defects Res. Part A Clin. Mol. Teratol. 2012;94:790–803. doi: 10.1002/bdra.23074. PubMed DOI

Gelineau-van Waes J., Starr L., Maddox J., Aleman F., Voss K.A., Wilberding J., Riley R.T. Maternal fumonisin exposure and risk for neural tube defects: Mechanisms in an in vivo mouse model. Birth Defects Res. Part A Clin. Mol. Teratol. 2005;73:487–497. doi: 10.1002/bdra.20148. PubMed DOI

Voss K.A., Riley R.T., Gelineau-van Waes J.G.-V. Fumonisin B1 induced neural tube defects were not increased in LM/Bc mice fed folate-deficient diet. Mol. Nutr. Food Res. 2014;58:1190–1198. doi: 10.1002/mnfr.201300720. PubMed DOI

Voss K., Riley R., Gelineau-van Waes J.G.-V. Fetotoxicity and neural tube defects in CD1 mice exposed to the mycotoxin fumonisin. BJSM Mycotoxins. 2006;2006:67–72. doi: 10.2520/myco1975.2006.Suppl4_67. DOI

Voss K.A., Riley R.T., Snook M.E., Waes J.G.-V. Reproductive and Sphingolipid Metabolic Effects of Fumonisin B1 and its Alkaline Hydrolysis Product in LM/Bc Mice: Hydrolyzed Fumonisin B1 Did Not Cause Neural Tube Defects. Toxicol. Sci. 2009;112:459–467. doi: 10.1093/toxsci/kfp215. PubMed DOI

Liao Y.J., Yang J.R., Chen S.E., Wu S.J., Huang S.Y., Lin J.J., Chen L.R., Tang P.C. Inhibition of fumonisin B1 cytotoxicity by nanosilicate platelets during mouse embryo development. PLoS ONE. 2014;9:e112290. doi: 10.1371/journal.pone.0112290. PubMed DOI PMC

Sadler T., Merrill A.H., Stevens V.L., Sullards M.C., Wang E., Wang P. Prevention of fumonisin B1-induced neural tube defects by folic acid. Teratology. 2002;66:169–176. doi: 10.1002/tera.10089. PubMed DOI

Bryła M., Waśkiewicz A., Ksieniewicz-Woźniak E., Szymczyk K., Ędrzejczak R.J. Modified Fusarium Mycotoxins in Cereals and Their Products—Metabolism, Occurrence, and Toxicity: An Updated Review. Molecules. 2018;23:963. doi: 10.3390/molecules23040963. PubMed DOI PMC

Chen L., Peng Z., Nüssler A.K., Liu L., Yang W. Current and prospective sights in mechanism of deoxynivalenol-induced emesis for future scientific study and clinical treatment. J. Appl. Toxicol. 2017;37:784–791. doi: 10.1002/jat.3433. PubMed DOI

Payros D., Alassane-Kpembi I., Pierron A., Loiseau N., Pinton P., Oswald I.P. Toxicology of deoxynivalenol and its acetylated and modified forms. Arch. Toxicol. 2016;90:2931–2957. doi: 10.1007/s00204-016-1826-4. PubMed DOI

Terciolo C., Maresca M., Pinton P., Oswald I.P. Review article: Role of satiety hormones in anorexia induction by Trichothecene mycotoxins. Food Chem. Toxicol. 2018;121:701–714. doi: 10.1016/j.fct.2018.09.034. PubMed DOI

Wu Q., Wang X., Nepovimova E., Wang Y., Yang H., Li L., Zhang X., Kuca K. Antioxidant agents against trichothecenes: New hints for oxidative stress treatment. Oncotarget. 2017;8:110708–110726. doi: 10.18632/oncotarget.22800. PubMed DOI PMC

Chlebicz A., Śliżewska K. In Vitro Detoxification of Aflatoxin B1, Deoxynivalenol, Fumonisins, T-2 Toxin and Zearalenone by Probiotic Bacteria from Genus Lactobacillus and Saccharomyces cerevisiae Yeast. Probiotics Antimicrob. Proteins. 2020;12:289–301. doi: 10.1007/s12602-018-9512-x. PubMed DOI PMC

Heusinkveld H.J., Staal Y.C.M., Baker N.C., Daston G., Knudsen T.B., Piersma A. An ontology for developmental processes and toxicities of neural tube closure. Reprod. Toxicol. 2021;99:160–167. doi: 10.1016/j.reprotox.2020.09.002. PubMed DOI PMC

Copp A.J., Greene N. Genetics and development of neural tube defects. J. Pathol. 2009;220:217–230. doi: 10.1002/path.2643. PubMed DOI PMC

Greene N.D., Copp A.J. Neural tube defects. Annu. Rev. Neurosci. 2014;37:221–242. doi: 10.1146/annurev-neuro-062012-170354. PubMed DOI PMC

Blom H.J., Shaw G.M., den Heijer M.D., Finnell R.H. Neural tube defects and folate: Case far from closed. Nat. Rev. Neurosci. 2006;7:724–731. doi: 10.1038/nrn1986. PubMed DOI PMC

Murko C., Lagger S., Steiner M., Seiser C., Schoefer C., Pusch O. Histone deacetylase inhibitor Trichostatin A induces neural tube defects and promotes neural crest specification in the chicken neural tube. Differentiation. 2013;85:55–66. doi: 10.1016/j.diff.2012.12.001. PubMed DOI

Voss K.A., Riley R.T., Moore N.D., Burns T.D. Alkaline cooking (nixtamalisation) and the reduction in the in vivo toxicity of fumonisin-contaminated corn in a rat feeding bioassay. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2013;30:1415–1421. doi: 10.1080/19440049.2012.712064. PubMed DOI

Sassa T., Hirayama T., Kihara A. Enzyme Activities of the Ceramide Synthases CERS2–6 Are Regulated by Phosphorylation in the C-terminal Region. J. Biol. Chem. 2016;291:7477–7487. doi: 10.1074/jbc.M115.695858. PubMed DOI PMC

Riley R.T., Enongene E., Voss K.A., Norred W.P., Meredith F.I., Sharma R.P., Spitsbergen J., Williams D.E., Carlson D.B., Merrill A.H., Jr. Sphingolipid perturbations as mechanisms for fumonisin carcinogenesis. Environ. Health Perspect. 2001;109((Suppl. 2)):301–308. PubMed PMC

Merrill A.H., Jr., Sullards M.C., Wang E., Voss K.A., Riley R.T. Sphingolipid Metabolism: Roles in Signal Transduction and Disruption by Fumonisins. Environ. Health Perspect. 2001;109:283. doi: 10.2307/3435020. PubMed DOI PMC

Turner N., Lim X.Y., Toop H.D., Osborne B., Brandon A.E., Taylor E.N., Fiveash C.E., Govindaraju H., Teo J.D., McEwen H.P., et al. A selective inhibitor of ceramide synthase 1 reveals a novel role in fat metabolism. Nat. Commun. 2018;9:3165. doi: 10.1038/s41467-018-05613-7. PubMed DOI PMC

Wang E., Norred W.P., Bacon C.W., Riley R.T., Merrill A.H., Jr. Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with Fusarium moniliforme. J. Biol. Chem. 1991;266:14486–14490. doi: 10.1016/S0021-9258(18)98712-0. PubMed DOI

Riley R.T., Merrill A.H., Jr. Ceramide synthase inhibition by fumonisins: A perfect storm of perturbed sphingolipid metabolism, signaling, and disease. J. Lipid Res. 2019;60:1183–1189. doi: 10.1194/jlr.S093815. PubMed DOI PMC

Wangia R.N., Githanga D.P., Xue K.S., Tang L., Anzala O.A., Wang J.-S. Validation of urinary sphingolipid metabolites as biomarker of effect for fumonisins exposure in Kenyan children. Biomarkers. 2019;24:379–388. doi: 10.1080/1354750X.2019.1587510. PubMed DOI

Riley R.T., Torres O., Matute J., Gregory S.G., Ashley-Koch A.E., Showker J.L., Mitchell T.R., Voss K.A., Maddox J.R., Waes J.B.G.-V. Evidence for fumonisin inhibition of ceramide synthase in humans consuming maize-based foods and living in high exposure communities in Guatemala. Mol. Nutr. Food Res. 2015;59:2209–2224. doi: 10.1002/mnfr.201500499. PubMed DOI PMC

Czeizel A.E., Dudás I., Vereczkey A., Bánhidy F. Folate Deficiency and Folic Acid Supplementation: The Prevention of Neural-Tube Defects and Congenital Heart Defects. Nutrients. 2013;5:4760–4775. doi: 10.3390/nu5114760. PubMed DOI PMC

Sato K. Why is folate effective in preventing neural tube closure defects? Med. Hypotheses. 2019;134:109429. doi: 10.1016/j.mehy.2019.109429. PubMed DOI

Stevens V.L., Tang L. Fumonisin B1-induced sphingolipid depletion inhibits vitamin uptake via the glycosylphosphatidylinositol-anchored folate receptor. J. Biol. Chem. 1997;272:18020–18025. doi: 10.1074/jbc.272.29.18020. PubMed DOI

Chatterjee S., Smith E.R., Hanada K., Stevens V.L., Mayor S. GPI anchoring leads to sphingolipid-dependent retention of endocytosed proteins in the recycling endosomal compartment. EMBO J. 2001;20:1583–1592. doi: 10.1093/emboj/20.7.1583. PubMed DOI PMC

Marasas W.F.O., Riley R.T., Hendricks K.A., Stevens V.L., Sadler T.W., Gelineau-van Waes J., Missmer S.A., Cabrera J., Torres O., Gelderblom W.C.A., et al. Fumonisins Disrupt Sphingolipid Metabolism, Folate Transport, and Neural Tube Development in Embryo Culture and In Vivo: A Potential Risk Factor for Human Neural Tube Defects among Populations Consuming Fumonisin-Contaminated Maize. J. Nutr. 2004;134:711–716. doi: 10.1093/jn/134.4.711. PubMed DOI

Mullen T.D., Hannun Y.A., Obeid L.M. Ceramide synthases at the centre of sphingolipid metabolism and biology. Biochem. J. 2012;441:789–802. doi: 10.1042/BJ20111626. PubMed DOI PMC

Futerman A.H., Hannun Y.A. The complex life of simple sphingolipids. EMBO Rep. 2004;5:777–782. doi: 10.1038/sj.embor.7400208. PubMed DOI PMC

Naslavsky N., Shmeeda H., Friedlander G., Yanai A., Futerman A.H., Barenholz Y., Taraboulos A. Sphingolipid Depletion Increases Formation of the Scrapie Prion Protein in Neuroblastoma Cells Infected with Prions. J. Biol. Chem. 1999;274:20763–20771. doi: 10.1074/jbc.274.30.20763. PubMed DOI

Yoo H.-S., Norred W.P., Showker J., Riley R.T. Elevated Sphingoid Bases and Complex Sphingolipid Depletion as Contributing Factors in Fumonisin-Induced Cytotoxicity. Toxicol. Appl. Pharmacol. 1996;138:211–218. doi: 10.1006/taap.1996.0119. PubMed DOI

Mitsuda T., Furukawa K., Fukumoto S., Miyazaki H., Urano T., Furukawa K. Overexpression of Ganglioside GM1 Results in the Dispersion of Platelet-derived Growth Factor Receptor from Glycolipid-enriched Microdomains and in the Suppression of Cell Growth Signals. J. Biol. Chem. 2002;277:11239–11246. doi: 10.1074/jbc.M107756200. PubMed DOI

Puff N., Watanabe C., Seigneuret M., Angelova M.I., Staneva G. Lo/Ld phase coexistence modulation induced by GM1. Biochim. Biophys. Acta Biomembr. 2014;1838:2105–2114. doi: 10.1016/j.bbamem.2014.05.002. PubMed DOI

Mayor S., Sabharanjak S., Maxfield F.R. Cholesterol-dependent retention of GPI-anchored proteins in endosomes. EMBO J. 1998;17:4626–4638. doi: 10.1093/emboj/17.16.4626. PubMed DOI PMC

Refaei M., Leventis R., Silvius J.R. Assessment of the Roles of Ordered Lipid Microdomains in Post-Endocytic Trafficking of Glycosyl-Phosphatidylinositol-Anchored Proteins in Mammalian Fibroblasts. Traffic. 2011;12:1012–1024. doi: 10.1111/j.1600-0854.2011.01206.x. PubMed DOI

Sharom F.J., Lehto M.T. Glycosylphosphatidylinositol-anchored proteins: Structure, function, and cleavage by phosphatidylinositol-specific phospholipase C. Biochem. Cell Biol. 2002;80:535–549. doi: 10.1139/o02-146. PubMed DOI

Menegola E., Di Renzo F., Broccia M.L., Prudenziati M., Minucci S., Massa V., Giavini E. Inhibition of histone deacetylase activity on specific embryonic tissues as a new mechanism for teratogenicity. Birth Defects Res. Part B Dev. Reprod. Toxicol. 2005;74:392–398. doi: 10.1002/bdrb.20053. PubMed DOI

AOPwiki Histone Deacetylase Inhibition Leads to Neural Tube Defects 2021. [(accessed on 1 January 2022)]. Available online: https://aopwiki.org/aops/275.

Gardner N.M., Riley R.T., Showker J.L., Voss K.A., Sachs A.J., Maddox J.R., Waes J.B.G.-V. Elevated nuclear sphingoid base-1-phosphates and decreased histone deacetylase activity after fumonisin B1 treatment in mouse embryonic fibroblasts. Toxicol. Appl. Pharmacol. 2016;298:56–65. doi: 10.1016/j.taap.2016.02.018. PubMed DOI

Hait N.C., Allegood J., Maceyka M., Strub G.M., Harikumar K.B., Singh S.K., Luo C., Marmorstein R., Kordula T., Milstien S., et al. Regulation of Histone Acetylation in the Nucleus by Sphingosine-1-Phosphate. Science. 2009;325:1254–1257. doi: 10.1126/science.1176709. PubMed DOI PMC

Riccio A. New Endogenous Regulators of Class I Histone Deacetylases. Sci. Signal. 2010;3:pe1. doi: 10.1126/scisignal.3103pe1. PubMed DOI

Blaho V.A., Hla T. An update on the biology of sphingosine 1-phosphate receptors. J. Lipid Res. 2014;55:1596–1608. doi: 10.1194/jlr.R046300. PubMed DOI PMC

Igarashi N., Okada T., Hayashi S., Fujita T., Jahangeer S., Nakamura S.-I. Sphingosine Kinase 2 Is a Nuclear Protein and Inhibits DNA Synthesis. J. Biol. Chem. 2003;278:46832–46839. doi: 10.1074/jbc.M306577200. PubMed DOI

Mizugishi K., Yamashita T., Olivera A., Miller G.F., Spiegel S., Proia R.L. Essential Role for Sphingosine Kinases in Neural and Vascular Development. Mol. Cell. Biol. 2005;25:11113–11121. doi: 10.1128/MCB.25.24.11113-11121.2005. PubMed DOI PMC

Mengelers M., Zeilmaker M., Vidal A., De Boevre M., De Saeger S., Hoogenveen R. Biomonitoring of Deoxynivalenol and Deoxynivalenol-3-glucoside in Human Volunteers: Renal Excretion Profiles. Toxins. 2019;11:466. doi: 10.3390/toxins11080466. PubMed DOI PMC

van den Brand A.D., Hoogenveen R., Mengelers M.J.B., Zeilmaker M., Eriksen G.S., Uhlig S., Brantsæter A.L., Dirven H.A., Husøy T. Modelling the Renal Excretion of the Mycotoxin Deoxynivalenol in Humans in an Everyday Situation. Toxins. 2021;13:675. doi: 10.3390/toxins13100675. PubMed DOI PMC

Shephard G.S., Thiel P.G., Sydenham E.W., Alberts J.F. Biliary excretion of the mycotoxin fumonisin B1 in rats. Food Chem. Toxicol. 1994;32:489–491. doi: 10.1016/0278-6915(94)90047-7. PubMed DOI

Prelusky D.B., Trenholm H.L., Savard M.E. Pharmacokinetic fate of 14C-Labelled fumonisin B1 in Swine. Nat. Toxins. 1994;2:73–80. doi: 10.1002/nt.2620020205. PubMed DOI

Wild C.P., Gong Y.Y. Mycotoxins and human disease: A largely ignored global health issue. Carcinogenesis. 2010;31:71–82. doi: 10.1093/carcin/bgp264. PubMed DOI PMC

Li M., Sun M., Hong X., Duan J., Du D. Survey of Deoxynivalenol Contamination in Agricultural Products in the Chinese Market Using An ELISA Kit. Toxins. 2018;11:6. doi: 10.3390/toxins11010006. PubMed DOI PMC

Tantaoui-Elaraki A., Riba A., Oueslati S., Zinedine A. Toxigenic fungi and mycotoxin occurrence and prevention in food and feed in northern Africa—A review. World Mycotoxin J. 2018;11:385–400. doi: 10.3920/WMJ2017.2290. DOI

HBM4EU . ICI Report 2nd Round Substances—Mycotoxins/Round_01/2020—Deoxynivalenol Biomarkers in Urine. HBM4EU; Brussels, Belgium: 2020.

Turner P.C., White K.L., Burley V.J., Hopton R.P., Rajendram A., Fisher J., Cade J.E., Wild C.P. A comparison of deoxynivalenol intake and urinary deoxynivalenol in UK adults. Biomarkers. 2010;15:553–562. doi: 10.3109/1354750X.2010.495787. PubMed DOI

HBM4EU . D14.5—Selection Criteria and Inventory of Effect Biomarkers for the 2nd Set of Substances. HBM4EU; Brussels, Belgium: 2020.

Al-Jaal B.A., Jaganjac M., Barcaru A., Horvatovich P., Latiff A. Aflatoxin, fumonisin, ochratoxin, zearalenone and deoxynivalenol biomarkers in human biological fluids: A systematic literature review, 2001–2008. Food Chem. Toxicol. 2019;129:211–228. doi: 10.1016/j.fct.2019.04.047. PubMed DOI

Shephard G.S., Van Der Westhuizen L., Sewram V. Biomarkers of exposure to fumonisin mycotoxins: A review. Food Addit. Contam. 2007;24:1196–1201. doi: 10.1080/02652030701513818. PubMed DOI

Voss K.A., Bacon C.W., Norred W.P., Chapin R.E., Chamberlain W.J., Plattner R.D., Meredith F.I. Studies on the reproductive effects of Fusarium moniliforme culture material in rats and the biodistribution of [14C] fumonisin B1 in pregnant rats. Nat. Toxins. 1996;4:24–33. doi: 10.1002/19960401NT4. PubMed DOI

Cortinovis C., Pizzo F., Spicer L., Caloni F. Fusarium mycotoxins: Effects on reproductive function in domestic animals—A review. Theriogenology. 2013;80:557–564. doi: 10.1016/j.theriogenology.2013.06.018. PubMed DOI

Voss K.A., Riley R.T., Norred W.P., Bacon C.W., Meredith F.I., Howard P.C., Plattner R.D., Collins T.F., Hansen D.K., Porter J.K. An overview of rodent toxicities: Liver and kidney effects of fumonisins and Fusarium moniliforme. Environ. Health Perspect. 2001;109((Suppl. 2)):259–266. PubMed PMC

Lumsangkul C., Chiang H.-I., Lo N.-W., Fan Y.-K., Ju J.-C. Developmental Toxicity of Mycotoxin Fumonisin B1 in Animal Embryogenesis: An Overview. Toxins. 2019;11:114. doi: 10.3390/toxins11020114. PubMed DOI PMC

Del Gaudio I., Sasset L., Lorenzo A.D., Wadsack C. Sphingolipid Signature of Human Feto-Placental Vasculature in Preeclampsia. Int. J. Mol. Sci. 2020;21:1019. doi: 10.3390/ijms21031019. PubMed DOI PMC

Padmanabhan R. Etiology, pathogenesis and prevention of neural tube defects. Congenit. Anom. 2006;46:55–67. doi: 10.1111/j.1741-4520.2006.00104.x. PubMed DOI

Babenko N.A., Kharchenko V.S. Effects of inhibitors of key enzymes of sphingolipid metabolism on insulin-induced glucose uptake and glycogen synthesis in liver cells of old rats. Biochemistry. 2015;80:104–112. doi: 10.1134/S0006297915010125. PubMed DOI

Scarlatti F., Bauvy C., Ventruti A., Sala G., Cluzeaud F., Vandewalle A., Ghidoni R., Codogno P. Ceramide-mediated Macroautophagy Involves Inhibition of Protein Kinase B and Up-regulation of Beclin 1. J. Biol. Chem. 2004;279:18384–18391. doi: 10.1074/jbc.M313561200. PubMed DOI

Ross M.M., Piorczynski T.B., Harvey J., Burnham T.S., Francis M., Larsen M.W., Roe K., Hansen J.M., Stark M.R. Ceramide: A novel inducer for neural tube defects. Dev. Dyn. 2019;248:979–996. doi: 10.1002/dvdy.93. PubMed DOI

Kong J.-N., Zhu Z., Itokazu Y., Wang G., Dinkins M.B., Zhong L., Lin H.-P., Elsherbini A., Leanhart S., Jiang X., et al. Novel function of ceramide for regulation of mitochondrial ATP release in astrocytes. J. Lipid Res. 2018;59:488–506. doi: 10.1194/jlr.M081877. PubMed DOI PMC

Shulpekova Y., Nechaev V., Kardasheva S., Sedova A., Kurbatova A., Bueverova E., Kopylov A., Malsagova K., Dlamini J., Ivashkin V. The Concept of Folic Acid in Health and Disease. Molecules. 2021;26:3731. doi: 10.3390/molecules26123731. PubMed DOI PMC

Mollinedo F., Gajate C. Lipid rafts as signaling hubs in cancer cell survival/death and invasion: Implications in tumor progression and therapy: Thematic review series: Biology of lipid rafts. J. Lipid Res. 2020;61:611–635. doi: 10.1194/jlr.TR119000439. PubMed DOI PMC

D’Aprile C., Prioni S., Mauri L., Prinetti A., Grassi S. Lipid rafts as platforms for sphingosine 1-phosphate metabolism and signalling. Cell. Signal. 2021;80:109929. doi: 10.1016/j.cellsig.2021.109929. PubMed DOI

Renwick J.H., Claringbold W.D.B., Earthy M.E., Few J.D., Carolines A., McLean S. Neural-tube defects produced in Syrian hamsters by potato glycoalkaloids. Teratology. 1984;30:371–381. doi: 10.1002/tera.1420300309. PubMed DOI

Ni W., Tian T., Zhang L., Li Z., Wang L., Ren A. Maternal periconceptional consumption of sprouted potato and risks of neural tube defects and orofacial clefts. Nutr. J. 2018;17:112. doi: 10.1186/s12937-018-0420-4. PubMed DOI PMC

Mandimika T., Baykus H., Poortman J., Garza C., Kuiper H., Peijnenburg A. Induction of the cholesterol biosynthesis pathway in differentiated Caco-2 cells by the potato glycoalkaloid alpha-chaconine. Food Chem. Toxicol. 2007;45:1918–1927. doi: 10.1016/j.fct.2007.04.009. PubMed DOI

Meena M., Samal S. Alternaria host-specific (HSTs) toxins: An overview of chemical characterization, target sites, regulation and their toxic effects. Toxicol. Rep. 2019;6:745–758. doi: 10.1016/j.toxrep.2019.06.021. PubMed DOI PMC

Topi D., Tavčar-Kalcher G., Pavšič-Vrtač K., Babič J., Jakovac-Strajn B. Alternaria mycotoxins in grains from Albania: Alternariol, alternariol monomethyl ether, tenuazonic acid and tentoxin. World Mycotoxin J. 2019;12:89–99. doi: 10.3920/WMJ2018.2342. DOI

Gruber-Dorninger C., Jenkins T., Schatzmayr G. Multi-mycotoxin screening of feed and feed raw materials from Africa. World Mycotoxin J. 2018;11:369–383. doi: 10.3920/WMJ2017.2292. DOI

HBM4EU . HBM4EU ICI Report Mycotoxins (DON) in Urine Round 3. HBM4EU; Brussels, Belgium: 2020.

Zare Jeddi M., Boon P.E., Cubadda F., Hoogenboom L.R., Mol H., Verhagen H., Sijm D.T. A vision on the ‘foodture’ role of dietary exposure sciences in the interplay between food safety and nutrition. Trends Food Sci. Technol. 2022;120:288–300. doi: 10.1016/j.tifs.2022.01.024. DOI

Sewram V., Mshicileli N., Shephard G.S., Marasas W.F.O. Fumonisin mycotoxins in human hair. Biomarkers. 2003;8:110–118. doi: 10.1080/1354750031000081002. PubMed DOI

Sewram V., Nair J.J., Nieuwoudt T.W., Gelderblom W.C.A., Marasas W.F.O., Shephard G.S. Assessing chronic exposure to fumonisin mycotoxins: The use of hair as a suitable noninvasive matrix. J. Anal. Toxicol. 2001;25:450–455. doi: 10.1093/jat/25.6.450. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...