The why and how of sunken stomata: does the behaviour of encrypted stomata and the leaf cuticle matter?

. 2022 Sep 19 ; 130 (3) : 285-300.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35452520

BACKGROUND: Stomatal pores in many species are separated from the atmosphere by different anatomical obstacles produced by leaf epidermal cells, especially by sunken stomatal crypts, stomatal antechambers and/or hairs (trichomes). The evolutionary driving forces leading to sunken or 'hidden' stomata whose antechambers are filled with hairs or waxy plugs are not fully understood. The available hypothetical explanations are based mainly on mathematical modelling of water and CO2 diffusion through superficial vs. sunken stomata, and studies of comparative autecology. A better understanding of this phenomenon may result from examining the interactions between the leaf cuticle and stomata and from functional comparisons of sunken vs. superficially positioned stomata, especially when transpiration is low, for example at night or during severe drought. SCOPE: I review recent ideas as to why stomata are hidden and test experimentally whether hidden stomata may behave differently from those not covered by epidermal structures and so are coupled more closely to the atmosphere. I also quantify the contribution of stomatal vs. cuticular transpiration at night using four species with sunken stomata and three species with superficial stomata. CONCLUSIONS: Partitioning of leaf conductance in darkness (gtw) into stomatal and cuticular contributions revealed that stomatal conductance dominated gtw across all seven investigated species with antechambers with different degrees of prominence. Hidden stomata contributed, on average, less to gtw (approx. 70 %) than superficial stomata (approx. 80 %) and reduced their contribution dramatically with increasing gtw. In contrast, species with superficial stomata kept their proportion in gtw invariant across a broad range of gtw. Mechanisms behind the specific behaviour of hidden stomata and the multipurpose origin of sunken stomata are discussed.

Zobrazit více v PubMed

Bartiromo A, Guignard G, Lumaga MRB, et al. . 2013. The cuticle micromorphology of in situ Erica arborea L. exposed to long-term volcanic gases. Environmental and Experimental Botany 87: 197–206. doi:10.1016/j.envexpbot.2012.10.006. DOI

Bickford CP. 2016. Ecophysiology of leaf trichomes. Functional Plant Biology 43: 807–814. doi:10.1071/fp16095. PubMed DOI

Blomenkemper P, Abu Hamad A, Bomfleur B. 2019. Cryptokerpia sarlaccophora gen. et sp. nov., an enigmatic plant fossil from the Late Permian Umm Irna Formation of Jordan. Palz 93: 479–485. doi:10.1007/s12542-019-00466-x. DOI

Boyer JS. 2015a. Impact of cuticle on calculations of the CO2 concentration inside leaves. Planta 242: 1405–1412. doi:10.1007/s00425-015-2378-1. PubMed DOI

Boyer JS. 2015b. Turgor and the transport of CO2 and water across the cuticle (epidermis) of leaves. Journal of Experimental Botany 66: 2625–2633. doi:10.1093/jxb/erv065. PubMed DOI PMC

Brodribb T, Hill RS. 1997. Imbricacy and stomatal wax plugs reduce maximum leaf conductance in Southern Hemisphere conifers. Australian Journal of Botany 45: 657–668. doi:10.1071/bt96060. DOI

Bucci SJ, Goldstein G, Meinzer FC, Franco AC, Campanello P, Scholz FG. 2005. Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plant water potential in neotropical savanna trees. Trees – Structure and Function 19: 296–304.

Buckley TN. 2005. The control of stomata by water balance. New Phytologist 168: 275–292. doi:10.1111/j.1469-8137.2005.01543.x. PubMed DOI

Burgess SSO, Dawson TE. 2004. The contribution of fog to the water relations of Sequoia sempervirens (D. Don): foliar uptake and prevention of dehydration. Plant, Cell & Environment 27: 1023–1034. doi:10.1111/j.1365-3040.2004.01207.x. DOI

Burkhardt J. 2010. Hygroscopic particles on leaves: nutrients or desiccants? Ecological Monographs 80: 369–399. doi:10.1890/09-1988.1. DOI

Caird MA, Richards JH, Donovan LA. 2007. Nighttime stomatal conductance and transpiration in C-3 and C-4 plants. Plant Physiology 143: 4–10. doi:10.1104/pp.106.092940. PubMed DOI PMC

Carpenter RJ, McLoughlin S, Hill RS, McNamara KJ, Jordan GJ. 2014. Early evidence of xeromorphy in angiosperms: stomatal encryptation in a new eocene species of Banksia (Proteaceae) from Western Australia. American Journal of Botany 101: 1486–1497. doi:10.3732/ajb.1400191. PubMed DOI

Costa JM, Monnet F, Jannaud D, et al. . 2015. Open all night long: the dark side of stomatal control. Plant Physiology 167: 289–294. doi:10.1104/pp.114.253369. PubMed DOI PMC

Cowan IR, Farquhar GD. 1977. Stomatal function in relation to leaf metabolism and environment. Symposia of the Society for Experimental Biology 31: 471–505. PubMed

Cussler EL. 1987. Diffusion mass transfer in fluid systems. Cambridge: Cambridge University Press.

Deckert RJ, Melville LH, Peterson RL. 2001. Epistomatal chambers in the needles of Pinus strobus L. (eastern white pine) function as microhabitat for specialized fungi. International Journal of Plant Sciences 162: 181–189. doi:10.1086/317905. DOI

de Dios VR, Chowdhury FI, Granda E, Yao YA, Tissue DT. 2019. Assessing the potential functions of nocturnal stomatal conductance in C-3 and C-4 plants. New Phytologist 223: 1696–1706. PubMed

Duursma RA, Blackman CJ, Lopez R, Martin-StPaul NK, Cochard H, Medlyn BE. 2019. On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls. New Phytologist 221: 693–705. PubMed

Eamus D, Taylor DT, Macinnis-Ng CMO, Shanahan S, De Silva L. 2008. Comparing model predictions and experimental data for the response of stomatal conductance and guard cell turgor to manipulations of cuticular conductance, leaf-to-air vapour pressure difference and temperature: feedback mechanisms are able to account for all observations. Plant, Cell & Environment 31: 269–277. doi:10.1111/j.1365-3040.2007.01771.x. PubMed DOI

England JR, Attiwill PM. 2006. Changes in leaf morphology and anatomy with tree age and height in the broadleaved evergreen species, Eucalyptus regnans F. Muell. Trees – Structure and Function 20: 79–90.

Feild TS, Zwieniecki MA, Donoghue MJ, Holbrook NM. 1998. Stomatal plugs of Drimys winteri (Winteraceae) protect leaves from mist but not drought. Proceedings of the National Academy of Sciences, USA 95: 14256–14259. doi:10.1073/pnas.95.24.14256. PubMed DOI PMC

Franks PJ, Drake PL, Froend RH. 2007. Anisohydric but isohydrodynamic: seasonally constant plant water potential gradient explained by a stomatal control mechanism incorporating variable plant hydraulic conductance. Plant, Cell & Environment 30: 19–30. doi:10.1111/j.1365-3040.2006.01600.x. PubMed DOI

Fricke W. 2019. Night-time transpiration – favouring growth? Trends in Plant Science 24: 311–317. doi:10.1016/j.tplants.2019.01.007. PubMed DOI

Gray A, Liu L, Facette M. 2020. Flanking support: how subsidiary cells contribute to stomatal form and function. Frontiers in Plant Science 11: 881. PubMed PMC

Hassiotou F, Evans JR, Ludwig M, Veneklaas EJ. 2009a. Stomatal crypts may facilitate diffusion of CO2 to adaxial mesophyll cells in thick sclerophylls. Plant, Cell & Environment 32: 1596–1611. doi:10.1111/j.1365-3040.2009.02024.x. PubMed DOI

Hassiotou F, Ludwig M, Renton M, Veneklaas EJ, Evans JR. 2009b. Influence of leaf dry mass per area, CO2, and irradiance on mesophyll conductance in sclerophylls. Journal of Experimental Botany 60: 2303–2314. doi:10.1093/jxb/erp021. PubMed DOI

Haworth M, McElwain J. 2008. Hot, dry, wet, cold or toxic? Revisiting the ecological significance of leaf and cuticular micromorphology. Palaeogeography Palaeoclimatology Palaeoecology 262: 79–90. doi:10.1016/j.palaeo.2008.02.009. DOI

Hill RS. 1998. Fossil evidence for the onset of xeromorphy and scleromorphy in Australian proteaceae. Australian Systematic Botany 11: 391–400. doi:10.1071/sb97016. DOI

Hoad SP, Grace J, Jeffree CE. 1997. Humidity response of cuticular conductance of beech (Fagus sylvatica L.) leaf discs maintained at high relative water content. Journal of Experimental Botany 48: 1969–1975.

Jeffree CE, Johnson RPC, Jarvis PG. 1971. Epicuticular wax in stomatal antechamber of sitka spruce and its effects on diffusion of water vapour and carbon dioxide. Planta 98: 1–10. doi:10.1007/BF00387018. PubMed DOI

Jordan GJ, Weston PH, Carpenter RJ, Dillon RA, Brodribb TJ. 2008. The evolutionary relations of sunken covered, and encrypted stomata to dry habitats in proteaceae. American Journal of Botany 95: 521–530. doi:10.3732/ajb.2007333. PubMed DOI

Jordan GJ, Carpenter RJ, Brodribb TJ. 2014. Using fossil leaves as evidence for open vegetation. Palaeogeography Palaeoclimatology Palaeoecology 395: 168–175. doi:10.1016/j.palaeo.2013.12.035. DOI

Karbulkova J, Schreiber L, Macek P, Santrucek J. 2008. Differences between water permeability of astomatous and stomatous cuticular membranes: effects of air humidity in two species of contrasting drought-resistance strategy. Journal of Experimental Botany 59: 3987–3995. PubMed PMC

Kerstiens G. 1996. Cuticular water permeability and its physiological significance. Journal of Experimental Botany 47: 1813–1832. doi:10.1093/jxb/47.12.1813. DOI

Kim KW, Kim DH, Han SH, Lee JC, Kim PG. 2010. Three-dimensional surface topography of the needle stomatal complexes of Pinus rigida and its hybrid species by complementary microscopy. Micron 41: 571–576. doi:10.1016/j.micron.2010.04.008. PubMed DOI

Kroupitski Y, Golberg D, Belausov E, et al. . 2009. Internalization of Salmonella enterica in leaves is induced by light and involves chemotaxis and penetration through open stomata. Applied and Environmental Microbiology 75: 6076–6086. doi:10.1128/AEM.01084-09. PubMed DOI PMC

Larcher W. 2001. Physiological plant ecology. Berlin Heidelberg: Springer-Verlag.

Lasceve G, Leymarie J, Vavasseur A. 1997. Alterations in light-induced stomatal opening in a starch-deficient mutant of Arabidopsis thaliana L deficient in chloroplast phosphoglucomutase activity. Plant, Cell & Environment 20: 350–358. doi:10.1046/j.1365-3040.1997.d01-71.x. DOI

Maier-Maercker U. 1983. The role of peristomatal transpiration in the mechanism of stomatal movement. Plant, Cell & Environment 6: 369–380. doi:10.1111/j.1365-3040.1983.tb01269.x. DOI

Marquez DA, Stuart-Williams H, Farquhar GD, Busch FA. 2022. Cuticular conductance of adaxial and abaxial leaf surfaces and its relation to minimum leaf surface conductance. New Phytologist 233: 156–168. PubMed

Mast AR, Givnish TJ. 2002. Historical biogeography and the origin of stomatal distributions in Banksia and Dryandra (Proteaceae) based on their cpDNA phylogeny. American Journal of Botany 89: 1311–1323. doi:10.3732/ajb.89.8.1311. PubMed DOI

Mohammadian MA. 2005. An investigation of the functions of leaf surface modifications in the Proteaceae and Araucariaceae. PhD Thesis, University of Adelaide, Australia.

Mohammadian MA, Hill RS, Watling JR. 2009. Stomatal plugs and their impact on fungal invasion in Agathis robusta. Australian Journal of Botany 57: 389–395. doi:10.1071/bt08175. DOI

Moss DN, Rawlins SL. 1963. Concentration of carbon dioxide inside leaves. Nature 197: 1320–1321. doi:10.1038/1971320a0. DOI

Mott KA, Peak D. 2013. Testing a vapour-phase model of stomatal responses to humidity. Plant, Cell & Environment 36: 936–944. doi:10.1111/pce.12026. PubMed DOI

Nobel PS. 1991. Physicochemical and environmental plant physiology. San Diego: Academic Press.

Nonami H, Schulze ED, Ziegler H. 1991. Mechanisms of stomatal movement in response to air humidity, irradiance and xylem water potential. Planta 183: 57–64. doi:10.1007/BF00197567. PubMed DOI

Ratnawati. 2001. Evidence of the morphological range, transition and evolution of stomatal protection mechanisms in some selected proteaceae. MSc Thesis, University of Tasmania, Tasmania.

Rohula G, Kupper P, Raim O, Sellin A, Sober A. 2014. Patterns of night-time water use are interrelated with leaf nitrogen concentration in shoots of 16 deciduous woody species. Environmental and Experimental Botany 99: 180–188.

Roth-Nebelsick A. 2007. Computer-based studies of diffusion through stomata of different architecture. Annals of Botany 100: 23–32. PubMed PMC

Roth-Nebelsick A, Hassiotou F, Veneklaas EJ. 2009. Stomatal crypts have small effects on transpiration: a numerical model analysis. Plant Physiology 151: 2018–2027. PubMed PMC

Salleo S, Nardini A, LoGullo MA. 1997. Is sclerophylly of Mediterranean evergreens an adaptation to drought? New Phytologist 135: 603–612.

Santrucek J, Simanova E, Karbulkova J, Simkova M, Schreiber L. 2004. A new technique for measurement of water permeability of stomatous cuticular membranes isolated from Hedera helix leaves. Journal of Experimental Botany 55: 1411–1422. PubMed

Scholz FG, Bucci SJ, Goldstein G, Meinzer FC, Franco AC, Miralles-Wilhelm F. 2007. Removal of nutrient limitations by long-term fertilization decreases nocturnal water loss in savanna trees. Tree Physiology 27: 551–559. PubMed

Schönherr J, Merida T. 1981. Water permeability of plant cuticular membranes – the effects of humidity and temparature on the permeability of non-isolated cuticles of onion bulb scales. Plant, Cell & Environment 4: 349–354.

Schreiber L, Skrabs M, Hartmann KD, Diamantopoulos P, Simanova E, Santrucek J. 2001. Effect of humidity on cuticular water permeability of isolated cuticular membranes and leaf disks. Planta 214: 274–282. PubMed

Schuster AC, Burghardt M, Riederer M. 2017. The ecophysiology of leaf cuticular transpiration: are cuticular water permeabilities adapted to ecological conditions? Journal of Experimental Botany 68: 5271–5279. PubMed

Stinziano JR, Tominaga J, Hanson DT. 2020. Where in the leaf is intercellular CO2 (Ci)? Considerations and recommendations for assessing gaseous diffusion in leaves. bioRxiv doi:10.1101/2020.05.05.079053. [Preprint]. DOI

Tardieu F, Simonneau T. 1998. Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. Journal of Experimental Botany 49: 419–432.

Turner IM. 1994. Sclerophylly: primarily protective? Functional Ecology 8: 669–675.

Vico G, Manzoni S, Palmroth S, Weih M, Katul G. 2013. A perspective on optimal leaf stomatal conductance under CO2 and light co-limitations. Agricultural and Forest Meteorology 182: 191–199.

Waldhoff D, Furch B, Junk WJ. 2002. Fluorescence parameters, chlorophyll concentration, and anatomical features as indicators for flood adaptation of an abundant tree species in Central Amazonia: Symmeria paniculata. Environmental and Experimental Botany 48: 225–235.

Weyers JDB, Meidner H. 1990. Methods in stomatal research. Harlow, UK: Longman Group.

Willmer CM, Fricker M. 1996. Stomata. London: Chapman & Hall.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...