Genomic and Transcriptomic Characterization of Atypical Recurrent Flank Alopecia in the Cesky Fousek
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35456456
PubMed Central
PMC9033119
DOI
10.3390/genes13040650
PII: genes13040650
Knihovny.cz E-zdroje
- Klíčová slova
- Cesky Fousek, GWAS, RNA-seq, atypical recurrent flank alopecia, canine alopecia, differential gene expression, dog, skin biopsies,
- MeSH
- alopecie genetika patologie veterinární MeSH
- celogenomová asociační studie * MeSH
- kůže patologie MeSH
- psi MeSH
- transkriptom * genetika MeSH
- vlasový folikul MeSH
- zvířata MeSH
- Check Tag
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Non-inflammatory alopecia is a frequent skin problem in dogs, causing damaged coat integrity and compromised appearance of affected individuals. In this study, we examined the Cesky Fousek breed, which displays atypical recurrent flank alopecia (aRFA) at a high frequency. This type of alopecia can be quite severe and is characterized by seasonal episodes of well demarcated alopecic areas without hyperpigmentation. The genetic component responsible for aRFA remains unknown. Thus, here we aimed to identify variants involved in aRFA using a combination of histological, genomic, and transcriptomic data. We showed that aRFA is histologically similar to recurrent flank alopecia, characterized by a lack of anagen hair follicles and the presence of severely shortened telogen or kenogen hair follicles. We performed a genome-wide association study (GWAS) using 216 dogs phenotyped for aRFA and identified associations on chromosomes 19, 8, 30, 36, and 21, highlighting 144 candidate genes, which suggests a polygenic basis for aRFA. By comparing the skin cell transcription pattern of six aRFA and five control dogs, we identified 236 strongly differentially expressed genes (DEGs). We showed that the GWAS genes associated with aRFA are often predicted to interact with DEGs, suggesting their joint contribution to the development of the disease. Together, these genes affect four major metabolic pathways connected to aRFA: collagen formation, muscle structure/contraction, lipid metabolism, and the immune system.
Department of Botany Faculty of Science Charles University 12800 Prague Czech Republic
DermFocus University of Bern 3012 Bern Switzerland
Institute of Animal Pathology Vetsuisse Faculty University of Bern 3012 Bern Switzerland
Institute of Genetics Vetsuisse Faculty University of Bern 3012 Bern Switzerland
Zobrazit více v PubMed
Shearin A.L., Ostrander E.A. Leading the way: Canine models of genomics and disease. Dis. Models Mech. 2010;3:27–34. doi: 10.1242/dmm.004358. PubMed DOI PMC
Hayward J.J., Castelhano M.G., Oliveira K.C., Corey E., Balkman C., Baxter T.L., Casal M.L., Center S.A., Fang M., Garrison S.J., et al. Complex disease and phenotype mapping in the domestic dog. Nat. Commun. 2016;7:10460. doi: 10.1038/ncomms10460. PubMed DOI PMC
Steenbeek F.G., van Hytönen M.K., Leegwater P.A.J., Lohi H. The canine era: The rise of a biomedical model. Anim. Genet. 2016;47:519–527. doi: 10.1111/age.12460. PubMed DOI
Lequarré A.-S., Andersson L., André C., Fredholm M., Hitte C., Leeb T., Lohi H., Lindblad-Toh K., Georges M. LUPA: A European initiative taking advantage of the canine genome architecture for unravelling complex disorders in both human and dogs. Vet. J. 2011;189:155–159. doi: 10.1016/j.tvjl.2011.06.013. PubMed DOI
Marsden C.D., Ortega-Del Vecchyo D., O’Brien D.P., Taylor J.F., Ramirez O., Vilà C., Marques-Bonet T., Schnabel R.D., Wayne R.K., Lohmueller K.E. Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs. Proc. Natl. Acad. Sci. USA. 2016;113:152–157. doi: 10.1073/pnas.1512501113. PubMed DOI PMC
Karlsson E.K., Baranowska I., Wade C.M., Salmon Hillbertz N.H.C., Zody M.C., Anderson N., Biagi T.M., Patterson N., Pielberg G.R., Kulbokas E.J., et al. Efficient mapping of mendelian traits in dogs through genome-wide association. Nat. Genet. 2007;39:1321–1328. doi: 10.1038/ng.2007.10. PubMed DOI
Chen C.-C., Chuong C.M. Multi-layered environmental regulation on the homeostasis of stem cells: The saga of hair growth and alopecia. J. Dermatol. Sci. 2012;66:3–11. doi: 10.1016/j.jdermsci.2012.02.007. PubMed DOI PMC
Schneider M.R., Schmidt-Ullrich R., Paus R. The hair follicle as a dynamic miniorgan. Curr. Biol. 2009;19:R132–R142. doi: 10.1016/j.cub.2008.12.005. PubMed DOI
Fuchs E. Scratching the surface of skin development. Nature. 2007;445:834–842. doi: 10.1038/nature05659. PubMed DOI PMC
Schmidt-Ullrich R., Paus R. Molecular principles of hair follicle induction and morphogenesis. Bioessays. 2005;27:247–261. doi: 10.1002/bies.20184. PubMed DOI
Chen C.-C., Wang L., Plikus M.V., Jiang T.X., Murray P.J., Ramos R., Guerrero-Juarez C.F., Hughes M.W., Lee O.K., Shi S., et al. Organ-level quorum sensing directs regeneration in hair stem cell populations. Cell. 2015;161:277–290. doi: 10.1016/j.cell.2015.02.016. PubMed DOI PMC
Hsu Y.-C., Pasolli H.A., Fuchs E. Dynamics between stem cells, niche, and progeny in the hair follicle. Cell. 2011;144:92–105. doi: 10.1016/j.cell.2010.11.049. PubMed DOI PMC
Zhang Y.V., Cheong J., Ciapurin N., McDermitt D.J., Tumbar T. Distinct self-renewal and differentiation phases in the niche of infrequently dividing hair follicle stem cells. Cell Stem Cell. 2009;5:267–278. doi: 10.1016/j.stem.2009.06.004. PubMed DOI PMC
Rompolas P., Greco V. Stem cell dynamics in the hair follicle niche. Semin. Cell Dev. Biol. 2014;25–26:34–42. doi: 10.1016/j.semcdb.2013.12.005. PubMed DOI PMC
Mesler A.L., Veniaminova N.A., Lull M.V., Wong S.Y. Hair follicle terminal differentiation is orchestrated by distinct early and late matrix progenitors. Cell Rep. 2017;19:809–821. doi: 10.1016/j.celrep.2017.03.077. PubMed DOI PMC
Milner Y., Kashgarian M., Sudnik J., Filippi M., Kizoulis M., Stenn K. Exogen, shedding phase of the hair growth cycle: Characterization of a mouse model. J. Investig. Dermatol. 2002;119:639–644. doi: 10.1046/j.1523-1747.2002.01842.x. PubMed DOI
Schneider P., Street S.L., Gaide O., Hertig S., Tardivel A., Tschopp J., Runkel L., Alevizopoulos K., Ferguson B.M., Zonana J. Mutations leading to x-linked hypohidrotic ectodermal dysplasia affect three major functional domains in the tumor necrosis factor family member ectodysplasin-a. J. Biol. Chem. 2001;276:18819–18827. doi: 10.1074/jbc.M101280200. PubMed DOI
Casal M.L., Jezyk P.F., Greek J.M., Goldschmidt M.H., Patterson D.F. X-linked ectodermal dysplasia in the dog. J. Hered. 1997;88:513–517. doi: 10.1093/oxfordjournals.jhered.a023146. PubMed DOI
Casal M.L., Scheidt J.L., Rhodes J.L., Henthorn P.S., Werner P. Mutation Identification in a canine model of x-linked ectodermal dysplasia. Mamm. Genome. 2005;16:524–531. doi: 10.1007/s00335-004-2463-4. PubMed DOI PMC
Waluk D.P., Zur G., Kaufmann R., Welle M.M., Jagannathan V., Drögemüller C., Müller E.J., Leeb T., Galichet A. A splice defect in the eda gene in dogs with an x-linked hypohidrotic ectodermal dysplasia (XLHED) phenotype. G3 Genes Genomes Genet. 2016;6:2949–2954. doi: 10.1534/g3.116.033225. PubMed DOI PMC
Drögemüller C., Karlsson E.K., Hytönen M.K., Perloski M., Dolf G., Sainio K., Lohi H., Lindblad-Toh K., Leeb T. A mutation in hairless dogs implicates Foxi3 in ectodermal development. Science. 2008;321:1462. doi: 10.1126/science.1162525. PubMed DOI
Frank L.A., Hnilica K.A., Oliver J.W. Adrenal steroid hormone concentrations in dogs with hair cycle arrest (Alopecia X) before and during treatment with melatonin and mitotane. Vet. Dermatol. 2004;15:278–284. doi: 10.1111/j.1365-3164.2004.00372.x. PubMed DOI
Cerundolo R. Symmetrical alopecia in the dog. Practice. 1999;21:350–359. doi: 10.1136/inpract.21.7.350. DOI
Mausberg E.-M., Drögemüller C., Dolf G., Leeb T., Rüfenacht S., Welle M. Evaluation of the CTSL2 gene as a candidate gene for alopecia x in pomeranians and keeshonden. Anim. Biotechnol. 2007;18:291–296. doi: 10.1080/10495390701547461. PubMed DOI
Brunner M.A.T., Jagannathan V., Waluk D.P., Roosje P., Linek M., Panakova L., Leeb T., Wiener D.J., Welle M.M. Novel insights into the pathways regulating the canine hair cycle and their deregulation in alopecia x. PLoS ONE. 2017;12:e0186469. doi: 10.1371/journal.pone.0186469. PubMed DOI PMC
Frank L.A. Oestrogen receptor antagonist and hair regrowth in dogs with hair cycle arrest (Alopecia X) Vet. Dermatol. 2007;18:63–66. doi: 10.1111/j.1365-3164.2007.00559.x. PubMed DOI
Vandenabeele S., Declercq J., De Cock H., Daminet S. Canine recurrent flank alopecia: A synthesis of theory and practice. Vlaams Diergeneeskd. Tijdschr. 2014;83:275–283. doi: 10.21825/vdt.v83i6.16624. DOI
Miller M.A., Dunstan R.W. Seasonal flank alopecia in boxers and airedale terriers: 24 cases (1985–1992) J. Am. Vet. Med. Assoc. 1993;203:1567–1572. PubMed
Bassett R., Burton G., Robson D. Recurrent flank alopecia in a Tibetan terrier. Aust. Vet. J. 2005;83:276–279. doi: 10.1111/j.1751-0813.2005.tb12736.x. PubMed DOI
Waldman L. Seasonal flank alopecia in Affenpinschers. J. Small Anim. Pract. 1995;36:271–273. doi: 10.1111/j.1748-5827.1995.tb02915.x. PubMed DOI
Gomes L.A., Sonoda M.C., Bortolucci L., Werner J., Headley S.A. Manifestations of cyclical flank alopecia in a dog from Southern Brazil. Braz. J. Vet. Pathol. 2008;5:59–63.
Paradis M., Cerundolo R. BSAVA Manual of Canine and Feline Dermatology. BSAVA Library; Gloucester, UK: 2012. An Approach to Symmetrical Alopecia in the Dog.
Medleau L., Hnilica K.A. Small Animal Dermatology: A Color Atlas and Therapeutic Guide. 2nd ed. Saunders; Philadelphia, PA, USA: 2006.
Curtis C.F., Evans H., Lloyd D.H. Investigation of the Reproductive and growth hormone status of dogs affected by idiopathic recurrent flank alopecia. J. Small Anim. Pract. 1996;37:417–422. doi: 10.1111/j.1748-5827.1996.tb02439.x. PubMed DOI
Havlát J. Seznam Chovných Psů Pro Rok 2022/List of Stud Males for 2022. Cesky Fousek Breeding Club Home Page. 2022. [(accessed on 19 February 2022)]. Available online: https://ceskyfousekna.org/
Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A.R., Bender D., Maller J., Sklar P., de Bakker P.I.W., Daly M.J., et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007;81:559–575. doi: 10.1086/519795. PubMed DOI PMC
Purcell S. PLINK 1.07. [(accessed on 30 January 2020)]. Available online: http://pngu.mgh.harvard.edu/purcell/plink/
Hayward J.J., Kelly-Smith M., Boyko A.R., Burmeister L., De Risio L., Mellersh C., Freeman J., Strain G.M. A genome-wide association study of deafness in three canine breeds. PLoS ONE. 2020;15:e0232900. doi: 10.1371/journal.pone.0232900. PubMed DOI PMC
Tsai K.L., Evans J.M., Noorai R.E., Starr-Moss A.N., Clark L.A. Novel Y Chromosome retrocopies in canids revealed through a genome-wide association study for sex. Genes. 2019;10:320. doi: 10.3390/genes10040320. PubMed DOI PMC
Price A.L., Patterson N.J., Plenge R.M., Weinblatt M.E., Shadick N.A., Reich D. Principal Components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 2006;38:904–909. doi: 10.1038/ng1847. PubMed DOI
Patterson N., Price A.L., Reich D. Population structure and eigenanalysis. PLoS Genet. 2006;2:e190. doi: 10.1371/journal.pgen.0020190. PubMed DOI PMC
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2019. [(accessed on 19 February 2022)]. Available online: https://www.R-Project.Org/
Clayton D. snpStats: SnpMatrix and XSnpMatrix Classes and Methods. 2021. [(accessed on 19 February 2022)]. Available online: https://bioconductor.org/packages/release/bioc/html/snpStats.html. DOI
Hunter J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007;9:90–95. doi: 10.1109/MCSE.2007.55. DOI
Kluyver T., Ragan-Kelley B., Pérez F., Granger B., Bussonnier M., Frederic J. Positioning and Power in Academic Publishing: Players, Agents and Agendas. IOS Press; Amsterdam, The Netherlands: 2016. Jupyter Notebooks–A Publishing Format for Reproducible Computational Workflows; pp. 87–90.
Zhou X., Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 2012;44:821–824. doi: 10.1038/ng.2310. PubMed DOI PMC
Purcell S., Chang C. PLINK 1.9. [(accessed on 30 January 2020)]. Available online: https://www.cog-genomics.org/plink/1.9/
Chang C.C., Chow C.C., Tellier L.C., Vattikuti S., Purcell S.M., Lee J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7. doi: 10.1186/s13742-015-0047-8. PubMed DOI PMC
Delaneau O., Howie B., Cox A.J., Zagury J.-F., Marchini J. Haplotype estimation using sequencing reads. Am. J. Hum. Genet. 2013;93:687–696. doi: 10.1016/j.ajhg.2013.09.002. PubMed DOI PMC
Brunner M.A.T., Rüfenacht S., Bauer A., Erpel S., Buchs N., Braga-Lagache S., Heller M., Leeb T., Jagannathan V., Wiener D.J., et al. Bald thigh syndrome in sighthounds—Revisiting the cause of a well-known disease. PLoS ONE. 2019;14:e0212645. doi: 10.1371/journal.pone.0212645. PubMed DOI PMC
Anders S., Pyl P.T., Huber W. HTSeq—A python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–169. doi: 10.1093/bioinformatics/btu638. PubMed DOI PMC
Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Szklarczyk D., Franceschini A., Wyder S., Forslund K., Heller D., Huerta-Cepas J., Simonovic M., Roth A., Santos A., Tsafou K.P., et al. STRING V10: Protein–Protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43:D447–D452. doi: 10.1093/nar/gku1003. PubMed DOI PMC
Bohutínská M., Alston M., Monnahan P., Mandáková T., Bray S., Paajanen P., Kolář F., Yant L. Novelty and convergence in adaptation to whole genome duplication. Mol. Biol. Evol. 2021;38:3910–3924. doi: 10.1093/molbev/msab096. PubMed DOI PMC
Neradilová S., Connell L., Hulva P., Černá Bolfíková B. Tracing genetic resurrection of pointing dog breeds: Cesky Fousek as both survivor and rescuer. PLoS ONE. 2019;14:e0221418. doi: 10.1371/journal.pone.0221418. PubMed DOI PMC
Wiener D.J., Groch K.R., Brunner M.A.T., Leeb T., Jagannathan V., Welle M.M. Transcriptome Profiling and differential gene expression in canine microdissected anagen and telogen hair follicles and interfollicular epidermis. Genes. 2020;11:884. doi: 10.3390/genes11080884. PubMed DOI PMC
Dostál J., Martenek M., Tripes O., Koberová S. Český Fousek. Dona; České Budějovice, Czech Republic: 1998. Chováme Psy.
Sheet S., Kim J.-S., Ko M.-J., Kim N.-Y., Lim Y.-J., Park M.-R., Lee S.-J., Kim J.-M., Oh S.-I., Choi B.-H. Insight into the candidate genes and enriched pathways associated with height, length, length to height ratio and body-weight of Korean indigenous breed, Jindo dog using gene set enrichment-based GWAS analysis. Animals. 2021;11:3136. doi: 10.3390/ani11113136. PubMed DOI PMC
Hagenaars S.P., Hill W.D., Harris S.E., Ritchie S.J., Davies G., Liewald D.C., Gale C.R., Porteous D.J., Deary I.J., Marioni R.E. Genetic prediction of male pattern baldness. PLoS Genet. 2017;13:e1006594. doi: 10.1371/journal.pgen.1006594. PubMed DOI PMC
Tang R., Noh H.J., Wang D., Sigurdsson S., Swofford R., Perloski M., Duxbury M., Patterson E.E., Albright J., Castelhano M., et al. Candidate genes and functional noncoding variants identified in a canine model of obsessive-compulsive disorder. Genome Biol. 2014;15:R25. doi: 10.1186/gb-2014-15-3-r25. PubMed DOI PMC
Tam V., Patel N., Turcotte M., Bossé Y., Paré G., Meyre D. Benefits and limitations of genome-wide association studies. Nat. Rev. Genet. 2019;20:467–484. doi: 10.1038/s41576-019-0127-1. PubMed DOI
Stenn K.S., Paus R. Controls of Hair Follicle Cycling. Physiol. Rev. 2001;81:449–494. doi: 10.1152/physrev.2001.81.1.449. PubMed DOI
Almohanna H.M., Ahmed A.A., Tsatalis J.P., Tosti A. The role of vitamins and minerals in hair loss: A review. Dermatol. Ther. 2019;9:51–70. doi: 10.1007/s13555-018-0278-6. PubMed DOI PMC
Lin K.K., Kumar V., Geyfman M., Chudova D., Ihler A.T., Smyth P., Paus R., Takahashi J.S., Andersen B. Circadian clock genes contribute to the regulation of hair follicle cycling. PLoS Genet. 2009;5:e1000573. doi: 10.1371/journal.pgen.1000573. PubMed DOI PMC
Chen C.-C., Plikus M.V., Tang P.-C., Widelitz R.B., Chuong C.M. The modulatable stem cell niche: Tissue interactions during hair and feather follicle regeneration. J. Mol. Biol. 2016;428:1423–1440. doi: 10.1016/j.jmb.2015.07.009. PubMed DOI PMC
Lee J., Tumbar T. Hairy tale of signaling in hair follicle development and cycling. Semin. Cell Dev. Biol. 2012;23:906–916. doi: 10.1016/j.semcdb.2012.08.003. PubMed DOI PMC
Kretzschmar K., Clevers H. Wnt/β-catenin signaling in adult mammalian epithelial stem cells. Dev. Biol. 2017;428:273–282. doi: 10.1016/j.ydbio.2017.05.015. PubMed DOI
Abe Y., Tanaka N. Roles of the hedgehog signaling pathway in epidermal and hair follicle development, homeostasis, and cancer. J. Dev. Biol. 2017;5:12. doi: 10.3390/jdb5040012. PubMed DOI PMC
Kawano Y., Kypta R. Secreted antagonists of the Wnt signalling pathway. J. Cell Sci. 2003;116:2627–2634. doi: 10.1242/jcs.00623. PubMed DOI
Greco V., Chen T., Rendl M., Schober M., Pasolli H.A., Stokes N., dela Cruz-Racelis J., Fuchs E. A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell. 2009;4:155–169. doi: 10.1016/j.stem.2008.12.009. PubMed DOI PMC
Hsu Y.-C., Li L., Fuchs E. Transit-amplifying cells orchestrate stem cell activity and tissue regeneration. Cell. 2014;157:935–949. doi: 10.1016/j.cell.2014.02.057. PubMed DOI PMC
Welle M.M., Wiener D.J. The hair follicle: A comparative review of canine hair follicle anatomy and physiology. Toxicol. Pathol. 2016;44:564–574. doi: 10.1177/0192623316631843. PubMed DOI
Stenn K.S., Karnik P. Lipids to the top of hair biology. J. Investig. Dermatol. 2010;130:1205–1207. doi: 10.1038/jid.2010.52. PubMed DOI PMC
Nusse R. Wnts and hedgehogs: Lipid-modified proteins and similarities in signaling mechanisms at the cell surface. Development. 2003;130:5297–5305. doi: 10.1242/dev.00821. PubMed DOI
Evers A.W.M., Verhoeven E.W.M., Kraaimaat F.W., Jong E.M.G.J.D., Brouwer S.J.M.D., Schalkwijk J., Sweep F.C.G.J., Kerkhof P.C.M.V.D. How stress gets under the skin: Cortisol and stress reactivity in psoriasis. Br. J. Dermatol. 2010;163:986–991. doi: 10.1111/j.1365-2133.2010.09984.x. PubMed DOI
Morinaga H., Mohri Y., Grachtchouk M., Asakawa K., Matsumura H., Oshima M., Takayama N., Kato T., Nishimori Y., Sorimachi Y., et al. Obesity accelerates hair thinning by stem cell-centric converging mechanisms. Nature. 2021;595:266–271. doi: 10.1038/s41586-021-03624-x. PubMed DOI PMC
Dall’Aglio C., Maranesi M., Di Loria A., Piantedosi D., Ciaramella P., Alterisio M.C., Lepri E., Mercati F. Effects of obesity on adiponectin system skin expression in dogs: A comparative study. Animals. 2021;11:2308. doi: 10.3390/ani11082308. PubMed DOI PMC
Palmer M.A., Blakeborough L., Harries M., Haslam I.S. Cholesterol homeostasis: Links to hair follicle biology and hair disorders. Exp. Dermatol. 2020;29:299–311. doi: 10.1111/exd.13993. PubMed DOI
Spustová V., Dzúrik R. Vitamin D: Synthesis, metabolism, regulation, and an assessment of its deficiency in patients with chronic renal disease. Vnitr. Lek. 2004;50:537–543. PubMed
Sakai Y., Kishimoto J., Demay M.B. Metabolic and cellular analysis of alopecia in vitamin D receptor knockout mice. J. Clin. Investig. 2001;107:961–966. doi: 10.1172/JCI11676. PubMed DOI PMC
Bikle D.D. Vitamin D and the skin: Physiology and pathophysiology. Rev. Endocr. Metab. Disord. 2012;13:3–19. doi: 10.1007/s11154-011-9194-0. PubMed DOI PMC
Demay M.B., MacDonald P.N., Skorija K., Dowd D.R., Cianferotti L., Cox M. Role of the vitamin D receptor in hair follicle biology. J. Steroid Biochem. Mol. Biol. 2007;103:344–346. doi: 10.1016/j.jsbmb.2006.12.036. PubMed DOI PMC
Hong S.-H., Lee J.-E., An S.-M., Shin Y.Y., Hwang D.Y., Yang S.Y., Cho S.-K., An B.-S. Effect of vitamin D3 on biosynthesis of estrogen in porcine granulosa cells via modulation of steroidogenic enzymes. Toxicol. Res. 2017;33:49–54. doi: 10.5487/TR.2017.33.1.049. PubMed DOI PMC
Sinclair R. Pathogenesis and Treatment of Alopecia in Humans; Proceedings of the World Congress of Veterinary Dermatology; Sydney, Australia. 20–24 October 2020; p. 13.
Ge Y., Miao Y., Gur-Cohen S., Gomez N., Yang H., Nikolova M., Polak L., Hu Y., Verma A., Elemento O., et al. The aging skin microenvironment dictates stem cell behavior. Proc. Natl. Acad. Sci. USA. 2020;117:5339–5350. doi: 10.1073/pnas.1901720117. PubMed DOI PMC
Lee S.A., Li K.N., Tumbar T. Stem cell-intrinsic mechanisms regulating adult hair follicle homeostasis. Exp. Dermatol. 2021;30:430–447. doi: 10.1111/exd.14251. PubMed DOI PMC
Mokry J., Pisal R. Development and maintenance of epidermal stem cells in skin adnexa. Int. J. Mol. Sci. 2020;21:9736. doi: 10.3390/ijms21249736. PubMed DOI PMC