Analysis of microRNAs in Small Urinary Extracellular Vesicles and Their Potential Roles in Pathogenesis of Renal ANCA-Associated Vasculitis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RVO-VFN 64165
Ministry of Health of the Czech Republic
AZV-LF1 15-31662A
Ministry of Health of the Czech Republic
Progres Q25/LF1
Ministry of Education, Youth and Sport of the Czech Republic
Progres Q26/LF1
Ministry of Education, Youth and Sport of the Czech Republic
SVV 260 523
Ministry of Education, Youth and Sport of the Czech Republic
PubMed
35457163
PubMed Central
PMC9028884
DOI
10.3390/ijms23084344
PII: ijms23084344
Knihovny.cz E-zdroje
- Klíčová slova
- ANCA-associated vasculitis (AAV), biological pathways, microRNA, next-generation sequencing, pathogenesis, proteomics, quantitative PCR,
- MeSH
- ANCA-asociované vaskulitidy * genetika MeSH
- biologické markery MeSH
- extracelulární vezikuly * genetika MeSH
- ledviny MeSH
- lidé MeSH
- mikro RNA * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- mikro RNA * MeSH
Antineutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV) represents an autoimmunity disease characterized by high mortality. For successful treatment, the detailed knowledge of its complex pathogenesis and the set of biomarkers for differential diagnostics are desired. Analysis of molecular content of small urinary extracellular vesicles (uEV) offers the possibility to find markers in the form of microRNAs (miRNAs) and study the pathways involved in pathogenesis. We used next-generation sequencing in the first preliminary study to detect the miRNAs with altered expression in uEVs of patients with AAV in comparison with age-matched controls. We confirmed the results using single-target quantitative polymerase chain reaction tests on different sets of samples and found five miRNAs (miR-30a-5p, miR-31-3p, miR-99a-5p, miR-106b-5p, miR-182-5p) with highly elevated levels in uEVs of patients. We performed the comparison of their targets with the differentially expressed proteins in uEVs of patients included in the first phase. We realized that upregulated miRNAs and proteins in uEVs in AAV patients target different biological pathways. The only overlap was detected in pathways regulating the actin cytoskeleton assembly and thus potentially affecting the glomerular functions. The associations of upregulated miRNAs with pathways that were neglected as components of complex AAV pathogenesis, e.g., the epidermal growth factor receptor signaling pathway, were found.
Zobrazit více v PubMed
Al-Hussain T., Hussein M.H., Conca W., Al Mana H., Akhtar M. Pathophysiology of ANCA-associated vasculitis. Adv. Anat. Pathol. 2017;4:226–234. doi: 10.1097/PAP.0000000000000154. PubMed DOI
Korabecna M., Tesar V. NETosis provides the link between activation of neutrophils on hemodialysis membrane and comorbidities in dialyzed patients. Inflamm. Res. 2017;66:369–378. doi: 10.1007/s00011-016-1010-6. PubMed DOI PMC
Bertram A., Lovric S., Engel A., Beese M., Wyss K., Hertel B., Park J.K., Becker J.U., Kegel J., Haller H., et al. Circulating ADAM17 level reflects disease activity in proteinase-3 ANCA-associated vasculitis. J. Am. Soc. Nephrol. 2015;26:2860–2870. doi: 10.1681/ASN.2014050477. PubMed DOI PMC
Vitorino R., Ferreira R., Guedes S., Amado F., Thongboonkerd V. What can urinary exosomes tell us? Cell Mol. Life Sci. 2021;78:3265–3283. doi: 10.1007/s00018-020-03739-w. PubMed DOI PMC
Abbasian N., Herbert K.E., Pawluczyk I., Burton J.O., Bevington A. Vesicles bearing gifts: The functional importance of micro-RNA transfer in extracellular vesicles in chronic kidney disease. Am. J. Physiol. Renal. Physiol. 2018;315:F1430–F1443. doi: 10.1152/ajprenal.00318.2018. PubMed DOI
Hu Z., Chen H., Long Y., Li P., Gu Y. The main sources of circulating cell-free DNA: Apoptosis, necrosis, and active secretion. Crit. Rev. Oncol. Hematol. 2021;157:103166. doi: 10.1016/j.critrevonc.2020.103166. PubMed DOI
Tai Y.L., Chen K.C., Hsieh J.T., Shen T.L. Exosomes in cancer development and clinical applications. Cancer Sci. 2018;109:2364–2374. doi: 10.1111/cas.13697. PubMed DOI PMC
Théry C., Zitvogel L., Amigorena S. Exosomes: Composition, biogenesis, and function. Nat. Rev. Immunol. 2002;2:569–579. doi: 10.1038/nri855. PubMed DOI
Doyle L.M., Wang M.Z. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019;8:727. doi: 10.3390/cells8070727. PubMed DOI PMC
Karpman D., Ståhl A.L., Arvidsson I. Extracellular vesicles in renal disease. Nat. Rev. Nephrol. 2017;13:545–562. doi: 10.1038/nrneph.2017.98. PubMed DOI
Solé C., Moliné T., Vidal M., Ordi-Ros J., Cortés-Hernández J. An exosomal urinary miRNA signature for early diagnosis of renal fibrosis in lupus nephritis. Cells. 2019;8:773. doi: 10.3390/cells8080773. PubMed DOI PMC
Garcia-Vives E., Solé C., Moliné T., Vidal M., Agraz I., Ordi-Ros J., Cortés-Hernández J. The urinary exosomal miRNA expression profile is predictive of clinical response in lupus nephritis. Int. J. Mol. Sci. 2020;21:1372. doi: 10.3390/ijms21041372. PubMed DOI PMC
Prikryl P., Satrapova V., Frydlova J., Hruskova Z., Zima T., Tesar V., Vokurka M. Mass spectrometry-based proteomic exploration of the small urinary extracellular vesicles in ANCA-associated vasculitis in comparison with total urine. J. Proteomics. 2021;233:104067. doi: 10.1016/j.jprot.2020.104067. PubMed DOI
Wong M., Grossman J., Hahn B.H., La Cava A. Cutaneous vasculitis in breast cancer treated with chemotherapy. Clin. Immunol. 2008;129:3–9. doi: 10.1016/j.clim.2008.07.001. PubMed DOI PMC
Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:RESEARCH0034.1. doi: 10.1186/gb-2002-3-7-research0034. PubMed DOI PMC
Faraldi M., Gomarasca M., Sansoni V., Perego S., Banfi G., Lombardi G. Normalization strategies differently affect circulating miRNA profile associated with the training status. Sci. Rep. 2019;9:1584. doi: 10.1038/s41598-019-38505-x. PubMed DOI PMC
Faul F., Erdfelder E., Lang A.-G., Buchner A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods. 2007;39:175–191. doi: 10.3758/BF03193146. PubMed DOI
Lv L.L., Feng Y., Tang T.T., Liu B.C. New insight into the role of extracellular vesicles in kidney disease. J. Cell Mol. Med. 2019;23:731–739. doi: 10.1111/jcmm.14101. PubMed DOI PMC
Lv L.L., Feng Y., Wen Y., Wu W.J., Ni H.F., Li Z.L., Zhou L.T., Wang B., Zhang J.D., Crowley S.D., et al. Exosomal CCL2 from tubular epithelial cells is critical for albumin-induced tubulointerstitial inflammation. J. Am. Soc. Nephrol. 2018;29:919–935. doi: 10.1681/ASN.2017050523. PubMed DOI PMC
Gildea J.J., Seaton J.E., Victor K.G., Reyes C.M., Bigler Wang D., Pettigrew A.C., Courtner C.E., Shah N., Tran H.T., Van Sciver R.E., et al. Exosomal transfer from human renal proximal tubule cells to distal tubule and collecting duct cells. Clin. Biochem. 2014;47:89–94. doi: 10.1016/j.clinbiochem.2014.06.018. PubMed DOI PMC
Mossberg M., Ståhl A.L., Kahn R., Kristoffersson A.C., Tati R., Heijl C., Segelmark M., Leeb-Lundberg L.M.F., Karpman D. C1-inhibitor decreases the release of vasculitis-like chemotactic endothelial microvesicles. J. Am. Soc. Nephrol. 2017;28:2472–2481. doi: 10.1681/ASN.2016060637. PubMed DOI PMC
Shah R., Patel T., Freedman J.E. Circulating extracellular vesicles in human disease. N. Engl. J. Med. 2018;379:958–966. doi: 10.1056/NEJMra1704286. PubMed DOI
Erozenci L.A., Piersma S.R., Pham T.V., Bijnsdorp I.V., Jimenez C.R. Longitudinal stability of urinary extracellular vesicle protein patterns within and between individuals. Sci. Rep. 2021;11:15629. doi: 10.1038/s41598-021-95082-8. PubMed DOI PMC
Gracia T., Wang X., Su Y., Norgett E.E., Williams T.L., Moreno P., Micklem G., Karet Frankl F.E. Urinary exosomes contain microRNAs capable of paracrine modulation of tubular transporters in kidney. Sci. Rep. 2017;7:40601. doi: 10.1038/srep40601. PubMed DOI PMC
Ben-Dov I.Z., Whalen V.M., Goilav B., Max K.E., Tuschl T. Cell and microvesicle urine microRNA deep sequencing profiles from healthy individuals: Observations with potential impact on biomarker studies. PLoS ONE. 2016;11:e0147249. doi: 10.1371/journal.pone.0147249. PubMed DOI PMC
Sur D., Cainap C., Burz C., Havasi A., Chis I.C., Vlad C., Milosevic V., Balacescu O., Irimie A. The role of miRNA -31-3p and miR-31-5p in the anti-EGFR treatment efficacy of wild-type K-RAS metastatic colorectal cancer. Is it really the next best thing in miRNAs? J. BUON. 2019;24:1739–1746. PubMed
Uil M., Hau C.M., Ahdi M., Mills J.D., Kers J., Saleem M.A., Florquin S., Gerdes V.E.A., Nieuwland R., Roelofs J.J.T.H. Cellular origin and microRNA profiles of circulating extracellular vesicles in different stages of diabetic nephropathy. Clin. Kidney J. 2019;14:358–365. doi: 10.1093/ckj/sfz145. PubMed DOI PMC
Tsuji K., Kitamura S., Wada J. MicroRNAs as biomarkers for nephrotic syndrome. Int. J. Mol. Sci. 2020;22:88. doi: 10.3390/ijms22010088. PubMed DOI PMC
Szeto C.C. Urine miRNA in nephrotic syndrome. Clin. Chim. Acta. 2014;436:308–313. doi: 10.1016/j.cca.2014.06.016. PubMed DOI
Chen T., Wang C., Yu H., Ding M., Zhang C., Lu X., Zhang C.Y., Zhang C. Increased urinary exosomal microRNAs in children with idiopathic nephrotic syndrome. EBioMedicine. 2019;39:552–561. doi: 10.1016/j.ebiom.2018.11.018. PubMed DOI PMC
Zhang W., Zhang C., Chen H., Li L., Tu Y., Liu C., Shi S., Zen K., Liu Z. Evaluation of microRNAs miR-196a, miR-30a-5P, and miR-490 as biomarkers of disease activity among patients with FSGS. Clin. J. Am. Soc. Nephrol. 2014;9:1545–1552. doi: 10.2215/CJN.11561113. PubMed DOI PMC
Duan Z.Y., Cai G.Y., Li J.J., Bu R., Chen X.M. Urinary erythrocyte-derived miRNAs: Emerging role in IgA nephropathy. Kidney Blood Press. Res. 2017;42:738–748. doi: 10.1159/000481970. PubMed DOI
Magayr T.A., Song X., Streets A.J., Vergoz L., Chang L., Valluru M.K., Yap H.L., Lannoy M., Haghighi A., Simms R.J., et al. Global microRNA profiling in human urinary exosomes reveals novel disease biomarkers and cellular pathways for autosomal dominant polycystic kidney disease. Kidney Int. 2020;98:420–435. doi: 10.1016/j.kint.2020.02.008. PubMed DOI
Ghai V., Wu X., Bheda-Malge A., Argyropoulos C.P., Bernardo J.F., Orchard T., Galas D., Wang K. Genome-wide profiling of urinary extracellular vesicle microRNAs associated with diabetic nephropathy in type 1 diabetes. Kidney Int. Rep. 2017;3:555–572. doi: 10.1016/j.ekir.2017.11.019. PubMed DOI PMC
Shihana F., Wong W.K.M., Joglekar M.V., Mohamed F., Gawarammana I.B., Isbister G.K., Hardikar A.A., Seth D., Buckley N.A. Urinary microRNAs as non-invasive biomarkers for toxic acute kidney injury in humans. Sci. Rep. 2021;11:9165. doi: 10.1038/s41598-021-87918-0. PubMed DOI PMC
Ding C., Ding X., Zheng J., Wang B., Li Y., Xiang H., Dou M., Qiao Y., Tian P., Xue W. miR-182-5p and miR-378a-3p regulate ferroptosis in I/R-induced renal injury. Cell Death Dis. 2020;11:929. doi: 10.1038/s41419-020-03135-z. PubMed DOI PMC
Wilflingseder J., Regele H., Perco P., Kainz A., Soleiman A., Mühlbacher F., Mayer B., Oberbauer R. miRNA profiling discriminates types of rejection and injury in human renal allografts. Transplantation. 2013;95:835–841. doi: 10.1097/TP.0b013e318280b385. PubMed DOI PMC
Wilflingseder J., Jelencsics K., Bergmeister H., Sunzenauer J., Regele H., Eskandary F., Reindl-Schwaighofer R., Kainz A., Oberbauer R. miR-182-5p inhibition ameliorates ischemic acute kidney injury. Am. J. Pathol. 2017;187:70–79. doi: 10.1016/j.ajpath.2016.09.011. PubMed DOI
Wang X., Wang G., Zhang X., Dou Y., Dong Y., Liu D., Xiao J., Zhao Z. Inhibition of microRNA-182-5p contributes to attenuation of lupus nephritis via Foxo1 signaling. Exp. Cell Res. 2018;373:91–98. doi: 10.1016/j.yexcr.2018.09.026. PubMed DOI
Woo Y.M., Kim D.Y., Koo N.J., Kim Y.M., Lee S., Ko J.Y., Shin Y., Kim B.H., Mun H., Choi S., et al. Profiling of miRNAs and target genes related to cystogenesis in ADPKD mouse models. Sci. Rep. 2017;7:14151. doi: 10.1038/s41598-017-14083-8. PubMed DOI PMC
Pazourkova E., Pospisilova S., Svobodova I., Horinek A., Brisuda A., Soukup V., Hrbacek J., Capoun O., Mares J., Hanus T., et al. Comparison of microRNA content in plasma and urine indicates the existence of a transrenal passage of selected microRNAs. Adv. Exp. Med. Biol. 2016;924:97–100. doi: 10.1007/978-3-319-42044-8_18. PubMed DOI
Faraldi M., Gomarasca M., Perego S., Sansoni V., Banfi G., Lombardi G. Effect of collection matrix, platelet depletion, and storage conditions on plasma extracellular vesicles and extracellular vesicle-associated miRNAs measurements. Clin. Chem. Lab. Med. 2020;59:893–903. doi: 10.1515/cclm-2020-1296. PubMed DOI
Stavast C.J., Erkeland S.J. The non-canonical aspects of microRNAs: Many roads to gene regulation. Cells. 2019;8:1465. doi: 10.3390/cells8111465. PubMed DOI PMC
Peng C.H., Lin C.L., Yang C.W., Shueh S., Huang C.C. Vascular endothelial growth factor may provide additional values to C-reactive protein and anti-myeloperoxidase titer as a parameter for evaluating disease activity in anti-myeloperoxidase associated vasculitis. Ren. Fail. 2003;25:1057–1066. doi: 10.1081/JDI-120026042. PubMed DOI
Antovic A., Svensson E., Lövström B., Illescas V.B., Nordin A., Börjesson O., Arnaud L., Bruchfeld A., Gunnarsson I. Venous thromboembolism in antineutrophil cytoplasmic antibody-associated vasculitis: An underlying prothrombotic condition? Rheumatol. Adv. Pract. 2020;4:rkaa056. doi: 10.1093/rap/rkaa056. PubMed DOI PMC
Luo L., Feng S., Wu Y., Su Y., Jing F., Yi Q. Serum levels of syndecan-1 in patients with Kawasaki disease. Pediatr. Infect. Dis. J. 2019;38:89–94. doi: 10.1097/INF.0000000000002047. PubMed DOI PMC
Qin Y., Wang Y., Wu Y., Feng M., Zhao X., Gao C., Guo H., Luo J. Double-negative T cells are absolutely elevated in patients with antineutrophil cytoplasmic autoantibody-associated vasculitis. Mol. Immunol. 2021;132:250–259. doi: 10.1016/j.molimm.2021.01.014. PubMed DOI
Guan Z., VanBeusecum J.P., Inscho E.W. Endothelin and the renal microcirculation. Semin. Nephrol. 2015;35:145–155. doi: 10.1016/j.semnephrol.2015.02.004. PubMed DOI PMC
Iwakiri T., Fujimoto S., Kitagawa K., Furuichi K., Yamahana J., Matsuura Y., Yamashita A., Uezono S., Shimao Y., Hisanaga S., et al. Validation of a newly proposed histopathological classification in Japanese patients with antineutrophil cytoplasmic antibody-associated glomerulonephritis. BMC Nephrol. 2013;14:125. doi: 10.1186/1471-2369-14-125. PubMed DOI PMC
Tse W.Y., Nash G.B., Hewins P., Savage C.O., Adu D. ANCA-induced neutrophil F-actin polymerization: Implications for microvascular inflammation. Kidney Int. 2005;67:130–139. doi: 10.1111/j.1523-1755.2005.00063.x. PubMed DOI
Tokar T., Pastrello C., Rossos A.E.M., Abovsky M., Hauschild A.C., Tsay M., Lu R., Jurisica I. mirDIP 4.1—integrative database of human microRNA target predictions. Nucleic Acids Res. 2018;46:D360–D370. doi: 10.1093/nar/gkx1144. PubMed DOI PMC
Fonseka P., Pathan M., Chitti S.V., Kang T., Mathivanan S. FunRich enables enrichment analysis of OMICs datasets. J. Mol. Biol. 2021;433:166747. doi: 10.1016/j.jmb.2020.166747. PubMed DOI
Ge S.X., Jung D., Yao R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36:2628–2629. doi: 10.1093/bioinformatics/btz931. PubMed DOI PMC
Pang Z., Chong J., Zhou G., de Lima Morais D.A., Chang L., Barrette M., Gauthier C., Jacques P.É., Li S., Xia J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021;49:W388–W396. doi: 10.1093/nar/gkab382. PubMed DOI PMC
Bioinformatics & Evolutionary Genomics. [(accessed on 2 September 2021)]. Available online: https:bioinformatics.psb.ugent.be.webtools/Venn.
Molecular Pathology, Diagnostics, and Therapeutics of Nephropathy