Is Active Moss Biomonitoring Comparable to Air Filter Standard Sampling?

. 2022 Apr 13 ; 19 (8) : . [epub] 20220413

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35457569

Recently, significant attention has been paid to air quality awareness and its impact on human health, especially in urban agglomerations. Many types of dust samplers for air quality monitoring are used by governmental environmental monitoring agencies. However, these techniques are associated with high costs; as a consequence, biological methods such as active moss biomonitoring are being developed. The main disadvantages of such techniques are the lack of standardization of the preparation procedures and the lack of reliable comparisons of results with data from instrumental analyses. Our study aimed to compare the results obtained from active biomonitoring with the use of three moss species: Pleurozium schreberi, Sphagnum fallax and Dicranum polysetum. Samples were exposed via the moss-bag technique to measure the concentrations of analytes (Mn, Fe, Cu, Zn, Cd, Hg and Pb) which had accumulated among the total suspended particulates (TSP) collected from the filters of a dust collector in the city of Opole (Opole voivodeship, Poland). With regard to the physicochemical and biological traits of the mosses, their assessed lifetime and actual photochemical efficiency (yield) following exposure were meagre, which may have been related to the change of environment and their exposure to pollutants. When comparing the results obtained by the two methods used to monitor air pollution, the biomonitoring method was found to be incompletely consistent with the reference method. Biological monitoring using mosses must be carefully considered depending on the monitoring objectives, the required level of sensitivity and quality of measurement and the type of pollutant.

Zobrazit více v PubMed

Li H.H., Chen L.J., Yu L., Guo Z.B., Shan C.Q., Lin J.Q., Gu Y.G., Yang Z.B., Yang Y.X., Shao J.R., et al. Pollution characteristics and risk assessment of human exposure to oral bioaccessibility of heavy metals via urban street dusts from different functional areas in Chengdu, China. Sci. Total Environ. 2017;586:1076–1084. doi: 10.1016/j.scitotenv.2017.02.092. PubMed DOI

Chen S., Jiang N., Huang J., Zang Z., Guan X., Ma X., Luo Y., Li J., Zhang X., Zhang Y. Estimations of indirect and direct anthropogenic dust emission at the global scale. Atmos. Environ. 2019;200:50–60. doi: 10.1016/j.atmosenv.2018.11.063. DOI

Arditsoglou A., Samara C. Levels of total suspended particulate matter and major trace elements in Kosovo: A source identification and apportionment study. Chemosphere. 2005;59:669–678. doi: 10.1016/j.chemosphere.2004.10.056. PubMed DOI

Després V.R., Nowoisky J.F., Klose M., Conrad R., Andreae M.O., Pöschl U. Characterization of primary biogenic aerosol particles in urban, rural, and high-alpine air by DNA sequence and restriction fragment analysis of ribosomal RNA genes. Biogeosciences. 2007;4:1127–1141. doi: 10.5194/bg-4-1127-2007. DOI

Bakolis I., Hammoud R., Stewart R., Beevers S., Dajnak D., MacCrimmon S., Broadbent M., Pritchard M., Shiode N., Fecht D., et al. Mental health consequences of urban air pollution: Prospective population-based longitudinal survey. Soc. Psychiatry Psychiatr. Epidemiol. 2021;56:1587–1599. doi: 10.1007/s00127-020-01966-x. PubMed DOI PMC

Ma J., Ding Y., Cheng J.C.P., Jiang F., Tan Y., Gan V.J.L., Wan Z. Identification of high impact factors of air quality on a national scale using big data and machine learning techniques. J. Clean. Prod. 2020;244:118955. doi: 10.1016/j.jclepro.2019.118955. DOI

Kim J., Jeong U., Ahn M.H., Kim J.H., Park R.J., Lee H., Song C.H., Choi Y.S., Lee K.H., Yoo J.M., et al. New era of air quality monitoring from space: Geostationary environment monitoring spectrometer (GEMS) Bull. Am. Meteorol. Soc. 2020;101:E1–E22. doi: 10.1175/BAMS-D-18-0013.1. DOI

Sheikh A. Improving air quality needs to be a policy priority for governments globally. PLoS Med. 2020;17:10–12. doi: 10.1371/journal.pmed.1003041. PubMed DOI PMC

Vodonos A., Kloog I., Boehm L., Novack V. The impact of exposure to particulate air pollution from non-Anthropogenic sources on hospital admissions due to pneumonia. Eur. Respir. J. 2016;48:1791–1794. doi: 10.1183/13993003.01104-2016. PubMed DOI

Kermani M., Jonidi Jafari A., Gholami M., Arfaeinia H., Shahsavani A., Fanaei F. Characterization, possible sources and health risk assessment of PM2.5-bound Heavy Metals in the most industrial city of Iran. J. Environ. Heal. Sci. Eng. 2021;19:151–163. doi: 10.1007/s40201-020-00589-3. PubMed DOI PMC

Silva da Silva C., Rossato J.M., Vaz Rocha J.A., Vargas V.M.F. Characterization of an area of reference for inhalable particulate matter (PM2.5) associated with genetic biomonitoring in children. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2015;778:44–55. doi: 10.1016/j.mrgentox.2014.11.006. PubMed DOI

Liu C., Zhang Y. Relations between indoor and outdoor PM2.5 and constituent concentrations. Front. Environ. Sci. Eng. 2019;13:1–20. doi: 10.1007/s11783-019-1089-4. DOI

Wilson W.E., Chow J.C., Claiborn C., Fusheng W., Engelbrecht J., Watson J.G. Monitoring of particulate matter outdoors. Chemosphere. 2002;49:1009–1043. doi: 10.1016/S0045-6535(02)00270-9. PubMed DOI

Ali M., Athar M. Air pollution due to traffic, air quality monitoring along three sections of National Highway N-5, Pakistan. Environ. Monit. Assess. 2008;136:219–226. doi: 10.1007/s10661-007-9677-3. PubMed DOI

Schroeder W.H., Dobson M., Kane D.M., Johnson N.D. Toxic Trace Elements Associated With Airborne Pariacnlaie Matter: A Review. J. Air Pollut. Control Assoc. 1987;37:1267–1285. PubMed

Petrovský E., Zbořil R., Grygar T.M., Kotlík B., Novák J., Kapička A., Grison H. Magnetic particles in atmospheric particulate matter collected at sites with different level of air pollution. Stud. Geophys. Geod. 2013;57:755–770. doi: 10.1007/s11200-013-0814-x. DOI

Matos P., Vieira J., Rocha B., Branquinho C., Pinho P. Modeling the provision of air-quality regulation ecosystem service provided by urban green spaces using lichens as ecological indicators. Sci. Total Environ. 2019;665:521–530. doi: 10.1016/j.scitotenv.2019.02.023. PubMed DOI

Almeida S.M., Ramos C.A., Marques A.M., Silva A.V., Freitas M.C., Farinha M.M., Reis M., Marques A.P. Use of INAA and PIXE for multipollutant air quality assessment and management. J. Radioanal. Nucl. Chem. 2012;294:343–347. doi: 10.1007/s10967-011-1473-4. DOI

Stankovic S., Kalaba P., Stankovic A.R. Biota as toxic metal indicators. Environ. Chem. Lett. 2014;12:63–84. doi: 10.1007/s10311-013-0430-6. DOI

Hewitt C.N., Ashworth K., MacKenzie A.R. Using green infrastructure to improve urban air quality (GI4AQ) Ambio. 2020;49:62–73. doi: 10.1007/s13280-019-01164-3. PubMed DOI PMC

Floreani F., Barago N., Acquavita A., Covelli S., Skert N., Higueras P. Spatial distribution and biomonitoring of atmospheric mercury concentrations over a contaminated coastal lagoon (Northern Adriatic, Italy) Atmosphere. 2020;11:1280. doi: 10.3390/atmos11121280. DOI

Kempter H., Krachler M., Shotyk W., Zaccone C. Validating modelled data on major and trace element deposition in southern Germany using Sphagnum moss. Atmos. Environ. 2017;167:656–664. doi: 10.1016/j.atmosenv.2017.08.037. DOI

Zarazúa-Ortega G., Poblano-Bata J., Tejeda-Vega S., Ávila-Pérez P., Zepeda-Gómez C., Ortiz-Oliveros H., Macedo-Miranda G. Assessment of spatial variability of heavy metals in metropolitan zone of toluca valley, Mexico, using the biomonitoring technique in mosses and TXRF analysis. Sci. World J. 2013;2013:1–7. doi: 10.1155/2013/426492. PubMed DOI PMC

Rai P.K. Impacts of particulate matter pollution on plants: Implications for environmental biomonitoring. Ecotoxicol. Environ. Saf. 2016;129:120–136. doi: 10.1016/j.ecoenv.2016.03.012. PubMed DOI

Clough W.S. The deposition of particles on moss and grass surfaces. Atmos. Environ. 1975;9:1113–1119. doi: 10.1016/0004-6981(75)90187-0. DOI

Ştefănuţ S., Manole A., Ion M.C., Constantin M., Banciu C., Onete M., Manu M., Vicol I., Moldoveanu M.M., Maican S., et al. Developing a novel warning-informative system as a tool for environmental decision-making based on biomonitoring. Ecol. Indic. 2018;89:480–487. doi: 10.1016/j.ecolind.2018.02.020. DOI

Ștefănuț S., Öllerer K., Manole A., Ion M.C., Constantin M., Banciu C., Maria G.M., Florescu L.I. National environmental quality assessment and monitoring of atmospheric heavy metal pollution—A moss bag approach. J. Environ. Manag. 2019;248:109224. doi: 10.1016/j.jenvman.2019.06.125. PubMed DOI

Iodice P., Adamo P., Capozzi F., Di Palma A., Senatorea A., Spagnuolo V., Giordano S. Air pollution monitoring using emission inventories combined with the moss bag approach. Sci. Total Environ. 2016;541:1410–1419. doi: 10.1016/j.scitotenv.2015.10.034. PubMed DOI

Vanicela B.D., Nebel M., Stephan M., Riethmüller C., Gresser G.T. Quantitative analysis of fine dust particles on moss surfaces under laboratory conditions using the example of Brachythecium rutabulum. Environ. Sci. Pollut. Res. 2021;28:51763–51771. doi: 10.1007/s11356-021-14218-5. PubMed DOI PMC

Vuković G., Aničić Uroševic M., Razumenić I., Kuzmanoski M., Pergal M., Škrivanj S., Popović A. Air quality in urban parking garages (PM10, major and trace elements, PAHs): Instrumental measurements vs. active moss biomonitoring. Atmos. Environ. 2014;85:31–40. doi: 10.1016/j.atmosenv.2013.11.053. DOI

Capozzi F., Sorrentino M.C., Di Palma A., Mele F., Arena C., Adamo P., Spagnuolo V., Giordano S. Implication of vitality, seasonality and specific leaf area on PAH uptake in moss and lichen transplanted in bags. Ecol. Indic. 2020;108:105727. doi: 10.1016/j.ecolind.2019.105727. DOI

Markert B. From biomonitoring to integrated observation of the environment—The multi-markered bioindication concept. Ecol. Chem. Eng. S. 2008;15:315–333.

Sheppard P.R., Speakman R.J., Farris C., Witten M.L. Multiple environmental monitoring techniques for assessing spatial patterns of airborne tungsten. Environ. Sci. Technol. 2007;41:406–410. doi: 10.1021/es061278f. PubMed DOI

Pöykiö R. Assessing Industrial Pollution by Means of Environmental Samples in the Kemi-Tornio Region. Oulu University Press; Oulu, Finland: 2002.

Kupiainen K., Tervahattu H. The effect of traction sanding on urban suspended particles in Finland. Environ. Monit. Assess. 2004;93:287–300. doi: 10.1023/B:EMAS.0000016799.19441.0e. PubMed DOI

Harmens H., Frontasyeva M. Heavy Metals, Nitrogen and POPs in European Mosses: 2020 Survey. ICP Vegetation; Lancester, UK: 2020.

Świsłowski P., Kosior G., Rajfur M. The influence of preparation methodology on the concentrations of heavy metals in Pleurozium schreberi moss samples prior to use in active biomonitoring studies. Environ. Sci. Pollut. Res. 2021;28:10068–10076. doi: 10.1007/s11356-020-11484-7. PubMed DOI PMC

European Commission . EN 12341:2014 Ambient Air—Standard Gravimetric Measurement Method for the Determination of the PM10 or PM2,5 Mass Concentration of Suspended Particulate Matter. Austrian Standards International; Vienna, Austria: 2014.

Gerboles M., Buzica D., Brown R.J.C., Yardley R.E., Hanus-Illnar A., Salfinger M., Vallant B., Adriaenssens E., Claeys N., Roekens E., et al. Interlaboratory comparison exercise for the determination of As, Cd, Ni and Pb in PM10 in Europe. Atmos. Environ. 2011;45:3488–3499. doi: 10.1016/j.atmosenv.2010.12.020. DOI

Thermo Fisher Scientific Inc . iCE 3000 Series AA Spectrometers Operator’s Manual. Volume 44. Thermo Scientific; New York, NY, USA: 2011. pp. 1, 7–18.

Rajfur M., Świsłowski P., Nowainski F., Śmiechowicz B. Mosses as Biomonitor of Air Pollution with Analytes Originating from Tobacco Smoke. Chem. Didact. Ecol. Metrol. 2018;23:127–136. doi: 10.1515/cdem-2018-0008. DOI

Šraj Kržič N., Gaberščik A. Photochemical efficiency of amphibious plants in an intermittent lake. Aquat. Bot. 2005;83:281–288. doi: 10.1016/j.aquabot.2005.05.012. DOI

Aitchison J. The Statistical Analysis of Compositional Data. The Blackburn Press; Caldwell, NJ, USA: 2003.

Pawlowsky-Glahn V., Buccianti A. Compositional Data Analysis. Theory and Applications. John Wiley & Sons; London, UK: 2011.

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2021.

Palarea-Albaladejo J., Martín-Fernández J.A. ZCompositions—R package for multivariate imputation of left-censored data under a compositional approach. Chemom. Intell. Lab. Syst. 2015;143:85–96. doi: 10.1016/j.chemolab.2015.02.019. DOI

Chambers J.M., Hastie T. Statistical Models in S. Chapman & Hall; New York, NY, USA: 1993. (Wadsworth\& Brooks/Cole computer science series).

Kosior G., Frontasyeva M., Ziembik Z., Zincovscaia I., Dołhańczuk-Śródka A., Godzik B. The Moss Biomonitoring Method and Neutron Activation Analysis in Assessing Pollution by Trace Elements in Selected Polish National Parks. Arch. Environ. Contam. Toxicol. 2020;79:310–320. doi: 10.1007/s00244-020-00755-6. PubMed DOI PMC

Kłos A., Ziembik Z., Rajfur M., Dołhańczuk-Śródka A., Bochenek Z., Bjerke J.W., Tømmervik H., Zagajewski B., Ziółkowski D., Jerz D., et al. Using moss and lichens in biomonitoring of heavy-metal contamination of forest areas in southern and north-eastern Poland. Sci. Total Environ. 2018;627:438–449. doi: 10.1016/j.scitotenv.2018.01.211. PubMed DOI

Olszowski T., Bozym M. Pilot study on using an alternative method of estimating emission of heavy metals from wood combustion. Atmos. Environ. 2014;94:22–27. doi: 10.1016/j.atmosenv.2014.05.011. DOI

Rogova N., Ryzhakova N., Gusvitskii K., Eruntsov V. Studying the influence of seasonal conditions and period of exposure on trace element concentrations in the moss-transplant Pylaisia polyantha. Environ. Monit. Assess. 2021;193:1–9. doi: 10.1007/s10661-021-08900-x. PubMed DOI

Węgrzyn M.H., Fałowska P., Alzayany K., Waszkiewicz K., Dziurowicz P., Wietrzyk-Pełka P. Seasonal Changes in the Photosynthetic Activity of Terrestrial Lichens and Mosses in the Lichen Scots Pine Forest Habitat. Diversity. 2021;13:642. doi: 10.3390/d13120642. DOI

Sujetovienė G., Galinytė V. Effects of the urban environmental conditions on the physiology of lichen and moss. Atmos. Pollut. Res. 2016;7:611–618. doi: 10.1016/j.apr.2016.02.009. DOI

Romańska M. Impact of water stress on physiological processes of moss Polytrichum piliferum Hedw. Ann. Univ. Paedagog. Cracoviensis Stud. Naturae. 2020:129–141. doi: 10.24917/25438832.5.9. DOI

Bargagli R. Moss and lichen biomonitoring of atmospheric mercury: A review. Sci. Total Environ. 2016;572:216–231. doi: 10.1016/j.scitotenv.2016.07.202. PubMed DOI

Diener A., Mudu P. How can vegetation protect us from air pollution? A critical review on green spaces’ mitigation abilities for air-borne particles from a public health perspective—With implications for urban planning. Sci. Total Environ. 2021;796:148605. doi: 10.1016/j.scitotenv.2021.148605. PubMed DOI

González A.G., Pokrovsky O.S. Metal adsorption on mosses: Toward a universal adsorption model. J. Colloid Interface Sci. 2014;415:169–178. doi: 10.1016/j.jcis.2013.10.028. PubMed DOI

Sabovljević M.S., Weidinger M., Sabovljević A.D., Stanković J., Adlassnig W., Lang I. Metal accumulation in the acrocarp moss Atrichum undulatum under controlled conditions. Environ. Pollut. 2020;256:1–8. doi: 10.1016/j.envpol.2019.113397. PubMed DOI

Culicov O.A., Mocanu R., Frontasyeva M.V., Yurukova L., Steinnes E. Active moss biomonitoring applied to an industrial site in Romania: Relative accumulation of 36 elements in moss-bags. Environ. Monit. Assess. 2005;108:229–240. doi: 10.1007/s10661-005-1688-9. PubMed DOI

Onianwa P.C. Monitoring atmospheric metal pollution: A review of the use of mosses as indicators. Environ. Monit. Assess. 2001;71:13–50. doi: 10.1023/A:1011660727479. PubMed DOI

Aydoğan S., Erdağ B., Yildiz Aktaş L. Bioaccumulation and oxidative stress impact of Pb, Ni, Cu, and Cr heavy metals in two bryophyte species, Pleurochaete squarrosa and timmiella barbuloides. Turk. J. Botany. 2017;41:464–475. doi: 10.3906/bot-1608-33. DOI

Hussain S., Hoque R.R. Biomonitoring of metallic air pollutants in unique habitations of the Brahmaputra Valley using moss species—Atrichum angustatum: Spatiotemporal deposition patterns and sources. Environ. Sci. Pollut. Res. 2022;29:10617–10634. doi: 10.1007/s11356-021-16153-x. PubMed DOI

Kempter H., Krachler M., Shotyk W., Zaccone C. Major and trace elements in Sphagnum moss from four southern German bogs, and comparison with available moss monitoring data. Ecol. Indic. 2017;78:19–25. doi: 10.1016/j.ecolind.2017.02.029. DOI

Aničić M., Tomašević M., Tasić M., Rajšić S., Popović A., Frontasyeva M.V., Lierhagen S., Steinnes E. Monitoring of trace element atmospheric deposition using dry and wet moss bags: Accumulation capacity versus exposure time. J. Hazard. Mater. 2009;171:182–188. doi: 10.1016/j.jhazmat.2009.05.112. PubMed DOI

Vuković G., Urošević M.A., Pergal M., Janković M., Goryainova Z., Tomašević M., Popović A. Residential heating contribution to level of air pollutants (PAHs, major, trace, and rare earth elements): A moss bag case study. Environ. Sci. Pollut. Res. 2015;22:18956–18966. doi: 10.1007/s11356-015-5096-0. PubMed DOI

Hu R., Yan Y., Zhou X., Wang Y., Fang Y. Monitoring heavy metal contents with Sphagnum junghuhnianum moss bags in relation to traffic volume in Wuxi, China. Int. J. Environ. Res. Public Health. 2018;15:374. doi: 10.3390/ijerph15020374. PubMed DOI PMC

Capozzi F., Adamo P., Di Palma A., Aboal J.R., Bargagli R., Fernandez J.A., Lopez Mahia P., Reski R., Tretiach M., Spagnuolo V., et al. Sphagnum palustre clone vs native Pseudoscleropodium purum: A first trial in the field to validate the future of the moss bag technique. Environ. Pollut. 2017;225:323–328. doi: 10.1016/j.envpol.2017.02.057. PubMed DOI

Morales-Casa V., Rebolledo J., Ginocchio R., Saéz-Navarrete C. The effect of “moss bag” shape in the air monitoring of metal(oid)s in semi-arid sites: Influence of wind speed and moss porosity. Atmos. Pollut. Res. 2019;10:1921–1930. doi: 10.1016/j.apr.2019.08.005. DOI

Boquete M.T., Ares A., Fernández J.A., Aboal J.R. Matching times: Trying to improve the correlation between heavy metal levels in mosses and bulk deposition. Sci. Total Environ. 2020;715:136955. doi: 10.1016/j.scitotenv.2020.136955. PubMed DOI

Debén S., Fernández J.A., Carballeira A., Aboal J.R. Using devitalized moss for active biomonitoring of water pollution. Environ. Pollut. 2016;210:315–322. doi: 10.1016/j.envpol.2016.01.009. PubMed DOI

Holt E., Miller S. Bioindicators: Using organisms to measure environmental impacts. Nat. Educ. Knowl. 2011;2:1–8.

Markert B., Wünschmann S. Bioindicators and Biomonitors: Use of Organisms to Observe the Influence of Chemicals on the Environment. Plant. Ecophysiol. 2011:217–236.

Parmar T.K., Rawtani D., Agrawal Y.K. Bioindicators: The natural indicator of environmental pollution. Front. Life Sci. 2016;9:110–118. doi: 10.1080/21553769.2016.1162753. DOI

Cao T., Wang M., An L., Yu Y., Lou Y., Guo S., Zuo B., Liu Y., Wu J., Cao Y., et al. Air quality for metals and sulfur in Shanghai, China, determined with moss bags. Environ. Pollut. 2009;157:1270–1278. doi: 10.1016/j.envpol.2008.11.051. PubMed DOI

Boquete M.T., Aboal J.R., Carballeira A., Fernández J.A. Do mosses exist outside of Europe? A biomonitoring reflection. Sci. Total Environ. 2017;593–594:567–570. doi: 10.1016/j.scitotenv.2017.03.196. PubMed DOI

Mojžiš M., Bubeníková T., Zachar M., Kačíková D., Štefková J. Comparison of natural and synthetic sorbents’ efficiency at oil spill removal. BioResources. 2019;14:8738–8752.

Sandu I.O., Bulgariu L., Macoveanu M. Evaluation of atmospheric pollution by using natural low-cost sorbents. Environ. Eng. Manag. J. 2012;11:177–184.

Giordano S., Adamo P., Sorbo S., Vingiani S. Atmospheric trace metal pollution in the Naples urban area based on results from moss and lichen bags. Environ. Pollut. 2005;136:431–442. doi: 10.1016/j.envpol.2005.01.017. PubMed DOI

Świsłowski P., Rajfur M., Wacławek M. Influence of Heavy Metal Concentration on Chlorophyll Content in Pleurozium schreberi Mosses. Ecol. Chem. Eng. S. 2020;27:591–601. doi: 10.2478/eces-2020-0037. DOI

Adamo P., Crisafulli P., Giordano S., Minganti V., Modenesi P., Monaci F., Pittao E., Tretiach M., Bargagli R. Lichen and moss bags as monitoring devices in urban areas. Part II: Trace element content in living and dead biomonitors and comparison with synthetic materials. Environ. Pollut. 2007;146:392–399. doi: 10.1016/j.envpol.2006.03.047. PubMed DOI

Tretiach M., Adamo P., Bargagli R., Baruffo L., Carletti L., Crisafulli P., Giordano S., Modenesi P., Orlando S., Pittao E. Lichen and moss bags as monitoring devices in urban areas. Part I: Influence of exposure on sample vitality. Environ. Pollut. 2007;146:380–391. doi: 10.1016/j.envpol.2006.03.046. PubMed DOI

Chen Y.E., Yuan S., Su Y.Q., Wang L. Comparison of heavy metal accumulation capacity of some indigenous mosses in Southwest China cities: A case study in Chengdu city. Plant Soil Environ. 2010;56:60–66. doi: 10.17221/160/2009-PSE. DOI

Ryzhakova N.K., Rogova N.S., Borisenko A.L. Research of Mosses Accumulation Properties Used for Assessment of Regional and Local Atmospheric Pollution. Environ. Res. Eng. Manag. 2014;69:84–91. doi: 10.5755/j01.erem.69.3.5566. DOI

Zechmeister H.G., Rivera M., Köllensperger G., Marrugat J., Künzli N. Indoor monitoring of heavy metals and NO2 using active monitoring by moss and Palmes diffusion tubes. Environ. Sci. Eur. 2020;32:1–12. doi: 10.1186/s12302-020-00439-x. DOI

Cowden P., Aherne J. Interspecies comparison of three moss species (Hylocomium splendens, Pleurozium schreberi, and Isothecium stoloniferum) as biomonitors of trace element deposition. Environ. Monit. Assess. 2019;191:1–13. doi: 10.1007/s10661-019-7354-y. PubMed DOI

Saitanis C.J., Frontasyeva M.V., Steinnes E., Palmer M.W., Ostrovnaya T.M., Gundorina S.F. Spatiotemporal distribution of airborne elements monitored with the moss bags technique in the Greater Thriasion Plain, Attica, Greece. Environ. Monit. Assess. 2013;185:955–968. doi: 10.1007/s10661-012-2606-0. PubMed DOI

Institute of Meteorology and Water Management Historical Measurement Data. [(accessed on 7 February 2021)]. Available online: https://dane.imgw.pl.

Świsłowski P., Nowak A., Rajfur M. The influence of environmental conditions on the lifespan of mosses under long-term active biomonitoring. Atmos. Pollut. Res. 2021;12:101203. doi: 10.1016/j.apr.2021.101203. DOI

Świsłowski P., Ziembik Z., Rajfur M. Air quality during new year’s eve: A biomonitoring study with moss. Atmosphere. 2021;12:975. doi: 10.3390/atmos12080975. DOI

Weerakkody U., Dover J.W., Mitchell P., Reiling K. Evaluating the impact of individual leaf traits on atmospheric particulate matter accumulation using natural and synthetic leaves. Urban For. Urban Green. 2018;30:98–107. doi: 10.1016/j.ufug.2018.01.001. DOI

Weerakkody U., Dover J.W., Mitchell P., Reiling K. Quantification of the traffic-generated particulate matter capture by plant species in a living wall and evaluation of the important leaf characteristics. Sci. Total Environ. 2018;635:1012–1024. doi: 10.1016/j.scitotenv.2018.04.106. PubMed DOI

Di Palma A., Capozzi F., Spagnuolo V., Giordano S., Adamo P. Atmospheric particulate matter intercepted by moss-bags: Relations to moss trace element uptake and land use. Chemosphere. 2017;176:361–368. doi: 10.1016/j.chemosphere.2017.02.120. PubMed DOI

Tretiach M., Pittao E., Crisafulli P., Adamo P. Influence of exposure sites on trace element enrichment in moss-bags and characterization of particles deposited on the biomonitor surface. Sci. Total Environ. 2011;409:822–830. doi: 10.1016/j.scitotenv.2010.10.026. PubMed DOI

Stojanowska A., Mach T., Olszowski T., Bihałowicz J.S., Górka M., Rybak J., Rajfur M., Świsłowski P. Air pollution research based on spider web and parallel continuous particulate monitoring—A comparison study coupled with identification of sources. Minerals. 2021;11:812. doi: 10.3390/min11080812. DOI

Giordano S., Adamo P., Spagnuolo V., Tretiach M., Bargagli R. Accumulation of airborne trace elements in mosses, lichens and synthetic materials exposed at urban monitoring stations: Towards a harmonisation of the moss-bag technique. Chemosphere. 2013;90:292–299. doi: 10.1016/j.chemosphere.2012.07.006. PubMed DOI

Adamo P., Giordano S., Naimo D., Bargagli R. Geochemical properties of airborne particulate matter (PM10) collected by automatic device and biomonitors in a Mediterranean urban environment. Atmos. Environ. 2008;42:346–357. doi: 10.1016/j.atmosenv.2007.09.018. DOI

Krommer V., Zechmeister H.G., Roder I., Scharf S., Hanus-Illnar A. Monitoring atmospheric pollutants in the biosphere reserve Wienerwald by a combined approach of biomonitoring methods and technical measurements. Chemosphere. 2007;67:1956–1966. doi: 10.1016/j.chemosphere.2006.11.060. PubMed DOI

Svozilík V., Krakovská A.S., Bitta J., Jančík P. Comparison of the air pollution mathematical model of pm10 and moss biomonitoring results in the Tritia region. Atmosphere. 2021;12:656. doi: 10.3390/atmos12060656. DOI

Lazić L., Urošević M.A., Mijić Z., Vuković G., Ilić L. Traffic contribution to air pollution in urban street canyons: Integrated application of the OSPM, moss biomonitoring and spectral analysis. Atmos. Environ. 2016;141:347–360. doi: 10.1016/j.atmosenv.2016.07.008. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...