• This record comes from PubMed

Short amplicon reverse transcription-polymerase chain reaction detects aberrant splicing in genes with low expression in blood missed by ribonucleic acid sequencing analysis for clinical diagnosis

. 2022 Jul ; 43 (7) : 963-970. [epub] 20220427

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
FS/18/79/33932 British Heart Foundation - United Kingdom

Use of blood RNA sequencing (RNA-seq) as a splicing analysis tool for clinical interpretation of variants of uncertain significance (VUSs) found via whole-genome and exome sequencing can be difficult for genes that have low expression in the blood due to insufficient read count coverage aligned to specific genes of interest. Here, we present a short amplicon reverse transcription-polymerase chain reaction(RT-PCR) for the detection of genes with low blood expression. Short amplicon RT-PCR, is designed to span three exons where an exon harboring a variant is flanked by one upstream and one downstream exon. We tested short amplicon RT-PCRs for genes that have median transcripts per million (TPM) values less than one according to the genotype-tissue expression database. Median TPM values of genes analyzed in this study are SYN1 = 0.8549, COL1A1 = 0.6275, TCF4 = 0.4009, DSP = .2894, TTN = 0.2851, COL5A2 = 0.1036, TERT = 0.04452, NTRK2 = 0.0344, ABCA4 = 0.00744, PRPH = 0, and WT1 = 0. All these genes show insufficient exon-spanning read coverage in our RNA-seq data to allow splicing analysis. We successfully detected all genes tested except PRPH and WT1. Aberrant splicing was detected in SYN1, TCF4, NTRK2, TTN, and TERT VUSs. Therefore, our results show short amplicon RT-PCR is a useful alternative for the analysis of splicing events in genes with low TPM in blood RNA for clinical diagnostics.

See more in PubMed

Dobin, A. , Davis, C. A. , Schlesinger, F. , Drenkow, J. , Zaleski, C. , Jha, S. , Batut, P. , Chaisson, M. , & Gingeras, T. R. (2013). STAR: Ultrafast universal RNA‐seq aligner. Bioinformatics, 29(1), 15–21. 10.1093/bioinformatics/bts635 PubMed DOI PMC

Douglas, A. G. L. , & Baralle, D. (2021). Translating RNA splicing analysis into diagnosis and therapy. OBM Genetics, 5(1), 23. 10.21926/obm.genet.2101125 DOI

Lonsdale, J. , Thomas, J. , Salvatore, M. , Phillips, R. , Lo, E. , Shad, S. , Hasz, R. , Walters, G. , Garcia, F. , Young, N. , Foster, B. , Moser, M. , Karasik, E. , Gillard, B. , Ramsey, K. , Sullivan, S. , Bridge, J. , Magazine, H. , Syron, J. , … Moore, H. F. (2013). The genotype‐tissue expression (GTEx) project. Nature Genetics, 45(6), 580–585. 10.1038/ng.2653 PubMed DOI PMC

Lord, J. , & Baralle, D. (2021). Splicing in the diagnosis of rare disease: Advances and challenges. Frontiers in Genetics, 12, 1146. 10.3389/FGENE.2021.689892/BIBTEX PubMed DOI PMC

Macken, W. L. , Godwin, A. , Wheway, G. , Stals, K. , Nazlamova, L. , Ellard, S. , Alfares, A. , Aloraini, T. , AlSubaie, L. , Alfadhel, M. , Alajaji, S. , Wai, H. A. , Self, J. , Douglas, A. G. L. , Kao, A. P. , Guille, M. , & Baralle, D. (2021). Biallelic variants in COPB1 cause a novel, severe intellectual disability syndrome with cataracts and variable microcephaly. Genome Medicine, 13(1), 1–19. 10.1186/s13073-021-00850-w PubMed DOI PMC

Murdock, D. R. , Dai, H. , Burrage, L. C. , Rosenfeld, J. A. , Ketkar, S. , Müller, M. F. , Yépez, V. A. , Gagneur, J. , Liu, P. , Chen, S. , Jain, M. , Zapata, G. , Bacino, C. A. , Chao, H. T. , Moretti, P. , Craigen, W. J. , Hanchard, N. A. , & Lee, B. (2021). Transcriptome‐directed analysis for Mendelian disease diagnosis overcomes limitations of conventional genomic testing. Journal of Clinical Investigation, 131(1), e141500. 10.1172/JCI141500 PubMed DOI PMC

Pagani, F. , & Baralle, F. E. (2009). Analysis of human splicing defects using hybrid minigenes, Molecular diagnostics (2nd ed., pp. 155–169). Elsevier Ltd. 10.1016/B978-0-12-374537-8.00011-0 DOI

Rowlands, C. , Thomas, H. , Lord, J. , Wai, H. , Arno, G. , Beaman, G. , Sergouniotis, P. , Silva, B. G. , Campbell, C. , Gossan, N. , Hardcastle, C. , Webb, K. , Callaghan, C. O. , Hirst, R. , Ramsden, S. , Jones, E. , Smith, J. C. , Webster, A. , Douglas, A. , Keefe, R. T. O. , Baralle, D. , Black, G. , & Ellingford, J. (2020). Comparison of in silico strategies to prioritize rare genomic variants impacting RNA splicing for the diagnosis of genomic disorders. Scientific Reports, 11, 20607. 10.22541/AU.160157595.59675486 PubMed DOI PMC

Ttir, H. , Robinson, J. T. , & Mesirov, J. P. (2013). Integrative genomics viewer (IGV): High‐performance genomics data visualization and exploration. Briefings in Bioinformatics, 14(2), 178–192. 10.1093/bib/bbs017 PubMed DOI PMC

Wagner, G. P. , Kin, K. , & Lynch, V. J. (2012). Measurement of mRNA abundance using RNA‐seq data: RPKM measure is inconsistent among samples. Theory in Biosciences, 131(4), 281–285. 10.1007/s12064-012-0162-3 PubMed DOI

Wai, H. , Douglas, A. G. L. , & Baralle, D. (2019). RNA splicing analysis in genomic medicine. International Journal of Biochemistry and Cell Biology, 108, 61–71. 10.1016/j.biocel.2018.12.009 PubMed DOI

Wai, H. A. , Lord, J. , Lyon, M. , Gunning, A. , Kelly, H. , Cibin, P. , Seaby, E. G. , Spiers‐Fitzgerald, K. , Lye, J. , Ellard, S. , Thomas, N. S. , Bunyan, D. J. , Douglas, A. , & Baralle, D. , Splicing and Disease Working Group . (2020). Blood RNA analysis can increase clinical diagnostic rate and resolve variants of uncertain significance. Genetics in Medicine, 22(6), 1005–1014. 10.1038/s41436-020-0766-9 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...