Physical exercise, immune response, and susceptibility to infections-current knowledge and growing research areas

. 2022 Sep ; 77 (9) : 2653-2664. [epub] 20220509

Jazyk angličtina Země Dánsko Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35485959

This review presents state-of-the-art knowledge and identifies knowledge gaps for future research in the area of exercise-associated modifications of infection susceptibility. Regular moderate-intensity exercise is believed to have beneficial effects on immune health through lowering inflammation intensity and reducing susceptibility to respiratory infections. However, strenuous exercise, as performed by professional athletes, may promote infection: in about half of athletes presenting respiratory symptoms, no causative pathogen can be identified. Acute bouts of exercise enhance the release of pro-inflammatory mediators, which may induce infection-like respiratory symptoms. Relatively few studies have assessed the influence of regularly repeated exercise on the immune response and systemic inflammation compared to the effects of acute exercise. Additionally, ambient and environmental conditions may modify the systemic inflammatory response and infection susceptibility, particularly in outdoor athletes. Both acute and chronic regular exercise influence humoral and cellular immune response mechanisms, resulting in decreased specific and non-specific response in competitive athletes. The most promising areas of further research in exercise immunology include detailed immunological characterization of infection-prone and infection-resistant athletes, examining the efficacy of nutritional and pharmaceutical interventions as countermeasures to infection symptoms, and determining the influence of various exercise loads on susceptibility to infections with respiratory viruses, including SARS-CoV-2. By establishing a uniform definition of an "elite athlete," it will be possible to make a comparable and straightforward interpretation of data from different studies and settings.

Zobrazit více v PubMed

Mathur N, Pedersen BK. Exercise as a mean to control low-grade systemic inflammation. Mediat Inflamm. 2008;2008:1-6. doi:10.1155/2008/109502

Walsh NP, Gleeson M, Shephard RJ, et al. Position statement. Part one: immune function and exercise. Exerc Immunol Rev. 2011;17:6-63.

Hoffman MD, Krishnan E. Health and exercise-related medical issues among 1,212 ultramarathon runners: baseline findings from the Ultrarunners Longitudinal TRAcking (ULTRA) study. PLoS One. 2014;9(1):e83867.

Hoffman MD, Fogard K. Demographic characteristics of 161-km ultramarathon runners. Res Sport Med. 2012;20(1):59-69.

Robson-Ansley P, Howatson G, Tallent J, et al. Prevalence of allergy and upper respiratory tract symptomsin runners of London Marathon. Med Sci Sport Exerc. 2012;44(6):999-1004.

Peters EM, Bateman ED. Ultramarathon running and upper respiratory tractinfections. An epidemiological survey. S Afr Med J. 1983;64(15):582-584.

Bermon S. Airway inflammation and upper respiratory tract infection in athletes: is there a link? Exerc Immunol Rev. 2007;13:6-14.

Spence L, Brown WJ, Pyne DB, et al. Incidence, etiology, and symptomatology of upper respiratory illnessin elite athletes. Med Sci Sport Exerc. 2007;39(4):577-586.

Couto M, Kurowski M, Moreira A, et al. Mechanisms of exercise-induced bronchoconstriction in athletes: current perspectives and future challenges. Allergy. 2018;73(1):8-16.

Cox AJ, Gleeson M, Pyne DB, Callister R, Hopkins WG, Fricker PA. Clinical and laboratory evaluation of upper respiratory symptoms in elite athletes. Clin J Sport Med. 2008;18(5):438-445. https://journals.lww.com/cjsportsmed/Fulltext/2008/09000/Clinical_and_Laboratory_Evaluation_of_Upper.12.aspx.

Mäkelä MJ, Puhakka T, Ruuskanen O, et al. Viruses and bacteria in the etiology of the common cold. J Clin Microbiol. 1998;36(2):539-542. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC104573/.

Cox AJ, Pyne DB, Saunders PU, Callister R, Gleeson M. Cytokine responses to treadmill running in healthy and illness-prone athletes. Med Sci Sport Exerc. 2007;39(11):1918-1926.

Walsh NP, Oliver SJ. Exercise, immune function and respiratory infection: an update on the influence of training and environmental stress. Immunol Cell Biol. 2016;94(2):132-139.

Simpson RJ, Campbell JP, Gleeson M, et al. Can exercise affect immune function to increase susceptibility to infection? Exerc Immunol Rev. 2020;26:8-22.

Ronsen O, Lea T, Bahr R, Pedersen BK. Enhanced plasma IL-6 and IL-1ra responses to repeated vs. single bouts of prolonged cycling in elite athletes. J Appl Physiol. 2002;92(6):2547-2563.

Nieman DC, Henson DA, Smith LL, et al. Cytokine changes after a marathon race. J Appl Physiol. 2001;91(1):109-114.

Pedersen BK, Steensberg A, Fischer C, Keller C, Ostrowski K, Schjerling P. Exercise and cytokines with particular focus on muscle-derived IL-6. Exerc Immunol Rev. 2001;7:18-31.

Kurowski M, Jurczyk J, Jarzębska M, Wardzyńska A, Krysztofiak H, Kowalski ML. Serum but not exhaled breath condensate periostin level is increased in competitive athletes. Clin Respir J. 2018;12(5):1919-1926.

Skinner S, Nader E, Stauffer E, et al. Differential impacts of trail and ultra-trail running on cytokine profiles: an observational study. Clin Hemorheol Microcirc. 2021;78(3):301-310.

Henson DA, Nieman DC, Kernodle MW, Sonnenfeld G, Morton D, Thompson MM. Immune function in adolescent tennis athletes and controls. Sport Med Train Rehab. 2001;10(4):235-246.

Del Giacco SR, Scorcu M, Argiolas F, Firinu D, Del Giacco GS. Exercise training, lymphocyte subsets and their cytokines production: experience of an Italian professional football team and their impact on allergy. Biomed Res Int. 2014;2014:6. doi:10.1155/2014/429248

Borges GF, Rama L, Pedreiro S, et al. Differences in plasma cytokine levels between elite kayakers and nonathletes. Biomed Res Int. 2013;2013:5. doi:10.1155/2013/37035

Ding Y, Xu X. Effects of regular exercise on inflammasome activation-related inflammatory cytokine levels in older adults: a systematic review and meta-analysis. J Sport Sci. 2021;39(20):2338-2352. doi:10.1080/02640414.2021.1932279

Sugama K, Suzuki K, Yoshitani K, Shiraishi K, Kometani T. Urinary excretion of cytokines versus their plasma levels after endurance exercise. Exerc Immunol Rev. 2013;19:29-48.

Kurowski M, Jurczyk J, Moskwa S, Jarzębska M, Krysztofiak H, Kowalski ML. Winter ambient training conditions are associated with increased bronchial hyperreactivity and with shifts in serum innate immunity proteins in young competitive speed skaters. Arch Med Sci. 2018;14(1):60-68.

Hailes WS, Slivka D, Cuddy J, Ruby BC. Human plasma inflammatory response during 5 days of exercise training in the heat. J Therm Biol. 2011;36(5):277-282.

Liu D, Wang R, Grant AR, et al. Immune adaptation to chronic intense exercise training: new microarray evidence. BMC Genom. 2017;18(1):29. doi:10.1186/s12864-016-3388-5

Febbraio MA, Pedersen BK. Muscle-derived interleukin-6: mechanisms for activation and possible biological roles. FASEB J. 2002;16(11):1335-1347.

Özdemir C, Akpulat U, Sharafi P, Yıldız Y, Onbaşılar İ, Kocaefe Ç. Periostin is temporally expressed as an extracellular matrix component in skeletal muscle regeneration and differentiation. Gene. 2014;553(2):130-139. http://www.sciencedirect.com/science/article/pii/S0378111914011482.

Zietkowski Z, Skiepko R, Tomasiak-Lozowska MM, Mroczko B, Szmitkowski M, Bodzenta-Lukaszyk A. Changes in high-sensitivity C-reactive protein in serum and exhaled breath condensate after intensive exercise in patients with allergic asthma. Int Arch Allergy Immunol. 2010;153(1):75-85.

Kiwata J, Anouseyan R, Desharnais R, Cornwell A, Khodiguian N, Porter E. Effects of aerobic exercise on lipid-effector molecules of the innate immune response. Med Sci Sport Exerc. 2014;46(3):506-512. http://journals.lww.com/acsm-msse/Fulltext/2014/03000/Effects_of_Aerobic_Exercise_on_Lipid_Effector.10.aspx.

Morissette MC, Murray N, Turmel J, Milot J, Boulet L-P, Bougault V. Increased exhaled breath condensate 8-isoprostane after a swimming session in competitive swimmers. Eur J Sport Sci. 2016;16(5):569-576. doi:10.1080/17461391.2015.1063702

West NP, Pyne DB, Kyd JM, Renshaw GM, Fricker PA, Cripps AW. The effect of exercise on innate mucosal immunity. Br J Sport Med. 2010;44(4):227-231. http://bjsm.bmj.com/content/44/4/227.abstract.

Bikov A, Gajdócsi R, Huszár É, et al. Exercise increases exhaled breath condensate cysteinyl leukotriene concentration in asthmatic patients. J Asthma. 2010;47(9):1057-1062.

Kurowski M, Jurczyk J, Olszewska-Ziąber A, Jarzębska M, Krysztofiak H, Kowalski ML. A similar pro/anti-inflammatory cytokine balance is present in the airways of competitive athletes and non-exercising asthmatics. Adv Med Sci. 2018;63(1):79-86. http://www.sciencedirect.com/science/article/pii/S189611261730055X.

Seys SF, Daenen M, Dilissen E, et al. Effects of high altitude and cold air exposure on airway inflammation in patients with asthma. Thorax. 2013;68(10):906-913. http://thorax.bmj.com/content/68/10/906.abstract.

Seys SF, Hox V, Van Gerven L, et al. Damage-associated molecular pattern and innate cytokine release in the airways of competitive swimmers. Allergy. 2015;70(2):187-194. doi:10.1111/all.12540

Brightling C, Berry M, Amrani Y. Targeting TNF-α: a novel therapeutic approach for asthma. J Allergy Clin Immunol. 2008;121(1):5-12.

Lauzon A-M, Martin JG. Airway hyperresponsiveness; smooth muscle as the principal actor. F1000Research. 2016;5:306. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4786946/.

Sue-Chu M. Winter sports athletes: long-term effects of cold air exposure. Br J Sport Med. 2012;46:397-401.

Karjalainen E, Laitinen A, Sue-Chu M, Altraja A, Bjermer L, Laitinen L. Evidence of airway inflammation and remodeling in ski athletes with and without bronchial hyperresponsiveness to methacholine. Am J Respir Crit Care Med. 2000;161(6):2086-2091. doi:10.1164/ajrccm.161.6.9907025

Sue-Chu M, Brannan JD, Anderson SD, Chew N, Bjermer L. Airway hyperresponsiveness to methacholine, adenosine 5-monophosphate, mannitol, eucapnic voluntary hyperpnoea and field exercise challenge in elite cross-country skiers. Br J Sport Med. 2010;44(11):827-832. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2938888/.

Bonini M, Silvers W. Exercise-induced bronchoconstriction: background, prevalence, and sport considerations. Immunol Allergy Clin North Am. 2018;38(2):205-214.

Carlsen KH, Anderson SD, Bjermer L, et al. Exercise-induced asthma, respiratory and allergic disorders in elite athletes: epidemiology, mechanisms and diagnosis: part I of the report from the joint task force of the European Respiratory Society (ERS) and the European Academy of Allergy and Clinica. Allergy. 2008;63(4):387-403. doi:10.1111/j.1398-9995.2008.01662.x

Haahtela T. A biodiversity hypothesis. Allergy. 2019;74(8):1445-1456.

Haahtela T, Malmberg P, Moreira A. Mechanisms of asthma in Olympic athletes; practical implications. Allergy. 2008;63:685-694. doi:10.1111/j.1398-9995.2008.01686.x

Davies RD, Parent EC, Steinback CD, Kennedy MD. The effect of different training loads on the lung health of competitive youth swimmers. Int J Exerc Sci. 2018;11(6):999-1018. https://pubmed.ncbi.nlm.nih.gov/30147830.

Gleeson M, Pyne DB. Respiratory inflammation and infections in high-performance athletes. Immunol Cell Biol. 2016;94(2):124-131.

Peake JM. Exercise-induced alterations in neutrophil degranulation and respiratoryburst activity: possible mechanisms of action. Exerc Immunol Rev. 2002;8:49-100.

Robson PJ, Blannin AK, Walsh NP, Castell LM, Gleeson M. Effects of exerciseintensity, duration and recovery on in vitro neutrophil function in male athletes. Int J Sport Med. 1999;20:128-135.

Couto M, Barbosa C, Silva D, et al. Oxidative stress in asthmatic and non-asthmatic adolescent swimmers-A breathomics approach. Pediatr Allergy Immunol. 2017;28(5):452-457.

Vezzoli A, Pugliese L, Marzorati M, Serpiello FR, La Torre A, Porcelli S. Time-course changes of oxidative stress response to high-intensity discontinuous training versus moderate-intensity continuous training in masters runners. PLoS One. 2014;9(1):e87506.

Miyazaki H, Oh-ishi S, Ookawara T, et al. Strenuous endurance training in humans reduces oxidative stress following exhausting exercise. Eur J Appl Physiol. 2001;84(1-2):1-6.

Fatouros IG, Jamurtas AZ, Villiotou V, et al. Oxidative stress responses in older men during endurance training and detraining. Med Sci Sports Exerc. 2004;36(12):2065-2072.

Powers SK, Ji LL, Leeuwenburgh C. Exercise training-induced alterations in skeletal muscle antioxidant capacity: a brief review. Med Sci Sports Exerc. 1999;31(7):987-997.

Okutsu M, Suzuki K, Ishijima T, Peake J, Higuchi M. The effects of acute exercise-induced cortisol on CCR2 expression on human monocytes. Brain Behav Immun. 2008;22(7):1066-1071. http://europepmc.org/abstract/MED/18477503.

Žákovská A, Knechtle B, Chlíbková D, Miličková M, Rosemann T, Nikolaidis PT. The effect of a 100-km ultra-marathon under freezing conditions on selected immunological and hematological parameters. Front Physiol. 2017;8:638. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5600930/.

Kratz A, Lewandrowski KB, Siegel AJ, et al. Effect of marathon running on hematologic and biochemical laboratory parameters, including cardiac markers. Am J Clin Pathol. 2002;118(6):856-863. doi:10.1309/14TY-2TDJ-1X0Y-1V6V

Rama LM, Minuzzi LG, Carvalho HM, Costa RJS, Teixeira AM. Changes of hematological markers during a multi-stage ultra-marathon competition in the heat. Int J Sport Med. 2016;95(02):104-111.

Wu HJ, Chen KT, Shee BW, Chang HC, Huang YJ, Yang RS. Effects of 24 h ultra-marathon on biochemical and hematological parameters. World J Gastroenterol. 2004;10(18):2711-2714.

LaVoy ECP, Bollard CM, Hanley PJ, et al. A single bout of dynamic exercise by healthy adults enhances the generation of monocyte-derived-dendritic cells. Cell Immunol. 2015;295(1):52-59. http://www.sciencedirect.com/science/article/pii/S0008874915000416.

Steppich B, Dayyani F, Gruber R, Lorenz R, Mack M, Ziegler-Heitbrock HWL. Selective mobilization of CD14+CD16+ monocytes by exercise. Am J Physiol Cell Physiol. 2000;279(3):C578-C586.

Slusher AL, Zúñiga TM, Acevedo EO. Maximal exercise alters the inflammatory phenotype and response of mononuclear cells. Med Sci Sport Exerc. 2018;50(4):675-683.

Hojman P. Exercise protects from cancer through regulation of immune function and inflammation. Biochem Soc Trans. 2017;45(4):905-911. http://www.biochemsoctrans.org/content/ppbiost/45/4/905.full.pdf.

Oliveira M, Gleeson M. The influence of prolonged cycling on monocyte Toll-like receptor 2 and 4 expression in healthy men. Eur J Appl Physiol. 2010;109(2):251-257.

Simpson RJ, McFarlin BK, McSporran C, Spielmann G, Hartaigh Bó, Guy K. Toll-like receptor expression on classic and pro-inflammatory blood monocytes after acute exercise in humans. Brain Behav Immun. 2009;23(2):232-239. http://www.sciencedirect.com/science/article/pii/S0889159108003826.

Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122(3):787-795. doi:10.1172/JCI59643

Ruffino JS, Davies NA, Morris K, et al. Moderate-intensity exercise alters markers of alternative activation in circulating monocytes in females: a putative role for PPARγ. Eur J Appl Physiol. 2016;116(9):1671-1682. https://www.ncbi.nlm.nih.gov/pubmed/27339155.

Goh J, Goh KP, Abbasi A. Exercise and adipose tissue macrophages: new frontiers in obesity research? Front Endocrinol (Lausanne). 2016;7:65. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4905950/.

Yakeu G, Butcher L, Isa S, et al. Low-intensity exercise enhances expression of markers of alternative activation in circulating leukocytes: roles of PPARγ and Th2 cytokines. Atherosclerosis. 2010;212(2):668-673. doi:10.1016/j.atherosclerosis.2010.07.002

Chiu C-J, Chi C-W, Hsieh H-R, Huang Y-C, Wu H-J, Chen Y-J. Modulation of macrophage polarization by level-1 Yo-Yo intermittent recovery test in young football players. Medicine (Baltimore). 2018;97(42):e12739. https://www.ncbi.nlm.nih.gov/pubmed/30334958.

Mackenzie B, Andrade-Sousa AS, Oliveira-Junior MC, et al. Dendritic cells are involved in the effects of exercise in a model of asthma. Med Sci Sports Exerc. 2016;48(8):1459-1467.

Liao HF, Chiang LM, Yen CC, et al. Effect of a periodized exercise training and active recovery program on antitumoractivity and development of dendritic cells. J Sport Med Phys Fit. 2006;46:307-314.

Chiang LM, Chen YJ, Chiang J, Lai LY, Chen YY, Liao HF. Modulation of dendriticcells by endurance training. Int J Sport Med. 2007;28:798-803.

Shaw DM, Merien F, Braakhuis A, Dulson D. T-cells and their cytokine production: the anti-inflammatory and immunosuppressive effects of strenuous exercise. Cytokine. 2018;104:136-142. http://www.sciencedirect.com/science/article/pii/S1043466617302922.

Ronsen O, Kjeldsen-Kragh J, Haug E, Bahr R, Pedersen BK. Recovery time affects immunoendocrine responses to a second bout of endurance exercise. Am J Physiol Physiol. 2002;283(6):C1612-C1620.

Clifford T, Wood MJ, Stocks P, Howatson G, Stevenson EJ, Hilkens CMU. T-regulatory cells exhibit a biphasic response to prolonged endurance exercise in humans. Eur J Appl Physiol. 2017;117(8):1727-1737. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5506211/.

Lancaster GI, Halson SL, Khan Q, et al. Effects of acute exhaustive exercise and chronic exercise training on type 1 and type 2 T lymphocytes. Exerc Immunol Rev. 2004;10:91-106.

Rehm K, Sunesara I, Marshall G. Increased circulating anti-inflammatory cells in marathon-trained runners. Int J Sport Med. 2015;36(10):832-836.

Nieman DC. Exercise, upper respiratory tract infection, and the immune system. Med Sci Sport Exerc. 1994;26(2):128-139.

Nieman DC, Johanssen LM, Lee JW. Infectious episodes in runnersbefore and after a roadrace. J Sport Med Phys Fit. 1989;29(3):289-296.

Fahlman MM, Engels H-J. Mucosal IgA and URTI in American college football players: a year longitudinal study. Med Sci Sport Exerc. 2005;37(3):374-380. https://journals.lww.com/acsm-msse/Fulltext/2005/03000/Mucosal_IgA_and_URTI_in_American_College_Football.6.aspx.

Gleeson M, McDonald WA, Pyne DB, et al. Salivary IgA levels and infection risk in elite swimmers. Med Sci Sport Exerc. 1999;31(1):67-73.

Gleeson M, McDonald WA, Cripps AW, Pyne DB, Clancy RL, Fricker PA. The effect on immunity of long-term intensive training in elite swimmers. Clin Exp Immunol. 1995;102(1):210-216. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1553334/.

Neville V, Gleeson M, Folland JP. Salivary IgA as a risk factor for upper respiratory infections in elite professional athletes. Med Sci Sport Exerc. 2008;40(7):1228-1236. https://journals.lww.com/acsm-msse/Fulltext/2008/07000/Salivary_IgA_as_a_Risk_Factor_for_Upper.5.aspx.

Carins J, Booth C. Salivary immunoglobulin-A as a marker of stress during strenuous physical training. Aviat Sp Environ Med. 2002;73(12):1203-1207.

Tiollier E, Gomez-Merino D, Burnat P, et al. Intense training: mucosal immunity and incidence of respiratory infections. Eur J Appl Physiol. 2005;93(4):421-428.

Whitham M, Laing SJ, Dorrington M, et al. The influence of an arduous military training program on immune function and upper respiratory tract infection incidence. Mil Med. 2006;171(8):703-709.

Oliver SJ, Laing SJ, Wilson S, Bilzon JLJ, Walters R, Walsh NP. Salivary immunoglobulin A response at rest and after exercise following a 48 h period of fluid and/or energy restriction. Br J Nutr. 2007;97(6):1109-1116.

Walsh NP, Gleeson M, Pyne DB, et al. Position statement. Part two: maintaining immune health. Exerc Immunol Rev. 2011;17:64-103.

Bishop NC, Gleeson M. Acute and chronic effects of exercise on markers of mucosal immunity. Front Biosci (Landmark Ed). 2009;14:4444-4456.

Akimoto T, Kumai Y, Akama T, et al. Effects of 12 months of exercise training on salivary secretory IgA levels in elderly subjects. Br J Sports Med. 2003;37(1):76-79.

Klentrou P, Cieslak T, MacNeil M, Vintinner A, Plyley M. Effect of moderate exercise on salivary immunoglobulin A and infection risk in humans. Eur J Appl Physiol. 2002;87(2):153-158.

McKune AJ, Smith LL, Semple SJ, Wadee AA. Influence of ultra-endurance exercise on immunoglobulin isotypes and subclasses. Br J Sports Med. 2005;39(9):665-670.

Petibois C, Cazorla G, Déléris G. The biological and metabolic adaptations to 12 months training in elite rowers. Int J Sports Med. 2003;24(1):36-42.

Poortmans JR. Serum protein determination during short exhaustive physical activity. J Appl Physiol. 1971;30(2):190-192.

Poortmans JR, Haralambie G. Biochemical changes in a 100 km run: proteins in serum and urine. Eur J Appl Physiol Occup Physiol. 1979;40(4):245-254.

Hejazi K, Hosseini SRA. Influence of selected exercise on serum immunoglobulin, testosterone and cortisol in semi-endurance elite runners. Asian J Sports Med. 2012;3(3):185-192.

Israel S, Buhl B, Neumann G. Die konzentration der immunglobuline A, G und M im serum bei trainierten und untrainierten sowie nach verschiedenen sportlicken ausdauerleistungen. Med Sport. 1982;22:225-231.

Mashiko T, Umeda T, Nakaji S, Sugawara K. Effects of exercise on the physical condition of college ruqby players during summer training camp. Br J Sports Med. 2004;38(2):186-190.

Nehlsen-Cannarella SL, Nieman DC, Jessen J, et al. The effects of acute moderate exercise on lymphocyte function and serum immunoglobulin levels. Int J Sports Med. 1991;12(4):391-398.

Nieman DC, Nehlsen-Cannarella SL. The effects of acute and chronic exercise on immunoglobulins. Sport Med. 1991;11(3):183-201.

Moreira A, Delgado L, Haahtela T, et al. Physical training does not increase allergic inflammation in asthmatic children. Eur Respir J. 2008;32(6):1570-1575. http://erj.ersjournals.com/cgi/content/abstract/32/6/1570.

Turner SEG, Loosemore M, Shah A, Kelleher P, Hull JH. Salivary IgA as a potential biomarker in the evaluation of respiratory tract infection risk in athletes. J Allergy Clin Immunol Pract. 2021;9(1):151-159.

Couto M, Silva D, Delgado L, Moreira A. Exercise and airway injury in athletes. Acta Med Port. 2013;26(1):56-60.

Mårtensson S, Nordebo K, Malm C. High training volumes are associated with a low number of self-reported sick days in elite endurance athletes. J Sports Sci Med. 2014;13(4):929-933. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4234964/.

Malm C. Susceptibility to infections in elite athletes: the S-curve. Scand J Med Sci Sports. 2006;16(1):4-6.

Ekblom B, Ekblom Ö, Malm C. Infectious episodes before and after a marathon race. Scand J Med Sci Sports. 2006;16(4):287-293.

Araújo CGS, Scharhag J. Athlete: a working definition for medical and health sciences research. Scand J Med Sci Sport. 2016;26(1):4-7.

MacMahon C, Parrington L. Not all athletes are equal, but don’t call me an exerciser: response to Araujo and Scharhag1. Scand J Med Sci Sports. 2017;27(8):904-906.

McKinney J, Velghe J, Fee J, Isserow S, Drezner JA. Defining athletes and exercisers. Am J Cardiol. 2019;123(3):532-535.

Swann C, Moran A, Piggott D. Defining elite athletes: issues in the study of expert performance in sport psychology. Psychol Sport Exerc. 2015;16 Part 1:3-14.

Moreira A, Delgado L, Moreira P, Haahtela T. Does exercise increase the risk of upperrespiratory tract infections? Br Med Bull. 2009;90:111-131.

Dhabhar FS. Effects of stress on immune function: the good, the bad, and the beautiful. Immunol Res. 2014;58(2):193-210. doi:10.1007/s12026-014-8517-0

Mailing LJ, Allen JM, Buford TW, Fields CJ, Woods JA. Exercise and the gut microbiome: a review of the evidence, potential mechanisms, and implications for human health. Exerc Sport Sci Rev. 2019;47(2):75-85.

Codella R, Luzi L, Terruzzi I. Exercise has the guts: how physical activity may positively modulate gut microbiota in chronic and immune-based diseases. Dig Liver Dis. 2018;50(4):331-341. http://www.sciencedirect.com/science/article/pii/S1590865817313129.

Williams NC, Johnson MA, Shaw DE, et al. A prebiotic galactooligosaccharide mixture reduces severity of hyperpnoea-induced bronchoconstriction and markers of airway inflammation. Br J Nutr. 2016;116(5):798-804. https://www.cambridge.org/core/article/prebiotic-galactooligosaccharide-mixture-reduces-severity-of-hyperpnoeainduced-bronchoconstriction-and-markers-of-airway-inflammation/1F1677B9A9FDB43901C060E1893E79B9.

Moreira A, Kekkonen R, Korpela R, Delgado L, Haahtela T. Allergy in marathon runners and effect of Lactobacillus GG supplementation on allergic inflammatory markers. Respir Med. 2007;101(6):1123-1131.

Lim MY, Yoon HS, Rho M, et al. Analysis of the association between host genetics, smoking, and sputum microbiota in healthy humans. Sci Rep. 2016;6:23745. https://www.ncbi.nlm.nih.gov/pubmed/27030383.

Monje C, Rada I, Castro-Sepulveda M, Peñailillo L, Deldicque L, Zbinden-Foncea H. Effects of a high intensity interval session on mucosal immune function and salivary hormones in male and female endurance athletes. J Sports Sci Med. 2020;19(2):436-443.

Morgado JP, Monteiro CP, Matias CN, et al. Sex-based effects on immune changes induced by a maximal incremental exercise test in well-trained swimmers. J Sports Sci Med. 2014;13(3):708-714.

Mulcahey MK, Gianakos AL, Mercurio A, Rodeo S, Sutton KM. Sports medicine considerations during the COVID-19 pandemic. Am J Sports Med. 2021;49(2):512-521.

Ahmetov II, Borisov OV, Semenova EA, et al. Team sport, power, and combat athletes are at high genetic risk for coronavirus disease-2019 severity. J Sport Heal Sci. 2020;9(5):430-431. https://www.sciencedirect.com/science/article/pii/S2095254620300971.

Haddad M, Abbes Z, Mujika I, Chamari K. Impact of COVID-19 on swimming training: practical recommendations during home confinement/isolation. Int J Environ Res Public Health. 2021;18(9):4767. https://www.mdpi.com/1660-4601/18/9/4767.

Lopes L, Miranda V, Goes R, et al. Repercussions of the COVID-19 pandemic on athletes: a cross-sectional study. Biol Sport. 2021;38(4):703-711. doi:10.5114/biolsport.2021.106147

Yousfi N, Bragazzi NL, Briki W, Zmijewski P, Chamari K. The COVID-19 pandemic: how to maintain a healthy immune system during the lockdown - a multidisciplinary approach with special focus on athletes. Biol Sport. 2020;37(3):211-216. doi:10.5114/biolsport.2020.95125

Bisciotti GN, Eirale C, Corsini A, Baudot C, Saillant G, Chalabi H. Return to football training and competition after lockdown caused by the COVID-19 pandemic: medical recommendations. Biol Sport. 2020;37(3):313-319. doi:10.5114/biolsport.2020.96652

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...