• This record comes from PubMed

Influence of channel height on mixing efficiency and synthesis of iron oxide nanoparticles using droplet-based microfluidics

. 2020 Apr 16 ; 10 (26) : 15179-15189. [epub] 20200417

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection

Document type Journal Article

Microfluidic devices, allowing superior control over the spatial and temporal distribution of chemical substances and high process reproducibility, are nowadays essential in various research areas and industrial fields where the traditional "macroscopic" approach was no longer able to keep up with the increasing demands of high-end applications. In the present work, internal mixing of droplets formed by a flow-focusing X-junction at constant flow rates of both phases for three different channel heights (i.e. 20, 40 and 60 μm) was investigated and characterised. Both experimental methods and 3D CFD simulations were employed in order to resolve governing factors having an impact on internal mixing and homogenization time of model tracers inside of droplet reactors. Additionally, the influence of channel height on internal mixing was experimentally studied for continuous preparation of iron oxide nanoparticles by co-precipitation reaction. Since the initial nucleation phase is strongly affected by mixing and spatial distribution of all reactants, the final particle size and particle size distribution (PSD) can be used as direct indicators of mixing performance. It has been demonstrated that the smallest 20 μm channels provided narrower PSD and smaller particle mean size compared to higher channels.

See more in PubMed

Wang J. Wang J. Feng L. Lin T. RSC Adv. 2015;5:104138–104144. doi: 10.1039/C5RA21181F. DOI

Günther A. Jensen K. F. Lab Chip. 2006;6:1487–1503. doi: 10.1039/B609851G. PubMed DOI

Lee C.-Y. Chang C.-L. Wang Y.-N. Fu L.-M. Int. J. Mol. Sci. 2011;12:3263–3287. doi: 10.3390/ijms12053263. PubMed DOI PMC

Brouzes E. Medkova M. Savenelli N. Marran D. Twardowski M. Hutchison J. B. Rothberg J. M. Link D. R. Perrimon N. Samuels M. L. Proc. Natl. Acad. Sci. U. S. A. 2009;106:14195–14200. doi: 10.1073/pnas.0903542106. PubMed DOI PMC

Zhu P. Wang L. Lab Chip. 2017;17:34–75. doi: 10.1039/C6LC01018K. PubMed DOI

Cai G. Xue L. Zhang H. Lin J. Micromachines. 2017;8:274. doi: 10.3390/mi8090274. PubMed DOI PMC

Thorsen T. Roberts R. W. Arnold F. H. Quake S. R. Phys. Rev. Lett. 2001;86:4163. doi: 10.1103/PhysRevLett.86.4163. PubMed DOI

Li X.-B. Li F.-C. Yang J.-C. Kinoshita H. Oishi M. Oshima M. Chem. Eng. Sci. 2012;69:340–351. doi: 10.1016/j.ces.2011.10.048. DOI

Cramer C. Fischer P. Windhab E. J. Chem. Eng. Sci. 2004;59:3045–3058. doi: 10.1016/j.ces.2004.04.006. DOI

Teh S.-Y. Lin R. Hung L.-H. Lee A. P. Lab Chip. 2008;8:198–220. doi: 10.1039/B715524G. PubMed DOI

Yu W. Liu X. Zhao Y. Chen Y. Chem. Eng. Sci. 2019;203:259–284. doi: 10.1016/j.ces.2019.03.082. DOI

Soitu C. Feuerborn A. Tan A. N. Walker H. Walsh P. A. Castrejón-Pita A. A. Cook P. R. Walsh E. J. Proc. Natl. Acad. Sci. U. S. A. 2018;115:E5926–E5933. doi: 10.1073/pnas.1805449115. PubMed DOI PMC

Shembekar N. Chaipan C. Utharala R. Merten C. A. Lab Chip. 2016;16:1314–1331. doi: 10.1039/C6LC00249H. PubMed DOI

Kašpar O. Koyuncu A. Pittermannová A. Ulbrich P. Tokárová V. Biomed. Microdevices. 2019;21:88. doi: 10.1007/s10544-019-0435-4. PubMed DOI

Ma J. Lee S. M.-Y. Yi C. Li C.-W. Lab Chip. 2017;17:209–226. doi: 10.1039/C6LC01049K. PubMed DOI

LaGrow A. P. Besenhard M. O. Hodzic A. Sergides A. Bogart L. K. Gavriilidis A. Thanh N. T. K. Nanoscale. 2019;11:6620–6628. doi: 10.1039/C9NR00531E. PubMed DOI

Shang L. Cheng Y. Zhao Y. Chem. Rev. 2017;117:7964–8040. doi: 10.1021/acs.chemrev.6b00848. PubMed DOI

Chen C. Zhao Y. Wang J. Zhu P. Tian Y. Xu M. Wang L. Huang X. Micromachines. 2018;9:160. doi: 10.3390/mi9040160. PubMed DOI PMC

Li M. Dong C. Law M.-K. Jia Y. Mak P.-I. Martins R. P. Sens. Actuators, B. 2019;287:390–397. doi: 10.1016/j.snb.2019.02.021. DOI

Yesiloz G. Boybay M. S. Ren C. L. Anal. Chem. 2017;89:1978–1984. doi: 10.1021/acs.analchem.6b04520. PubMed DOI

Ahmadi F. Samlali K. Vo P. Q. Shih S. C. Lab Chip. 2019;19:524–535. doi: 10.1039/C8LC01170B. PubMed DOI

Chen G. Ji B. Gao Y. Wang C. Wu J. Zhou B. Wen W. Sens. Actuators, B. 2019;286:181–190. doi: 10.1016/j.snb.2019.01.126. DOI

Clark J. Kaufman M. Fodor P. S. Micromachines. 2018;9:107. doi: 10.3390/mi9030107. PubMed DOI PMC

Song H. Tice J. D. Ismagilov R. F. Angew. Chem., Int. Ed. 2003;42:768–772. doi: 10.1002/anie.200390203. PubMed DOI

Stone Z. Stone H. A. Phys. Fluids. 2005;17:063103. doi: 10.1063/1.1929547. DOI

Fu Y. Wang H. Zhang X. Bai L. Jin Y. Cheng Y. J. Taiwan Inst. Chem. Eng. 2019;98:37–44. doi: 10.1016/j.jtice.2018.08.025. DOI

Lee C.-Y., Lin C.-H. and Fu L.-M., in Encyclopedia of Microfluidics and Nanofluidics, ed. D. Li, Springer US, Boston, MA, 2008, pp. 1602–1610, 10.1007/978-0-387-48998-8_1188 DOI

Yang L. Li S. Liu J. Cheng J. Electrophoresis. 2018;39:512–520. doi: 10.1002/elps.201700374. PubMed DOI

Bringer M. R. Gerdts C. J. Song H. Tice J. D. Ismagilov R. F. Philos. Trans. R. Soc., A. 2004;362:1087–1104. doi: 10.1098/rsta.2003.1364. PubMed DOI PMC

Carrier O. Ergin F. G. Li H.-Z. Watz B. B. Funfschilling D. J. Micromech. Microeng. 2015;25:084014. doi: 10.1088/0960-1317/25/8/084014. DOI

Bottaro E. Mosayyebi A. Carugo D. Nastruzzi C. Micromachines. 2017;8:209. doi: 10.3390/mi8070209. PubMed DOI PMC

Robinson T. Valluri P. Manning H. B. Owen D. M. Munro I. Talbot C. B. Dunsby C. Eccleston J. F. Baldwin G. S. Neil M. A. Optic Lett. 2008;33:1887–1889. doi: 10.1364/OL.33.001887. PubMed DOI

Zeng Y. Jiang L. Zheng W. Li D. Yao S. Qu J. Y. Optic Lett. 2011;36:2236–2238. doi: 10.1364/OL.36.002236. PubMed DOI

Qian J.-y. Li X.-j. Gao Z.-x. Jin Z.-j. Processes. 2019;7:33. doi: 10.3390/pr7010033. DOI

Qian J.-y. Li X.-j. Gao Z.-x. Jin Z.-j. J. Flow Chem. 2019;9:187–197. doi: 10.1007/s41981-019-00040-1. DOI

Milosevic I. Warmont F. Lalatonne Y. Motte L. RSC Adv. 2014;4:49086–49089. doi: 10.1039/C4RA08944H. DOI

Schindelin J. Arganda-Carreras I. Frise E. Kaynig V. Longair M. Pietzsch T. Preibisch S. Rueden C. Saalfeld S. Schmid B. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Chen Y., Schaffer B., Weislogel M. and Zimmerli G., Introducing se-fit: Surface evolver-fluid interface tool for studying capillary surfaces in 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2011, p. 1319

Brakke K. A. Exp. Math. 1992;1:141–165. doi: 10.1080/10586458.1992.10504253. DOI

Quake S. R. Scherer A. Science. 2000;290:1536–1540. doi: 10.1126/science.290.5496.1536. PubMed DOI

Aysan A. B. Knejzlík Z. Ulbrich P. Šoltys M. Zadražil A. Štěpánek F. Colloids Surf., B. 2017;153:69–76. doi: 10.1016/j.colsurfb.2017.02.005. PubMed DOI

Ahrberg C. D. Choi J. W. Chung B. G. Beilstein J. Nanotechnol. 2018;9:2413–2420. doi: 10.3762/bjnano.9.226. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...