Influence of channel height on mixing efficiency and synthesis of iron oxide nanoparticles using droplet-based microfluidics
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article
PubMed
35495462
PubMed Central
PMC9052325
DOI
10.1039/d0ra02470h
PII: d0ra02470h
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Microfluidic devices, allowing superior control over the spatial and temporal distribution of chemical substances and high process reproducibility, are nowadays essential in various research areas and industrial fields where the traditional "macroscopic" approach was no longer able to keep up with the increasing demands of high-end applications. In the present work, internal mixing of droplets formed by a flow-focusing X-junction at constant flow rates of both phases for three different channel heights (i.e. 20, 40 and 60 μm) was investigated and characterised. Both experimental methods and 3D CFD simulations were employed in order to resolve governing factors having an impact on internal mixing and homogenization time of model tracers inside of droplet reactors. Additionally, the influence of channel height on internal mixing was experimentally studied for continuous preparation of iron oxide nanoparticles by co-precipitation reaction. Since the initial nucleation phase is strongly affected by mixing and spatial distribution of all reactants, the final particle size and particle size distribution (PSD) can be used as direct indicators of mixing performance. It has been demonstrated that the smallest 20 μm channels provided narrower PSD and smaller particle mean size compared to higher channels.
See more in PubMed
Wang J. Wang J. Feng L. Lin T. RSC Adv. 2015;5:104138–104144. doi: 10.1039/C5RA21181F. DOI
Günther A. Jensen K. F. Lab Chip. 2006;6:1487–1503. doi: 10.1039/B609851G. PubMed DOI
Lee C.-Y. Chang C.-L. Wang Y.-N. Fu L.-M. Int. J. Mol. Sci. 2011;12:3263–3287. doi: 10.3390/ijms12053263. PubMed DOI PMC
Brouzes E. Medkova M. Savenelli N. Marran D. Twardowski M. Hutchison J. B. Rothberg J. M. Link D. R. Perrimon N. Samuels M. L. Proc. Natl. Acad. Sci. U. S. A. 2009;106:14195–14200. doi: 10.1073/pnas.0903542106. PubMed DOI PMC
Zhu P. Wang L. Lab Chip. 2017;17:34–75. doi: 10.1039/C6LC01018K. PubMed DOI
Cai G. Xue L. Zhang H. Lin J. Micromachines. 2017;8:274. doi: 10.3390/mi8090274. PubMed DOI PMC
Thorsen T. Roberts R. W. Arnold F. H. Quake S. R. Phys. Rev. Lett. 2001;86:4163. doi: 10.1103/PhysRevLett.86.4163. PubMed DOI
Li X.-B. Li F.-C. Yang J.-C. Kinoshita H. Oishi M. Oshima M. Chem. Eng. Sci. 2012;69:340–351. doi: 10.1016/j.ces.2011.10.048. DOI
Cramer C. Fischer P. Windhab E. J. Chem. Eng. Sci. 2004;59:3045–3058. doi: 10.1016/j.ces.2004.04.006. DOI
Teh S.-Y. Lin R. Hung L.-H. Lee A. P. Lab Chip. 2008;8:198–220. doi: 10.1039/B715524G. PubMed DOI
Yu W. Liu X. Zhao Y. Chen Y. Chem. Eng. Sci. 2019;203:259–284. doi: 10.1016/j.ces.2019.03.082. DOI
Soitu C. Feuerborn A. Tan A. N. Walker H. Walsh P. A. Castrejón-Pita A. A. Cook P. R. Walsh E. J. Proc. Natl. Acad. Sci. U. S. A. 2018;115:E5926–E5933. doi: 10.1073/pnas.1805449115. PubMed DOI PMC
Shembekar N. Chaipan C. Utharala R. Merten C. A. Lab Chip. 2016;16:1314–1331. doi: 10.1039/C6LC00249H. PubMed DOI
Kašpar O. Koyuncu A. Pittermannová A. Ulbrich P. Tokárová V. Biomed. Microdevices. 2019;21:88. doi: 10.1007/s10544-019-0435-4. PubMed DOI
Ma J. Lee S. M.-Y. Yi C. Li C.-W. Lab Chip. 2017;17:209–226. doi: 10.1039/C6LC01049K. PubMed DOI
LaGrow A. P. Besenhard M. O. Hodzic A. Sergides A. Bogart L. K. Gavriilidis A. Thanh N. T. K. Nanoscale. 2019;11:6620–6628. doi: 10.1039/C9NR00531E. PubMed DOI
Shang L. Cheng Y. Zhao Y. Chem. Rev. 2017;117:7964–8040. doi: 10.1021/acs.chemrev.6b00848. PubMed DOI
Chen C. Zhao Y. Wang J. Zhu P. Tian Y. Xu M. Wang L. Huang X. Micromachines. 2018;9:160. doi: 10.3390/mi9040160. PubMed DOI PMC
Li M. Dong C. Law M.-K. Jia Y. Mak P.-I. Martins R. P. Sens. Actuators, B. 2019;287:390–397. doi: 10.1016/j.snb.2019.02.021. DOI
Yesiloz G. Boybay M. S. Ren C. L. Anal. Chem. 2017;89:1978–1984. doi: 10.1021/acs.analchem.6b04520. PubMed DOI
Ahmadi F. Samlali K. Vo P. Q. Shih S. C. Lab Chip. 2019;19:524–535. doi: 10.1039/C8LC01170B. PubMed DOI
Chen G. Ji B. Gao Y. Wang C. Wu J. Zhou B. Wen W. Sens. Actuators, B. 2019;286:181–190. doi: 10.1016/j.snb.2019.01.126. DOI
Clark J. Kaufman M. Fodor P. S. Micromachines. 2018;9:107. doi: 10.3390/mi9030107. PubMed DOI PMC
Song H. Tice J. D. Ismagilov R. F. Angew. Chem., Int. Ed. 2003;42:768–772. doi: 10.1002/anie.200390203. PubMed DOI
Stone Z. Stone H. A. Phys. Fluids. 2005;17:063103. doi: 10.1063/1.1929547. DOI
Fu Y. Wang H. Zhang X. Bai L. Jin Y. Cheng Y. J. Taiwan Inst. Chem. Eng. 2019;98:37–44. doi: 10.1016/j.jtice.2018.08.025. DOI
Lee C.-Y., Lin C.-H. and Fu L.-M., in Encyclopedia of Microfluidics and Nanofluidics, ed. D. Li, Springer US, Boston, MA, 2008, pp. 1602–1610, 10.1007/978-0-387-48998-8_1188 DOI
Yang L. Li S. Liu J. Cheng J. Electrophoresis. 2018;39:512–520. doi: 10.1002/elps.201700374. PubMed DOI
Bringer M. R. Gerdts C. J. Song H. Tice J. D. Ismagilov R. F. Philos. Trans. R. Soc., A. 2004;362:1087–1104. doi: 10.1098/rsta.2003.1364. PubMed DOI PMC
Carrier O. Ergin F. G. Li H.-Z. Watz B. B. Funfschilling D. J. Micromech. Microeng. 2015;25:084014. doi: 10.1088/0960-1317/25/8/084014. DOI
Bottaro E. Mosayyebi A. Carugo D. Nastruzzi C. Micromachines. 2017;8:209. doi: 10.3390/mi8070209. PubMed DOI PMC
Robinson T. Valluri P. Manning H. B. Owen D. M. Munro I. Talbot C. B. Dunsby C. Eccleston J. F. Baldwin G. S. Neil M. A. Optic Lett. 2008;33:1887–1889. doi: 10.1364/OL.33.001887. PubMed DOI
Zeng Y. Jiang L. Zheng W. Li D. Yao S. Qu J. Y. Optic Lett. 2011;36:2236–2238. doi: 10.1364/OL.36.002236. PubMed DOI
Qian J.-y. Li X.-j. Gao Z.-x. Jin Z.-j. Processes. 2019;7:33. doi: 10.3390/pr7010033. DOI
Qian J.-y. Li X.-j. Gao Z.-x. Jin Z.-j. J. Flow Chem. 2019;9:187–197. doi: 10.1007/s41981-019-00040-1. DOI
Milosevic I. Warmont F. Lalatonne Y. Motte L. RSC Adv. 2014;4:49086–49089. doi: 10.1039/C4RA08944H. DOI
Schindelin J. Arganda-Carreras I. Frise E. Kaynig V. Longair M. Pietzsch T. Preibisch S. Rueden C. Saalfeld S. Schmid B. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Chen Y., Schaffer B., Weislogel M. and Zimmerli G., Introducing se-fit: Surface evolver-fluid interface tool for studying capillary surfaces in 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2011, p. 1319
Brakke K. A. Exp. Math. 1992;1:141–165. doi: 10.1080/10586458.1992.10504253. DOI
Quake S. R. Scherer A. Science. 2000;290:1536–1540. doi: 10.1126/science.290.5496.1536. PubMed DOI
Aysan A. B. Knejzlík Z. Ulbrich P. Šoltys M. Zadražil A. Štěpánek F. Colloids Surf., B. 2017;153:69–76. doi: 10.1016/j.colsurfb.2017.02.005. PubMed DOI
Ahrberg C. D. Choi J. W. Chung B. G. Beilstein J. Nanotechnol. 2018;9:2413–2420. doi: 10.3762/bjnano.9.226. PubMed DOI PMC