Mitochondria in human reproduction: novel paradigm in the onset of neurodegenerative disorders

. 2023 Apr 30 ; 72 (2) : 137-148.

Jazyk angličtina Země Česko Médium print

Typ dokumentu přehledy, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37159849

The disease progression of neurodegenerative disorders (NDD), including Alzheimer's, Parkinson's and Huntington's disease, is inextricably tied to mitochondrial dysfunction. However, although the contribution by nuclear gene mutations is recognised for familial onset of NDD, the degree to which cytoplasmic inheritance serves as a predetermining factor for the predisposition and onset of NDD is not yet fully understood. We review the reproductive mechanisms responsible for ensuring a healthy mitochondrial population within each new generation and elucidate how advanced maternal age can constitute an increased risk for the onset of NDD in the offspring, through the increased heteroplasmic burden. On the one hand, this review draws attention to how assisted reproductive technologies (ART) can impair mitochondrial fitness in offspring. On the other hand, we consider qualified ART approaches as a significant tool for the prevention of NDD pathogenesis.

Zobrazit více v PubMed

Roger AJ, Muñoz-Gómez SA, Kamikawa R. The origin and diversification of mitochondria. Curr Biol. 2017;27:R1177–R1192. doi: 10.1016/j.cub.2017.09.015. PubMed DOI

Trounce I. Genetic control of oxidative phosphorylation and experimental models of defects. Hum Reprod. 2000;15(Suppl 2):18–27. doi: 10.1093/humrep/15.suppl_2.18. PubMed DOI

Robin ED, Wong R. Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. J Cell Physiol. 1988;136:507–513. doi: 10.1002/jcp.1041360316. PubMed DOI

Chen X, Prosser R, Simonetti S, Sadlock J, Jagiello G, Schon EA. Rearranged mitochondrial genomes are present in human oocytes. Am J Hum Genet. 1995;57:239–247. PubMed PMC

Bonekamp NA, Larsson NG. SnapShot: Mitochondrial Nucleoid. Cell. 2018;172:388–388.e1. doi: 10.1016/j.cell.2017.12.039. PubMed DOI

Kang I, Chu CT, Kaufman BA. The mitochondrial transcription factor TFAM in neurodegeneration: emerging evidence and mechanisms. FEBS Lett. 2018;592:793–811. doi: 10.1002/1873-3468.12989. PubMed DOI PMC

Brüser C, Keller-Findeisen J, Jakobs S. The TFAM-to-mtDNA ratio defines inner-cellular nucleoid populations with distinct activity levels. Cell Rep. 2021;37(8):110000. doi: 10.1016/j.celrep.2021.110000. PubMed DOI

Fontana GA, Gahlon HL. Mechanisms of replication and repair in mitochondrial DNA deletion formation. Nucleic Acids Res. 2020;48(20):11244–11258. doi: 10.1093/nar/gkaa804. PubMed DOI PMC

Stewart JB, Chinnery PF. The dynamics of mitochondrial DNA heteroplasmy: Implications for human health and disease. Nat Rev Genet. 2015;16(9):530–542. doi: 10.1038/nrg3966. PubMed DOI

van den Ameele J, Li AYZ, Ma H, Chinnery PF. Mitochondrial heteroplasmy beyond the oocyte bottleneck. Semin Cell Dev Biol. 2020;97:156–166. doi: 10.1016/j.semcdb.2019.10.001. PubMed DOI

Ban-Ishihara R, Ishihara T, Sasaki N, Mihara K, Ishihara N. Dynamics of nucleoid structure regulated by mitochondrial fission contributes to cristae reformation and release of cytochrome c. Proc Natl Acad Sci U S A. 2013;110(29):11863–11868. doi: 10.1073/pnas.1301951110. PubMed DOI PMC

Kleele T, Rey T, Winter J, Zaganelli S, Mahecic D, Perreten Lambert H, Ruberto FP, Nemir M, Wai T, Pedrazzini T, Manley S. Distinct fission signatures predict mitochondrial degradation or biogenesis. Nature. 2021;593(7859):435–439. doi: 10.1038/s41586-021-03510-6. PubMed DOI

Popov LD. Mitochondrial biogenesis: An update. J Cell Mol Med. 2020;24(9):4892–4899. doi: 10.1111/jcmm.15194. PubMed DOI PMC

Filograna R, Mennuni M, Alsina D, Larsson NG. Mitochondrial DNA copy number in human disease: the more the better? FEBS Lett. 2021;595(8):976–1002. doi: 10.1002/1873-3468.14021. PubMed DOI PMC

Li PA, Hou X, Hao S. Mitochondrial biogenesis in neurodegeneration. J Neurosci Res. 2017;95(10):2025–2029. doi: 10.1002/jnr.24042. PubMed DOI

Stewart JB, Chinnery PF. Extreme heterogeneity of human mitochondrial DNA from organelles to populations. Nat Rev Genet. 2021;22(2):106–118. doi: 10.1038/s41576-020-00284-x. PubMed DOI

Bratic A, Larsson NG. The role of mitochondria in aging. J Clin Investig. 2013;123(3):951–957. doi: 10.1172/JCI64125. PubMed DOI PMC

May-Panloup P, Boguenet M, Hachem Hel, Bouet PE, Reynier P. Embryo and its mitochondria. Antioxidants. 2021;10(2):1–20. doi: 10.3390/antiox10020139. PubMed DOI PMC

Hutchison CA, Newbold JE, Potter SS, Edgell MH. Maternal inheritance of mammalian mitochondrial DNA. Nature. 1974;251(5475):536–538. doi: 10.1038/251536a0. PubMed DOI

Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G. Ubiquitin tag for sperm mitochondria. Nature. 1999;402(6760):371–372. doi: 10.1038/46466. PubMed DOI

Jansen RP. Origin and persistence of the mitochondrial genome. Hum Reprod. 2000;15(Suppl 2):1–10. doi: 10.1093/humrep/15.suppl_2.1. PubMed DOI

Wai T, Ao A, Zhang X, Cyr D, Dufort D, Shoubridge EA. The role of mitochondrial DNA copy number in mammalian fertility. Biol Reprod. 2010;83(1):52–62. doi: 10.1095/biolreprod.109.080887. PubMed DOI PMC

Tilly JL, Sinclair DA. Germline energetics, aging, and female infertility. Cell Metab. 2013;17(6):838–850. doi: 10.1016/j.cmet.2013.05.007. PubMed DOI PMC

Fragouli E, Wells D. Mitochondrial DNA Assessment to Determine Oocyte and Embryo Viability. Semin Reprod Med. 2015;33(6):401–409. doi: 10.1055/s-0035-1567821. PubMed DOI

Cree LM, Samuels DC, de Sousa Lopes SC, Rajasimha HK, Wonnapinij P, Mann JR, Dahl HH, Chinnery PF. A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes. Nat Genet. 2008;40(2):249–254. doi: 10.1038/ng.2007.63. PubMed DOI

Wassarman PM. The mammalian ovum. In: Knobil E, Neill J, editors. The Physiology of Reproduction. Raven Press; New York: 1988. pp. 69–102.

Hou X, Zhu S, Zhang H, Li C, Qiu D, Ge J, Guo X, Wang Q. Mitofusin1 in oocyte is essential for female fertility. Redox Biol. 2019;21:101110. doi: 10.1016/j.redox.2019.101110. PubMed DOI PMC

Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P, Lewandoski M, Barsh GS, Clayton DA. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet. 1998;18(3):231–236. doi: 10.1038/ng0398-231. PubMed DOI

Mahrous E, Yang Q, Clarke HJ. Regulation of mitochondrial DNA accumulation during oocyte growth and meiotic maturation in the mouse. Reproduction. 2012;144(2):177–185. doi: 10.1530/REP-12-0113. PubMed DOI

Němcová L, Hulínská P, Ješeta M, Kempisty B, Kaňka J, Machatková M. Expression of selected mitochondrial genes during in vitro maturation of bovine oocytes related to their meiotic competence. Theriogenology. 2019;133:104–112. doi: 10.1016/j.theriogenology.2019.05.001. PubMed DOI

Dumollard R, Duchen M, Carroll J. The role of mitochondrial function in the oocyte and embryo. Curr Top Dev Biol. 2007;77:21–49. doi: 10.1016/S0070-2153(06)77002-8. PubMed DOI

Thundathil J, Filion F, Smith LC. Molecular control of mitochondrial function in preimplantation mouse embryos. Mol Reprod Dev. 2005;71:405–413. doi: 10.1002/mrd.20260. PubMed DOI

Hashimoto S, Morimoto N, Yamanaka M, et al. Quantitative and qualitative changes of mitochondria in human preimplantation embryos. J Assist Reprod Genet. 2017;34:573–580. doi: 10.1007/s10815-017-0886-6. PubMed DOI PMC

Stigliani S, Anserini P, Venturini PL, Scaruffi P. Mitochondrial DNA content in embryo culture medium is significantly associated with human embryo fragmentation. Hum Reprod. 2013;28:2652–2660. doi: 10.1093/humrep/det314. PubMed DOI

Leese HJ. Quiet please, do not disturb: a hypothesis of embryo metabolism and viability. Bioessays. 2002;24:845–849. doi: 10.1002/bies.10137. PubMed DOI

Dalton CM, Szabadkai G, Carroll J. Measurement of ATP in single oocytes: Impact of maturation and cumulus cells on levels and consumption. J Cell Physiol. 2014;229:353–361. doi: 10.1002/jcp.24457. PubMed DOI

Lehninger AL. Mitochondria and calcium ion transport. Biochem J. 1970;119:129–38. doi: 10.1042/bj1190129. PubMed DOI PMC

Tsujimoto Y. Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? Genes Cells. 1998;3:697–707. doi: 10.1046/j.1365-2443.1998.00223.x. PubMed DOI

Lee SK, Zhao MH, Kwon JW, Li YH, Lin ZL, Jin YX, Kim NH, Cui XS. The association of mitochondrial potential and copy number with pig oocyte maturation and developmental potential. J Reprod Dev. 24(60):128–135. doi: 10.1262/jrd.2013-098. PubMed DOI PMC

Taugourdeau A, Desquiret-Dumas V, Hamel JF, Chupin S, Boucret L, Ferré-L'Hotellier V, Bouet PE, Descamps P, Procaccio V, Reynier P, May-Panloup P. The mitochondrial DNA content of cumulus cells may help predict embryo implantation. J Assist Reprod Genet. 2019;36:223–228. doi: 10.1007/s10815-018-1348-5. PubMed DOI PMC

Fragouli E, Spath K, Alfarawati S, Kaper F, Craig A, et al. Altered levels of mitochondrial DNA are associated with female age, aneuploidy, and provide an independent measure of embryonic implantation potential. PLoS Genet. 2015:11. doi: 10.1371/journal.pgen.1005241. PubMed DOI PMC

Gorman GS, Schaefer AM, Ng Y, Gomez N, Blakely EL, Alston CL, Feeney C, Horvath R, Yu-Wai-Man P, Chinnery PF, Taylor RW, Turnbull DM, McFarland R. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol. 2015;77:753–759. doi: 10.1002/ana.24362. PubMed DOI PMC

Andreu AL, Hanna MG, Reichmann H, Bruno C, Penn AS, Tanji K, Pallotti F, Iwata S, Bonilla E, Lach B, Morgan-Hughes J, DiMauro S. Exercise intolerance due to mutations in the cytochrome b gene of mitochondrial DNA. N Engl J Med. 1999;341:1037–1044. doi: 10.1056/NEJM199909303411404. PubMed DOI

Shen Q, Liu Y, Li H, Zhang L. Effect of mitophagy in oocytes and granulosa cells on oocyte quality. Biol Reprod. 2021;104:294–304. doi: 10.1093/biolre/ioaa194. PubMed DOI

Pickles S, Vigié P, Youle RJ. Mitophagy and Quality Control Mechanisms in Mitochondrial Maintenance. Curr Biol. 2018 Feb 19;28(4):R170–R185. doi: 10.1016/j.cub.2018.01.004. PubMed DOI PMC

Maruszak A, Safranow K, Branicki W, Gawęda-Walerych K, Pośpiech E, Gabryelewicz T, Canter JA, Barcikowska M, Zekanowski C. The impact of mitochondrial and nuclear DNA variants on late-onset Alzheimer's disease risk. J Alzheimers Dis. 2011;27:197–210. doi: 10.3233/JAD-2011-110710. PubMed DOI

Inzelberg R, Schecthman E, Paleacu D, Zach L, Bonwitt R, Carasso RL, Nisipeanu P. Onset and progression of disease in familial and sporadic Parkinson's disease. Am J Med Genet. 2004;124:255–258. doi: 10.1002/ajmg.a.20405. PubMed DOI

Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, González-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science (1979) 2004;304:1158–1160. doi: 10.1126/science.1096284. PubMed DOI

Kirby DM, McFarland R, Ohtake A, Dunning C, Ryan MT, Wilson C, Ketteridge D, Turnbull DM, Thorburn DR, Taylor RW. Mutations of the mitochondrial ND1 gene as a cause of MELAS. J Med Genet. 2004;41:784–789. doi: 10.1136/jmg.2004.020537. PubMed DOI PMC

Shoffner JM, Brown MD, Torroni A, Lott MT, Margaret F, Cabell MF, et al. Mitochondrial dna variants observed in alzheimer disease and parkinson disease patients. Genomics. 1993;17:171–184. doi: 10.1006/geno.1993.1299. PubMed DOI

Gorman GS, Schaefer AM, Ng Y, et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol. 2015;77:753–759. doi: 10.1002/ana.24362. PubMed DOI PMC

Johnston IG, Burgstaller JP, Havlicek V, Kolbe T, Rülicke T, Brem G, Poulton J, Jones NS. Stochastic modelling, Bayesian inference, and new in vivo measurements elucidate the debated mtDNA bottleneck mechanism. Elife. 2015;4:e07464. doi: 10.7554/eLife.07464. PubMed DOI PMC

Jansen RP, de Boer K. The bottleneck: mitochondrial imperatives in oogenesis and ovarian follicular fate. Mol Cell Endocrinol. 1998 Oct 25;145:81–88. doi: 10.1016/S0303-7207(98)00173-7. PubMed DOI

Wai T, Teoli D, Shoubridge EA. The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat Genet. 2008;40:1484–1488. doi: 10.1038/ng.258. PubMed DOI

Tourmente M, Villar-Moya P, Rial E, Roldan ER. Differences in ATP generation via glycolysis and oxidative phosphorylation and relationships with sperm motility in mouse species. J Biol Chem. 2015;290:20613–20626. doi: 10.1074/jbc.M115.664813. PubMed DOI PMC

Boguenet M, Bouet PE, Spiers A, Reynier P, May-Panloup P. Mitochondria: their role in spermatozoa and in male infertility. Hum Reprod Update. 2021;27:697–719. doi: 10.1093/humupd/dmab001. PubMed DOI

Ruiz-Pesini E, Díez-Sánchez C, López-Pérez MJ, Enríquez JA. The role of the mitochondrion in sperm function: is there a place for oxidative phosphorylation or is this a purely glycolytic process? Curr Top Dev Biol. 2007;77:3–19. doi: 10.1016/S0070-2153(06)77001-6. PubMed DOI

Giaccagli MM, Gómez-Elías MD, Herzfeld JD, Marín-Briggiler CI, Cuasnicú PS, Cohen DJ, Da Ros VG. Capacitation-induced mitochondrial activity is required for sperm fertilizing ability in mice by modulating hyperactivation. Front Cell Dev Biol. 2021;9:767161. doi: 10.3389/fcell.2021.767161. PubMed DOI PMC

Schwartz M, Vissing J. Paternal inheritance of mitochondrial DNA. N Engl J Med. 2002;347:576–580. doi: 10.1056/NEJMoa020350. PubMed DOI

Sharpley MS, Marciniak C, Eckel-Mahan K, McManus M, Crimi M, Waymire K, Lin CS, Masubuchi S, Friend N, Koike M, Chalkia D, MacGregor G, Sassone-Corsi P, Wallace DC. Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition. Cell. 2012;151:333–343. doi: 10.1016/j.cell.2012.09.004. PubMed DOI PMC

Bernardino Gomes TM, Ng YS, Pickett SJ, Turnbull DM, Vincent AE. Mitochondrial DNA disorders: from pathogenic variants to preventing transmission. Hum Mol Genet. 2021;30:R245–R253. doi: 10.1093/hmg/ddab156. PubMed DOI PMC

Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998;67:425–479. doi: 10.1146/annurev.biochem.67.1.425. PubMed DOI

Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G. Ubiquitinated sperm mitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos. Biol Reprod. 2000;63:582–590. doi: 10.1095/biolreprod63.2.582. PubMed DOI

Song WH, Yi YJ, Sutovsky M, Meyers S, Sutovsky P. Autophagy and ubiquitin-proteasome system contribute to sperm mitophagy after mammalian fertilization. Proc Natl Acad Sci U S A. 2016;113:E5261–E5270. doi: 10.1073/pnas.1605844113. PubMed DOI PMC

Song WH, Yi YJ, Sutovsky M, Meyers S, Sutovsky P. The ART and science of sperm mitophagy. Autophagy. 2016;12:2510–2511. doi: 10.1080/15548627.2016.1239004. PubMed DOI PMC

Ankel-Simons F, Cummins JM. Misconceptions about mitochondria and mammalian fertilization: implications for theories on human evolution. Proc Natl Acad Sci USA. 1996;93:13859–13863. doi: 10.1073/pnas.93.24.13859. PubMed DOI PMC

Luo S, Valencia CA, Zhang J, Lee NC, Slone J, Gui B, Wang X, Li Z, Dell S, Brown J, Chen SM, Chien YH, Hwu WL, Fan PC, Wong LJ, Atwal PS, Huang T. Biparental inheritance of mitochondrial DNA in humans. Proc Natl Acad Sci USA. 2018;115(51):13039–13044. doi: 10.1073/pnas.1810946115. PubMed DOI PMC

Balciuniene J, Balciunas D. A Nuclear mtDNA Concatemer (Mega-NUMT) Could Mimic Paternal Inheritance of Mitochondrial Genome. Front Genet. 2019;10:518. doi: 10.3389/fgene.2019.00518. PubMed DOI PMC

Wei W, Chinnery PF. Inheritance of mitochondrial DNA in humans: implications for rare and common diseases. J Intern Med. 2020;287:634–644. doi: 10.1111/joim.13047. PubMed DOI PMC

Floros VI, Pyle A, Dietmann S, Wei W, Tang WCW, Irie N, Payne B, et al. Segregation of mitochondrial DNA heteroplasmy through a developmental genetic bottleneck in human embryos. Nat Cell Biol. 2018;20:144–151. doi: 10.1038/s41556-017-0017-8. PubMed DOI PMC

Lee HS, Ma H, Juanes RC, Tachibana M, Sparman M, Woodward J, Ramsey C, et al. Rapid mitochondrial DNA segregation in primate preimplantation embryos precedes somatic and germline bottleneck. Cell Rep. 2012;1:506–515. doi: 10.1016/j.celrep.2012.03.011. PubMed DOI PMC

Cao L, Shitara H, Horii T, Nagao Y, Imai H, Abe K, Hara T, Hayashi J, Yonekawa H. The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells. Nat Genet. 2007;39:386–390. doi: 10.1038/ng1970. PubMed DOI

de Melo KP, Camargo M. Mechanisms for sperm mitochondrial removal in embryos. Biochim Biophys Acta Mol Cell Res. 2021;1868:118916. doi: 10.1016/j.bbamcr.2020.118916. PubMed DOI

Wang L, Tang J, Wang L, Tan F, Song H, Zhou J. Oxidative stress in oocyte aging and female reproduction. J Cell Physiol. 2021;236:7966–7983. doi: 10.1002/jcp.30468. PubMed DOI

Kasapoǧlu I, Seli E. Mitochondrial dysfunction and ovarian aging. Endocrinology. 2020:161. doi: 10.1210/endocr/bqaa001. PubMed DOI

Mikwar M, MacFarlane AJ, Marchetti F. Mechanisms of oocyte aneuploidy associated with advanced maternal age. Mutat Res Rev Mutat Res. 2020:785. doi: 10.1016/j.mrrev.2020.108320. PubMed DOI

Woods DC, Khrapko K, Tilly JL. Influence of maternal aging on mitochondrial heterogeneity, inheritance, and function in oocytes and preimplantation embryos. Genes (Basel) 2018;9 doi: 10.3390/genes9050265. PubMed DOI PMC

Rebolledo-Jaramillo B, Su MS, Stoler N, McElhoe JA, Dickins B, Blankenberg D, Korneliussen TS, et al. Maternal age effect and severe germ-line bottleneck in the inheritance of human mitochondrial DNA. Proc Natl Acad Sci U S A. 2014;111:15474–15479. doi: 10.1073/pnas.1409328111. PubMed DOI PMC

Burgstaller JP, Kolbe T, Havlicek V, Hembach S, Poulton J, Piálek J, Steinborn R, Rülicke T, Brem G, Jones NS, Johnston IG. Large-scale genetic analysis reveals mammalian mtDNA heteroplasmy dynamics and variance increase through lifetimes and generations. Nat Commun. 2018;9:2488. doi: 10.1038/s41467-018-04797-2. PubMed DOI PMC

Ye K, Lu J, Ma F, Keinan A, Gu Z. Extensive pathogenicity of mitochondrial heteroplasmy in healthy human individuals. Proc Natl Acad Sci USA. 2014;111:10654–10659. doi: 10.1073/pnas.1403521111. PubMed DOI PMC

Wei W, Keogh MJ, Wilson I, Coxhead J, Ryan S, Rollinson S, Griffin H, et al. Mitochondrial DNA point mutations and relative copy number in 1363 disease and control human brains. Acta Neuropathol Commun. 2017;5:13. https://doi.org/10.1186/s40478-017-0419-7, https://doi.org/10.1186/s40478-016-0404-6. PubMed DOI PMC

Debette S, Wolf PA, Beiser A, Au R, Himali JJ, Pikula A, Auerbach S, Decarli C, Seshadri S. Association of parental dementia with cognitive and brain MRI measures in middle-aged adults. Neurology. 2009;73:2071–2078. doi: 10.1212/WNL.0b013e3181c67833. PubMed DOI PMC

Murayama K, Shimura M, Liu Z, Okazaki Y, Ohtake A. Recent topics: the diagnosis, molecular genesis, and treatment of mitochondrial diseases. J Hum Genet. 2019;64:113–125. doi: 10.1038/s10038-018-0528-6. PubMed DOI

Rauchová H. Coenzyme Q10 effects in neurological diseases. Physiol Res. 2021;70(Suppl4):S683–S714. doi: 10.33549/physiolres.934712. PubMed DOI PMC

Antonyová V, Kejík Z, Brogyányi T, Kaplánek R, Pajková M, Talianová V, Hromádka R, Masařík M, Sýkora D, Mikšátková L, Martásek P, Jakubek M. Role of mtDNA disturbances in the pathogenesis of Alzheimer's and Parkinson's disease. DNA Repair (Amst) 2020;91–92:102871. doi: 10.1016/j.dnarep.2020.102871. PubMed DOI

Uddin MS, Hasana S, Hossain MF, Islam MS, Behl T, Perveen A, Hafeez A, Ashraf GM. Molecular Genetics of Early- and Late-Onset Alzheimer's Disease. Curr Gene Ther. 2021;21:43–52. doi: 10.2174/1566523220666201123112822. PubMed DOI

Hornak M, Jeseta M, Musilova P, Pavlok A, Kubelka M, Motlik J, Rubes J, Anger M. (2011) Frequency of aneuploidy related to age in porcine oocytes. PLoS One. 2011;6:e18892. doi: 10.1371/journal.pone.0018892. PubMed DOI PMC

St John J, Sakkas D, Dimitriadi K, Barnes A, Maclin V, Ramey J, Barratt C, De Jonge C. Failure of elimination of paternal mitochondrial DNA in abnormal embryos. Lancet. 2000;355:200. doi: 10.1016/S0140-6736(99)03842-8. PubMed DOI

Eker C, Celik HG, Balci BK, Gunel T. Investigation of human paternal mitochondrial DNA transmission in ART babies whose fathers with male infertility. Eur J Obstet Gynecol Reprod Biol. 2019;236:183–192. doi: 10.1016/j.ejogrb.2019.02.011. PubMed DOI

Koňaříková E, Marković A, Korandová Z, Houštěk J, Mráček T. Current progress in the therapeutic options for mitochondrial disorders. Physiol Res. 2020;69:967–994. doi: 10.33549/physiolres.934529. PubMed DOI PMC

Slone J, Huang T. The special considerations of gene therapy for mitochondrial diseases. NPJ Genom Med. 2020;5:7. doi: 10.1038/s41525-020-0116-5. PubMed DOI PMC

Craven L, Herbert M, Murdoch A, Murphy J, Lawford Davies J, Turnbull DM. Research into policy: a brief history of mitochondrial donation. Stem Cells. 2016;34:265–267. doi: 10.1002/stem.2221. PubMed DOI PMC

Gleicher N, Kushnir VA, Albertini DA, Barad DH. First birth following spindle transfer. Reprod Biomed Online. 2017;35:542–543. doi: 10.1016/j.rbmo.2017.07.006. PubMed DOI

Reardon S. 'Three-parent baby' claim raises hopes - and ethical concerns. Nature. 2016 doi: 10.1038/nature.2016.20698. DOI

González-Santos SP. Shifting the focus in the legal analysis of the first MST case. J Law Biosci. 2017;4:611–616. doi: 10.1093/jlb/lsx022. PubMed DOI PMC

Parikh FR, Athalye AS, Naik NJ, Naik DJ, Sanap RR, Madon PF. Preimplantation genetic testing: its evolution, where are we today? J Hum Reprod Sci. 2018;11:306–314. doi: 10.4103/jhrs.JHRS_132_18. PubMed DOI PMC

Valnot I, Kassis J, Chretien D, de Lonlay P, Parfait B, Munnich A, Kachaner J, Rustin P, Rötig A. A mitochondrial cytochrome b mutation but no mutations of nuclearly encoded subunits in ubiquinol cytochrome c reductase (complex III) deficiency. Hum Genet. 1999;104:460–466. doi: 10.1007/s004390050988. PubMed DOI

Wang Q, Li R, Zhao H, Peters JL, Liu Q, Yang L, Han D, Greinwald JH, Jr, Young WY, Guan MX, Wang Q, Li R, Zhao H, et al. Clinical and molecular characterization of a Chinese patient with auditory neuropathy associated with mitochondrial 12S rRNA T1095C mutation. Am J Med Genet A. 2005;133A:27–30. doi: 10.1002/ajmg.a.30424. PubMed DOI PMC

Tawata M, Ohtaka M, Iwase E, Ikegishi Y, Aida K, Onaya T. New mitochondrial DNA homoplasmic mutations associated with Japanese patients with type 2 diabetes. Diabetes. 1998;47:276–277. doi: 10.2337/diab.47.2.276. PubMed DOI

Gattermann N, Retzlaff S, Wang YL, Berneburg M, Heinisch J, Wlaschek M, Aul C, Schneider W. A heteroplasmic point mutation of mitochondrial tRNALeu(CUN) in non-lymphoid haemopoietic cell lineages from a patient with acquired idiopathic sideroblastic anaemia. Br J Haematol. 1996;93:845–855. doi: 10.1046/j.1365-2141.1996.d01-1724.x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...