Abundance of Maternal Mitochondrial Genome Is Dispensable up to the Mitochondrial Genome Activation in Post-Implantation Embryos
Language English Country United States Media print
Document type Journal Article
Grant support
Cooperatio MED/DIAG
Ministerstvo e a T lov chovy (MMT)
Cooperatio MED/IMMU
Ministerstvo e a T lov chovy (MMT)
SVV 260 773
Ministerstvo e a T lov chovy (MMT)
8X23009
Ministerstvo e a T lov chovy (MMT)
QL24010123
Technologick Agentura esk Republiky (Czech Technological Agency)
LM2023050
Ministerstvo kolstv, Ml de e a T lov chovy (MMT)
CZ.02.1.01/0.0/0.0/18_046/0016045
Ministerstvo kolstv, Ml de e a T lov chovy (MMT)
LM2023050
Ministry of Education, Youth and Sports of the Czech Republic (MEYS CR)
CZ.02.1.01/0.0/0.0/18_046/0016045
Ministry of Education, Youth and Sports of the Czech Republic (MEYS CR)
MED/DIAG
SVV 260 773
MED/IMMU of Charles University
8X23009
MSTC in the Danube Region
254323
Grant Agency of Charles University
CZ.02.1.01/0.0/0.0/16_019/0000787
European Regional Development Fund - Project "Fighting Infectious Diseases"
QL24010123
Technology Agency of the Czech Republic
PubMed
40922707
PubMed Central
PMC12418054
DOI
10.1096/fj.202501179r
Knihovny.cz E-resources
- Keywords
- embryo, fertilization, mitochondrial, mitochondrion, oocyte, transcription factor A,
- MeSH
- Blastocyst metabolism MeSH
- Embryo, Mammalian metabolism MeSH
- Embryonic Development * genetics MeSH
- Genome, Mitochondrial * genetics MeSH
- Embryo Implantation * genetics MeSH
- DNA, Mitochondrial * genetics MeSH
- Mitochondria * genetics metabolism MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Oocytes * metabolism MeSH
- DNA Replication MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA, Mitochondrial * MeSH
Mitochondria in the egg are suggested to be crucial for the onset of new life. However, there is ambiguous knowledge about the necessity for fertilization and early embryonic development. Therefore, we created a conditional Tfam knockout (TfamloxP/loxP; Zp3-Cre) to produce Tfamnull oocytes for investigation of the mitochondrial abundance in oocytes and early embryos. This created mtDNA-depleted eggs, although the abundance of mitochondria did not change. Despite decreased mitochondrial membrane potential, Tfamnull oocytes matured and were fertilized, which led to embryo formation. These Tfamnull eggs were developed into mtDNA-deficient blastocysts. Both TFAM and mtDNA appear to be dispensable for the success of embryo implantation. Tfam expression and mtDNA replication rescue the mtDNA-deficient embryo after implantation, enabling passage through a post-implantation bottleneck, and allowing survivor embryos to develop into healthy individuals. Our findings highlight the uncoupled relationship between mtDNA replication and mitochondrial abundance in the growing oocyte and show the importance of the oocyte bulk mtDNA for successful mitochondrial activation in post-implantation embryos.
Faculty of Medicine in Pilsen Biomedical Center Charles University Prague Czech Republic
Faculty of Medicine in Pilsen Department of Physiology Charles University Pilsen Czech Republic
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
See more in PubMed
Babayev E. and Seli E., “Oocyte Mitochondrial Function and Reproduction,” Current Opinion in Obstetrics & Gynecology 27 (2015): 175–181. PubMed PMC
Johnson M. T., Freeman E. A., Gardner D. K., and Hunt P. A., “Oxidative Metabolism of Pyruvate Is Required for Meiotic Maturation of Murine Oocytes In Vivo,” Biology of Reproduction 77 (2007): 2–8. PubMed
Trimarchi J. R., Liu L., Porterfield D. M., Smith P. J. S., and Keefe D. L., “Oxidative Phosphorylation‐Dependent and ‐Independent Oxygen Consumption by Individual Preimplantation Mouse Embryos,” Biology of Reproduction 62 (2000): 1866–1874. PubMed
Wai T., Ao A., Zhang X., Cyr D., Dufort D., and Shoubridge E. A., “The Role of Mitochondrial DNA Copy Number in Mammalian Fertility,” Biology of Reproduction 83 (2010): 52–62. PubMed PMC
Reynier P., May‐Panloup P., Chrétien M. F., et al., “Mitochondrial DNA Content Affects the Fertilizability of Human Oocytes,” Molecular Human Reproduction 7 (2001): 425–429. PubMed
Brinster R. L., “Oxidation of Pyruvate and Glucose by Oocytes of the Mouse and Rhesus Monkey,” Journal of Reproduction and Fertility 24 (1971): 187–191. PubMed
Eppig J. J., “Analysis of Mouse Oogenesis In Vitro. Oocyte Isolation and the Utilization of Exogenous Energy Sources by Growing Oocytes,” Journal of Experimental Zoology 198 (1976): 375–381. PubMed
Zeilmaker G. H. and Verhamme C. M. P. M., “Observations on Rat Oocyte Maturation In Vitro: Morphology and Energy Requirements,” Biology of Reproduction 11 (1974): 145–152. PubMed
Hutchison C. A., Newbold J. E., Potter S. S., and Edgell M. H., “Maternal Inheritance of Mammalian Mitochondrial DNA,” Nature 251 (1974): 536–538. PubMed
Sutovsky P., Moreno R. D., Ramalho‐Santos J., Dominko T., Simerly C., and Schatten G., “Ubiquitin Tag for Sperm Mitochondria,” Nature 402 (1999): 371–372. PubMed
Rodríguez‐Nuevo A., Torres‐Sanchez A., Duran J. M., De Guirior C., Martínez‐Zamora M. A., and Böke E., “Oocytes Maintain ROS‐Free Mitochondrial Metabolism by Suppressing Complex I,” Nature 607 (2022): 756–761. PubMed PMC
Long S., Zheng Y., Deng X., et al., “Maintaining Mitochondrial DNA Copy Number Mitigates ROS‐Induced Oocyte Decline and Female Reproductive Aging,” Communications Biology 7 (2024): 1229. PubMed PMC
Du S., Huang Z., Lin Y., et al., “Mitochondrial DNA Copy Number in Human Blastocyst: A Novel Biomarker for the Prediction of Implantation Potential,” Journal of Molecular Diagnostics 23 (2021): 637–642. PubMed
Fragouli E., Spath K., Alfarawati S., et al., “Altered Levels of Mitochondrial DNA Are Associated With Female Age, Aneuploidy, and Provide an Independent Measure of Embryonic Implantation Potential,” PLoS Genetics 11 (2015): e1005241. PubMed PMC
Ekstrand M. I., Falkenberg M., Rantanen A., et al., “Mitochondrial Transcription Factor A Regulates mtDNA Copy Number in Mammals,” Human Molecular Genetics 13 (2004): 935–944. PubMed
Schulz K. N. and Harrison M. M., “Mechanisms Regulating Zygotic Genome Activation,” Nature Reviews. Genetics 20 (2019): 221–234. PubMed PMC
Malik A. N., Czajka A., and Cunningham P., “Accurate Quantification of Mouse Mitochondrial DNA Without Co‐Amplification of Nuclear Mitochondrial Insertion Sequences,” Mitochondrion 29 (2016): 59–64. PubMed
Murakami Y., Wei F. Y., Kawamura Y., et al., “NSUN3‐Mediated Mitochondrial tRNA 5‐Formylcytidine Modification Is Essential for Embryonic Development and Respiratory Complexes in Mice,” Communications Biology 6 (2023): 307. PubMed PMC
Yang J., Chen X., Luodan A., et al., “Alleviation of Photoreceptor Degeneration Based on Fullerenols in rd1 Mice by Reversing Mitochondrial Dysfunction via Modulation of Mitochondrial DNA Transcription and Leakage,” Small 19 (2023): e2205998. PubMed
Belevich I., Joensuu M., Kumar D., Vihinen H., and Jokitalo E., “Microscopy Image Browser: A Platform for Segmentation and Analysis of Multidimensional Datasets,” PLoS Biology 14 (2016): e1002340. PubMed PMC
Ravi N., Gabeur V., Hu Y.‐T., et al., “SAM 2: Segment Anything in Images and Videos,” (2024).
Perry S. W., Norman J. P., Barbieri J., Brown E. B., and Gelbard H. A., “Mitochondrial Membrane Potential Probes and the Proton Gradient: A Practical Usage Guide,” BioTechniques 50 (2011): 98–115. PubMed PMC
Wang Q., Stringer J. M., Liu J., and Hutt K. J., “Evaluation of Mitochondria in Oocytes Following γ‐Irradiation,” Scientific Reports 9 (2019): 19941. PubMed PMC
Antelman J., Manandhar G., Yi Y. J., et al., “Expression of Mitochondrial Transcription Factor A (TFAM) During Porcine Gametogenesis and Preimplantation Embryo Development,” Journal of Cellular Physiology 217 (2008): 529–543. PubMed
Wredenberg A., Wibom R., Wilhelmsson H., et al., “Increased Mitochondrial Mass in Mitochondrial Myopathy Mice,” Proceedings of the National Academy of Sciences of the United States of America 99 (2002): 15066–15071. PubMed PMC
Miller S. W., Trimmer P. A., Parker W. D., and Davis R. E., “Creation and Characterization of Mitochondrial DNA‐Depleted Cell Lines With “Neuronal‐Like” Properties,” Journal of Neurochemistry 67 (1996): 1897–1907. PubMed
Mahrous E., Yang Q., and Clarke H. J., “Regulation of Mitochondrial DNA Accumulation During Oocyte Growth and Meiotic Maturation in the Mouse,” Reproduction 144 (2012): 177–185. PubMed
Eppig J. J., O'brien M., and Wigglesworth K., “Mammalian Oocyte Growth and Development in Vitro,” Molecular Reproduction and Development 44 (1996): 260–273. PubMed
Larsson N. G., Wang J., Wilhelmsson H., et al., “(1998) Mitochondrial Transcription Factor A Is Necessary for mtDNA Maintance and Embryogenesis in Mice,” Nature Genetics 183, no. 18 (1998): 231–236. PubMed
Xie X., Venit T., Drou N., and Percipalle P., “In Mitochondria β‐Actin Regulates mtDNA Transcription and Is Required for Mitochondrial Quality Control,” IScience 3 (2018): 226–237. PubMed PMC
Shavit M., Iniesta‐Cuerda M., and Nevoral J., “Mitochondria in Human Reproduction: Novel Paradigm in the Onset of Neurodegenerative Disorders,” Physiological Research 72 (2023): 137–148. PubMed PMC
Schwartz M. and Vissing J., “Paternal Inheritance of Mitochondrial DNA,” New England Journal of Medicine 347 (2002): 576–580. PubMed
Song W.‐H., Yi Y.‐J., Sutovsky M., Meyers S., and Sutovsky P., “The ART and Science of Sperm Mitophagy,” Autophagy 12 (2016): 2510–2511. PubMed PMC
Krisher R. L. and Prather R. S., “A Role for the Warburg Effect in Preimplantation Embryo Development: Metabolic Modification to Support Rapid Cell Proliferation,” Molecular Reproduction and Development 79 (2012): 311–320. PubMed PMC
Hajnóczky G., Robb‐Gaspers L. D., Seitz M. B., and Thomas A. P., “Decoding of Cytosolic Calcium Oscillations in the Mitochondria,” Cell 82 (1995): 415–424. PubMed
Ducibella T., Huneau D., Angelichio E., et al., “Egg‐To‐Embryo Transition Is Driven by Differential Responses to Ca PubMed
Ross J. M., Stewart J. B., Hagström E., et al., “Germline Mitochondrial DNA Mutations Aggravate Ageing and Can Impair Brain Development,” Nature 501 (2013): 412–415. PubMed PMC
Green A. P., Klimm F., Marshall A. S., et al., “Cryptic Mitochondrial DNA Mutations Coincide With Mid‐Late Life and Are Pathophysiologically Informative in Single Cells Across Tissues and Species,” Nature Communications 161, no. 16 (2025): 1–15. PubMed PMC
Fontana G. A. and Gahlon H. L., “Mechanisms of Replication and Repair in Mitochondrial DNA Deletion Formation,” Nucleic Acids Research 48 (2020): 11244–11258. PubMed PMC
Scott R., Zhang M., and Seli E., “Metabolism of the Oocyte and the Preimplantation Embryo: Implications for Assisted Reproduction,” Current Opinion in Obstetrics & Gynecology 30 (2018): 163–170. PubMed
Zhang J., Liu H., Luo S., et al., “Live Birth Derived From Oocyte Spindle Transfer to Prevent Mitochondrial Disease,” Reproductive Biomedicine Online 34 (2017): 361–368. PubMed
Floros V. I., Pyle A., Dietmann S., et al., “Segregation of Mitochondrial DNA Heteroplasmy Through a Developmental Genetic Bottleneck in Human Embryos,” Nature Cell Biology 20 (2018): 144–151. PubMed PMC