• This record comes from PubMed

Abundance of Maternal Mitochondrial Genome Is Dispensable up to the Mitochondrial Genome Activation in Post-Implantation Embryos

. 2025 Sep 15 ; 39 (17) : e70986.

Language English Country United States Media print

Document type Journal Article

Grant support
Cooperatio MED/DIAG Ministerstvo e a T lov chovy (MMT)
Cooperatio MED/IMMU Ministerstvo e a T lov chovy (MMT)
SVV 260 773 Ministerstvo e a T lov chovy (MMT)
8X23009 Ministerstvo e a T lov chovy (MMT)
QL24010123 Technologick Agentura esk Republiky (Czech Technological Agency)
LM2023050 Ministerstvo kolstv, Ml de e a T lov chovy (MMT)
CZ.02.1.01/0.0/0.0/18_046/0016045 Ministerstvo kolstv, Ml de e a T lov chovy (MMT)
LM2023050 Ministry of Education, Youth and Sports of the Czech Republic (MEYS CR)
CZ.02.1.01/0.0/0.0/18_046/0016045 Ministry of Education, Youth and Sports of the Czech Republic (MEYS CR)
MED/DIAG
SVV 260 773 MED/IMMU of Charles University
8X23009 MSTC in the Danube Region
254323 Grant Agency of Charles University
CZ.02.1.01/0.0/0.0/16_019/0000787 European Regional Development Fund - Project "Fighting Infectious Diseases"
QL24010123 Technology Agency of the Czech Republic

Mitochondria in the egg are suggested to be crucial for the onset of new life. However, there is ambiguous knowledge about the necessity for fertilization and early embryonic development. Therefore, we created a conditional Tfam knockout (TfamloxP/loxP; Zp3-Cre) to produce Tfamnull oocytes for investigation of the mitochondrial abundance in oocytes and early embryos. This created mtDNA-depleted eggs, although the abundance of mitochondria did not change. Despite decreased mitochondrial membrane potential, Tfamnull oocytes matured and were fertilized, which led to embryo formation. These Tfamnull eggs were developed into mtDNA-deficient blastocysts. Both TFAM and mtDNA appear to be dispensable for the success of embryo implantation. Tfam expression and mtDNA replication rescue the mtDNA-deficient embryo after implantation, enabling passage through a post-implantation bottleneck, and allowing survivor embryos to develop into healthy individuals. Our findings highlight the uncoupled relationship between mtDNA replication and mitochondrial abundance in the growing oocyte and show the importance of the oocyte bulk mtDNA for successful mitochondrial activation in post-implantation embryos.

See more in PubMed

Babayev E. and Seli E., “Oocyte Mitochondrial Function and Reproduction,” Current Opinion in Obstetrics & Gynecology 27 (2015): 175–181. PubMed PMC

Johnson M. T., Freeman E. A., Gardner D. K., and Hunt P. A., “Oxidative Metabolism of Pyruvate Is Required for Meiotic Maturation of Murine Oocytes In Vivo,” Biology of Reproduction 77 (2007): 2–8. PubMed

Trimarchi J. R., Liu L., Porterfield D. M., Smith P. J. S., and Keefe D. L., “Oxidative Phosphorylation‐Dependent and ‐Independent Oxygen Consumption by Individual Preimplantation Mouse Embryos,” Biology of Reproduction 62 (2000): 1866–1874. PubMed

Wai T., Ao A., Zhang X., Cyr D., Dufort D., and Shoubridge E. A., “The Role of Mitochondrial DNA Copy Number in Mammalian Fertility,” Biology of Reproduction 83 (2010): 52–62. PubMed PMC

Reynier P., May‐Panloup P., Chrétien M. F., et al., “Mitochondrial DNA Content Affects the Fertilizability of Human Oocytes,” Molecular Human Reproduction 7 (2001): 425–429. PubMed

Brinster R. L., “Oxidation of Pyruvate and Glucose by Oocytes of the Mouse and Rhesus Monkey,” Journal of Reproduction and Fertility 24 (1971): 187–191. PubMed

Eppig J. J., “Analysis of Mouse Oogenesis In Vitro. Oocyte Isolation and the Utilization of Exogenous Energy Sources by Growing Oocytes,” Journal of Experimental Zoology 198 (1976): 375–381. PubMed

Zeilmaker G. H. and Verhamme C. M. P. M., “Observations on Rat Oocyte Maturation In Vitro: Morphology and Energy Requirements,” Biology of Reproduction 11 (1974): 145–152. PubMed

Hutchison C. A., Newbold J. E., Potter S. S., and Edgell M. H., “Maternal Inheritance of Mammalian Mitochondrial DNA,” Nature 251 (1974): 536–538. PubMed

Sutovsky P., Moreno R. D., Ramalho‐Santos J., Dominko T., Simerly C., and Schatten G., “Ubiquitin Tag for Sperm Mitochondria,” Nature 402 (1999): 371–372. PubMed

Rodríguez‐Nuevo A., Torres‐Sanchez A., Duran J. M., De Guirior C., Martínez‐Zamora M. A., and Böke E., “Oocytes Maintain ROS‐Free Mitochondrial Metabolism by Suppressing Complex I,” Nature 607 (2022): 756–761. PubMed PMC

Long S., Zheng Y., Deng X., et al., “Maintaining Mitochondrial DNA Copy Number Mitigates ROS‐Induced Oocyte Decline and Female Reproductive Aging,” Communications Biology 7 (2024): 1229. PubMed PMC

Du S., Huang Z., Lin Y., et al., “Mitochondrial DNA Copy Number in Human Blastocyst: A Novel Biomarker for the Prediction of Implantation Potential,” Journal of Molecular Diagnostics 23 (2021): 637–642. PubMed

Fragouli E., Spath K., Alfarawati S., et al., “Altered Levels of Mitochondrial DNA Are Associated With Female Age, Aneuploidy, and Provide an Independent Measure of Embryonic Implantation Potential,” PLoS Genetics 11 (2015): e1005241. PubMed PMC

Ekstrand M. I., Falkenberg M., Rantanen A., et al., “Mitochondrial Transcription Factor A Regulates mtDNA Copy Number in Mammals,” Human Molecular Genetics 13 (2004): 935–944. PubMed

Schulz K. N. and Harrison M. M., “Mechanisms Regulating Zygotic Genome Activation,” Nature Reviews. Genetics 20 (2019): 221–234. PubMed PMC

Malik A. N., Czajka A., and Cunningham P., “Accurate Quantification of Mouse Mitochondrial DNA Without Co‐Amplification of Nuclear Mitochondrial Insertion Sequences,” Mitochondrion 29 (2016): 59–64. PubMed

Murakami Y., Wei F. Y., Kawamura Y., et al., “NSUN3‐Mediated Mitochondrial tRNA 5‐Formylcytidine Modification Is Essential for Embryonic Development and Respiratory Complexes in Mice,” Communications Biology 6 (2023): 307. PubMed PMC

Yang J., Chen X., Luodan A., et al., “Alleviation of Photoreceptor Degeneration Based on Fullerenols in rd1 Mice by Reversing Mitochondrial Dysfunction via Modulation of Mitochondrial DNA Transcription and Leakage,” Small 19 (2023): e2205998. PubMed

Belevich I., Joensuu M., Kumar D., Vihinen H., and Jokitalo E., “Microscopy Image Browser: A Platform for Segmentation and Analysis of Multidimensional Datasets,” PLoS Biology 14 (2016): e1002340. PubMed PMC

Ravi N., Gabeur V., Hu Y.‐T., et al., “SAM 2: Segment Anything in Images and Videos,” (2024).

Perry S. W., Norman J. P., Barbieri J., Brown E. B., and Gelbard H. A., “Mitochondrial Membrane Potential Probes and the Proton Gradient: A Practical Usage Guide,” BioTechniques 50 (2011): 98–115. PubMed PMC

Wang Q., Stringer J. M., Liu J., and Hutt K. J., “Evaluation of Mitochondria in Oocytes Following γ‐Irradiation,” Scientific Reports 9 (2019): 19941. PubMed PMC

Antelman J., Manandhar G., Yi Y. J., et al., “Expression of Mitochondrial Transcription Factor A (TFAM) During Porcine Gametogenesis and Preimplantation Embryo Development,” Journal of Cellular Physiology 217 (2008): 529–543. PubMed

Wredenberg A., Wibom R., Wilhelmsson H., et al., “Increased Mitochondrial Mass in Mitochondrial Myopathy Mice,” Proceedings of the National Academy of Sciences of the United States of America 99 (2002): 15066–15071. PubMed PMC

Miller S. W., Trimmer P. A., Parker W. D., and Davis R. E., “Creation and Characterization of Mitochondrial DNA‐Depleted Cell Lines With “Neuronal‐Like” Properties,” Journal of Neurochemistry 67 (1996): 1897–1907. PubMed

Mahrous E., Yang Q., and Clarke H. J., “Regulation of Mitochondrial DNA Accumulation During Oocyte Growth and Meiotic Maturation in the Mouse,” Reproduction 144 (2012): 177–185. PubMed

Eppig J. J., O'brien M., and Wigglesworth K., “Mammalian Oocyte Growth and Development in Vitro,” Molecular Reproduction and Development 44 (1996): 260–273. PubMed

Larsson N. G., Wang J., Wilhelmsson H., et al., “(1998) Mitochondrial Transcription Factor A Is Necessary for mtDNA Maintance and Embryogenesis in Mice,” Nature Genetics 183, no. 18 (1998): 231–236. PubMed

Xie X., Venit T., Drou N., and Percipalle P., “In Mitochondria β‐Actin Regulates mtDNA Transcription and Is Required for Mitochondrial Quality Control,” IScience 3 (2018): 226–237. PubMed PMC

Shavit M., Iniesta‐Cuerda M., and Nevoral J., “Mitochondria in Human Reproduction: Novel Paradigm in the Onset of Neurodegenerative Disorders,” Physiological Research 72 (2023): 137–148. PubMed PMC

Schwartz M. and Vissing J., “Paternal Inheritance of Mitochondrial DNA,” New England Journal of Medicine 347 (2002): 576–580. PubMed

Song W.‐H., Yi Y.‐J., Sutovsky M., Meyers S., and Sutovsky P., “The ART and Science of Sperm Mitophagy,” Autophagy 12 (2016): 2510–2511. PubMed PMC

Krisher R. L. and Prather R. S., “A Role for the Warburg Effect in Preimplantation Embryo Development: Metabolic Modification to Support Rapid Cell Proliferation,” Molecular Reproduction and Development 79 (2012): 311–320. PubMed PMC

Hajnóczky G., Robb‐Gaspers L. D., Seitz M. B., and Thomas A. P., “Decoding of Cytosolic Calcium Oscillations in the Mitochondria,” Cell 82 (1995): 415–424. PubMed

Ducibella T., Huneau D., Angelichio E., et al., “Egg‐To‐Embryo Transition Is Driven by Differential Responses to Ca PubMed

Ross J. M., Stewart J. B., Hagström E., et al., “Germline Mitochondrial DNA Mutations Aggravate Ageing and Can Impair Brain Development,” Nature 501 (2013): 412–415. PubMed PMC

Green A. P., Klimm F., Marshall A. S., et al., “Cryptic Mitochondrial DNA Mutations Coincide With Mid‐Late Life and Are Pathophysiologically Informative in Single Cells Across Tissues and Species,” Nature Communications 161, no. 16 (2025): 1–15. PubMed PMC

Fontana G. A. and Gahlon H. L., “Mechanisms of Replication and Repair in Mitochondrial DNA Deletion Formation,” Nucleic Acids Research 48 (2020): 11244–11258. PubMed PMC

Scott R., Zhang M., and Seli E., “Metabolism of the Oocyte and the Preimplantation Embryo: Implications for Assisted Reproduction,” Current Opinion in Obstetrics & Gynecology 30 (2018): 163–170. PubMed

Zhang J., Liu H., Luo S., et al., “Live Birth Derived From Oocyte Spindle Transfer to Prevent Mitochondrial Disease,” Reproductive Biomedicine Online 34 (2017): 361–368. PubMed

Floros V. I., Pyle A., Dietmann S., et al., “Segregation of Mitochondrial DNA Heteroplasmy Through a Developmental Genetic Bottleneck in Human Embryos,” Nature Cell Biology 20 (2018): 144–151. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...