Need for split: integrative taxonomy reveals unnoticed diversity in the subaquatic species of Pseudohygrohypnum (Pylaisiaceae, Bryophyta)
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35497188
PubMed Central
PMC9053303
DOI
10.7717/peerj.13260
PII: 13260
Knihovny.cz E-zdroje
- Klíčová slova
- Allopatry, Biogeography, Cryptic diversity, Disjunctive distribution, Hypnales, ITS, North Asia, Species distribution model, trnS-trnF,
- MeSH
- Bryophyta * MeSH
- fylogeneze MeSH
- fylogeografie MeSH
- mechy * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Asie MeSH
- Dálný východ MeSH
We present an integrative molecular and morphological study of subaquatic representatives of the genus Pseudohygrohypnum (Pylaisiaceae, Bryophyta), supplemented by distribution modelling of the revealed phylogenetic lineages. Phylogenetic analyses of nuclear and plastid datasets combined with the assemble species by automatic partitioning (ASAP) algorithm revealed eight distinct species within the traditionally circumscribed P. eugyrium and P. subeugyrium. These species are therefore yet another example of seemingly widely distributed taxa that harbour molecularly well-differentiated lineages with narrower distribution ranges. Studied accessions that were previously assigned to P. eugyrium form three clearly allopatric lineages, associated with temperate regions of Europe, eastern North America and eastern Asia. Remarkably, accessions falling under the current morphological concept of P. subeugyrium were shown to be even more diverse, containing five phylogenetic lineages. Three of these lineages occur under harsh Asian continental climates from cool-temperate to Arctic regions, while the remaining two, referred to P. subeugyrium s.str. and P. purpurascens, have more oceanic North Atlantic and East Asian distributions. Niche identity and similarity tests suggested no similarity in the distributions of the phylogenetically related lineages but revealed the identity of two East Asian species and the similarity of two pairs of unrelated species. A morphological survey confirmed the distinctness of all eight phylogenetic lineages, requiring the description of five new species. Pseudohygrohypnum appalachianum and P. orientale are described for North American and East Asian plants of P. eugyrium s.l., while P. sibiricum, P. subarcticum and P. neglectum are described for the three continental, predominantly Asian lineages of P. subeugyrium s.l. Our results highlight the importance of nontropical Asia as a center of bryophyte diversity. Phylogenic dating suggests that the diversification of subaquatic Pseudohygrohypnum lineages appeared in late Miocene, while mesophilous species of the genus split before Miocene cooling, in climatic conditions close to those where the ancestor of Pseudohygrohypnum appeared. We speculate that radiation of the P. subeugyrium complex in temperate Asia might have been driven by progressive cooling, aridification, and increases in seasonality, temperature and humidity gradients. Our results parallel those of several integrative taxonomic studies of North Asian mosses, which have resulted in a number of newly revealed species. These include various endemics from continental areas of Asia suggesting that the so-called Rapoport's rule of low diversity and wide distribution range in subpolar regions might not be applicable to bryophytes. Rather, the strong climatic oscillations in these regions may have served as a driving force of speciation and niche divergence.
Biological Faculty Lomonosov Moscow State University Moscow Russia
Botanical Garden Institute FEB RAS Vladivostok Russia
Faculty of Science Department of Botany University of South Bohemia České Budějovice Czech Republic
Missouri Botanical Garden St Louis MO USA
Tsitsin Main Botanical Garden of RAS Moscow Russia
Zoological Museum of Lomonosov Moscow State University Moscow Russia
Zobrazit více v PubMed
Afonina OM. On moss flora of the Sokhondinsky State Nature Biosphere Reserve (Zabaikalsky Territory) Arctoa. 2009;18:141–150. doi: 10.15298/arctoa.18.07. DOI
Allen BH. Maine Mosses: Drummondiaceae—Polytrichaceae. Memoirs of the New York Botanical Garden. 2014;111:1–607.
Anderson LE, Zander RH. Mosses of the southern Blue Ridge province and their phytogeographic relationships. http://www.jstor.org/stable/24333419 Journal of the Elisha Mitchell Scientific Society. 1973;89(1/2):15–60.
Araújo MB, Anderson RP, Barbosa AM, Beale CM, Dormann CF, Early R, et al. Rahbek C. Standards for distribution models in biodiversity assessments. Science Advances. 2019;5(1):eaat4858. doi: 10.1126/sciadv.aat4858. PubMed DOI PMC
Bakalin VA, Vilnet AA. Two new species of the liverwort genus Hygrobiella Spruce (Marchantiophyta) described from the North Pacific based on integrative taxonomy. Plant Systematics and Evolution. 2014;300:2277–2291. doi: 10.1007/s00606-014-1050-8. DOI
Bakalin VA, Vilnet AA. A review of the genus Diplophyllum (Marchantiophyta) in North and East Asia with the description of a new species (D. sibiricum) based on integrative taxonomy. Plant Systematics and Evolution. 2018;304:1269–1287. doi: 10.1007/s00606-018-1547-7. DOI
Bakalin VA, Vilnet AA, Choi SS, Nguen VS. Blepharostoma trichophyllum s.l. (Marchantiophyta): the complex of sibling species and hybrids. Plants. 2020;9:1423. doi: 10.3390/plants9111423. PubMed DOI PMC
Billings WD, Anderson LE. Some microclimatic characteristics of habitats of endemic and disjunct bryophytes in the southern Blue Ridge. The Bryologist. 1966;69(1):76–95. doi: 10.1639/0007-2745(1966)69[76:SMCOHO]2.0.CO;2. DOI
Blockeel TL, Kiebacher T, Long DG. Hygrohypnum subeugyrium (Renauld & Cardot) Broth, (Hypnales), a neglected British moss, with a note on its occurrence in the Himalayas. Journal of Bryology. 2019;41(1):12–20. doi: 10.1080/03736687.2018.1551829. DOI
Brinda JC, Atwood JJ. The backbone of bryoinformatics: compiling, maintaining, and disseminating a critical taxonomic resource. The Bryological Times. 2021;152:25.
Broennimann O, Fitzpatrick MC, Pearman PB, Petitpierre B, Pellissier L, Yoccoz NG, Thuiller W, Fortin M-J, Randin C, Zimmermann NE, Graham CH, Guisan A. Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography. 2012;21:481–497. doi: 10.1111/j.1466-8238.2011.00698.x. DOI
Brotherus VF. Musci novi Japonici. Öfversigt af Finska Vetenskaps-Societetens Förhandlingar. 1921;62A(9):1–55.
Brown JL, Bennett JR, French CM. SDMtoolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ. 2017;5:e4095. doi: 10.7717/peerj.4095. PubMed DOI PMC
Câmara PEAS, Carvalho-Silva M, Henriques DK, Guerra J, Gallego MT, Poveda DR, Stech M. Pylaisiaceae Schimp, (Bryophyta) revisited. Journal of Bryology. 2018;40(3):251–264. doi: 10.1080/03736687.2018.1472850. DOI
Carter BE. The roles of dispersal limitation, climatic niches and glacial history in endemism of the North American bryophyte flora. American Journal of Botany. 2021 doi: 10.1002/ajb2.1721. PubMed DOI
Chepinoga VV, Protopopova MV, Pavlichenko VV. Detection of the most probable Pleistocene microrefugia on the northern macroslope of the Khamar-Daban Ridge (Southern Prebaikalia) Contemporary Problems of Ecology. 2017;10(1):38–42. doi: 10.1134/S1995425517010036. DOI
Collart F, Hedenäs L, Broennimann O, Guisan A, Vanderpoorten A. Intraspecific differentiation: implications for niche and distribution modelling. Journal of Biogeography. 2021;48(2):415–426. doi: 10.1111/jbi.14009. DOI
Corley MFV, Crundwell AC. Additions and amendments to the mosses of Europe and the Azores. Journal of Bryology. 1991;16(3):337–356. doi: 10.1179/jbr.1991.16.3.337. DOI
Cox CJ, Goffinet B, Wickett NJ, Boles SB, Shaw AJ. Moss diversity: a molecular phylogenetic analysis of genera. Phytotaxa. 2010;9:175–195.
Crum HA, Anderson LE. Mosses of Eastern North America, volume 2. Columbia University Press; New York: 1981.
Czernyadjeva IV. The genus Hygrohypnum (Amblystegiaceae, Musci) in Russia. Arctoa. 2003;12:25–58. doi: 10.15298/arctoa.12.03. DOI
Denk T, Grimm GW, Grímsson F, Zetter R. Evidence from Köppen signatures of fossil plant assemblages for effective heat transport of Gulf Stream to subarctic North Atlantic during Miocene cooling. Biogeosciences. 2013;10:7927–7942. doi: 10.5194/bg-10-7927-2013. DOI
Denk T, Grímsson F, Zetter R. Episodic migration of oaks to Iceland: evidence for a North Atlantic land bridge in the latest Miocene. American Journal of Botany. 2010;97(2):276–287. doi: 10.3732/ajb.0900195. PubMed DOI
Dixon HN. Manchurian mosses. Revue Bryologique et Lichénologique. 1934;7:104–116.
Draper I, Hedenäs L, Stech M, Patiño J, Werner O, Gonzalez-Mancebo JM, Sim-Sim M, Lopes T, Ros RM. How many species of Isothecium (Lembophyllaceae, Bryophyta) are There in Macaronesia? A survey using integrative taxonomy. Botanical Journal of the Linnean Society. 2015;117(3):418–438. doi: 10.1111/BOJ.12250. DOI
Dynesius M, Jansson R. Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proceedings of the National Academy of Sciences of the United States of America. 2000;97:9115–9120. doi: 10.1073/pnas.97.16.9115. PubMed DOI PMC
Dynesius M, Jansson R. The fate of clades in a world of recurrent climatic change: milankovitch oscillations and evolution. Annual Review of Ecology and Systematics. 2002;33:741–777. doi: 10.1146/annurev.ecolsys.33.010802.150520. DOI
El-Gabbas A, Dormann CF. Improved species-occurrence predictions in data-poor regions: using large-scale data and bias correction with down-weighted Poisson regression and Maxent. Ecography. 2018a;41(7):1161–1172. doi: 10.1111/ecog.03149. DOI
El-Gabbas A, Dormann CF. Wrong, but useful: regional species distribution models may not be improved by range-wide data under biased sampling. Ecology and Evolution. 2018b;8(4):2196–2206. doi: 10.1002/ece3.3834. PubMed DOI PMC
Ellis CJ, Tallis JH. Climatic control of blanket mire development at Kentra Moss, north-west Scotland. Journal of Ecology. 2000;88:869–889. doi: 10.1046/j.1365-2745.2000.00495.x. DOI
Fedosov VE, Czernyadjeva IV, Ignatova EA, Kuznetsova OI, Fedorova AV, Ignatov MS. On the Bryoxiphium norvegicum and B. japonicum (Bryoxiphiaceae, Bryopsida) Arctoa. 2016a;25(1):52–68. doi: 10.15298/arctoa.25.02. DOI
Fedosov VE, Fedorova AV, Fedosov AE, Ignatov MS. Phylogenetic inference and peristome evolution in haplolepideous mosses, focusing on Pseudoditrichaceae and Ditrichaceae s. l. Botanical Journal of the Linnean Society. 2016b;181:139–155. doi: 10.1111/boj.12408. DOI
Fedosov VE, Fedorova AV, Ignatova EA. On the two poorly known Orthotrichum species from north Asia. Arctoa. 2017;26(2):144–153. doi: 10.15298/arctoa.26.14. DOI
Fedosov VE, Fedorova AV, Ignatova EA, Ignatov MS. A revision of the genus Seligeria (Seligeriaceae, Bryophyta) in Russia inferred from molecular data. Phytotaxa. 2017;323(1):27–50. doi: 10.11646/phytotaxa.323.1.2. DOI
Fedosov VE, Ignatova EA. Bryophyte flora of Key plot Ledyanaja Bay (Central Taimyr, Byrranga range) Arctoa. 2005;14:71–94. doi: 10.15298/arctoa.14.07. DOI
Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39(4):783–791. doi: 10.1111/j.1558-5646.1985.tb00420.x. PubMed DOI
Fourcade Y, Engler JO, Rödder D, Secondi J. Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLOS ONE. 2014;9(5):e97122. doi: 10.1371/journal.pone.0097122. PubMed DOI PMC
Gama R, Aguirre-Gutiérrez J, Stech M. Ecological niche comparison and molecular phylogeny segregate the invasive moss species Campylopus introflexus (Leucobryaceae, Bryophyta) from its closest relatives. Ecology and Evolution. 2017;7:8017–8031. doi: 10.1002/ece3.3301. PubMed DOI PMC
Gardiner A, Ignatov M, Huttunen S, Troitsky A. On resurrection of the families Pseudoleskeaceae Schimp, and Pylaisiaceae Schimp. (Musci, Hypnales) Taxon. 2005;54:651–663. doi: 10.2307/25065422. DOI
GBIF.org GBIF Occurrence Download. 2021. DOI
Grímsson F, Denk T. Fagus from the Miocene of Iceland: Systematics and biogeographical considerations. Review of Palaeobotany and Palynology. 2005;134:27–54. doi: 10.1016/j.revpalbo.2004.11.002. DOI
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nuclear Acids Symposium Series. 1999;41:95–98.
Hedenäs L, Kuznetsova OI, Ignatov MS. A revision of the genus Tomentypnum (Amblystegiaceae) in northern Eurasia. The Bryologist. 2020;123(3):377–395. doi: 10.1639/0007-2745-123.3.377. DOI
Heinrichs J, Hentschel J, Feldberg K, Bombosch A, Schneider H. Phylogenetic biogeography and taxonomy of disjunctly distributed bryophytes. Journal of Systematics and Evolution. 2009;47(5):497–508. doi: 10.1111/j.1759-6831.2009.00028.x. DOI
Herbert TD, Lawrence KT, Tzanova A, Cleaveland Peterson L, Caballero-Gill R, Kelly CS. Late Miocene global cooling and the rise of modern ecosystems. Nature Geoscience. 2016;2016(9):843–847.
Hillebrand H, Azovsky AI. Body size determines the strength of the latitudinal diversity gradient. Ecography. 2001;24:251–256. doi: 10.1034/j.1600-0587.2001.240302.x. DOI
Holbourn AE, Kuhnt W, Clemens SC, Kochhann KGD, Jöhnck J, Lübbers J, Andersen N. Late Miocene climate cooling and intensification of southeast Asian winter monsoon. Nature Communications. 2018;9:1584. doi: 10.1038/s41467-018-03950-1. PubMed DOI PMC
Hu R-L, Wang Y-F, Crosby MR, He S. In: Amblystegiaceae—Plagiotheciaceae. Moss FL, editor. China. Science Press & Missouri Botanical Garden, Beijing, New York & St. Louis; 2008. p. 7: viii+ 258 pp.
Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution. 2006;23(2):254–267. doi: 10.1093/molbev/msj030. PubMed DOI
Hutsemékers V, Vieira CC, Ros RM, Huttunen S, Vanderpoorten A. Morphology informed by phylogeny reveals unexpected patterns of species differentiation in the aquatic moss Rhynchostegium riparioides s.l. Molecular Phylogenetic and Evolution. 2012;62(2):748–755. doi: 10.1016/j.ympev.2011.11.014. PubMed DOI
Huttunen S, Bell N, Bobrova VK, Buchbender V, Buck WR, Cox CJ, Goffinet B, Hedenäs L, Ho B-C, Ignatov MS, Krug M, Kuznetsova O, Milyutina IA, Newton A, Olsson S, Pokorny L, Shaw JA, Stech M, Troitsky A, Vanderpoorten A, Quandt D. Disentangling knots of rapid evolution: origin and diversification of the moss order Hypnales. Journal of Bryology. 2012;34(3):187–211. doi: 10.1179/1743282012Y.0000000013. DOI
Huttunen S, Hedenäs L, Ignatov MS, Devos N, Vanderpoorten A. Origin and evolution of the northern hemisphere disjunction in the moss genus Homalothecium (Brachytheciaceae) American Journal of Botany. 2008;95(6):720–730. doi: 10.3732/ajb.2007407. PubMed DOI
Ignatova EA, Blom HH, Goryunov DV, Milyutina IA. On the genus Schistidium (Grimmiaceae, Musci) in Russia. Arctoa. 2010;19:195–233. doi: 10.15298/arctoa.19.19. DOI
Ignatova EA, Fedorova AV, Kuznetsova OV, Ignatov MS. Taxonomy of the Plagiothecium laetum complex (Plagiotheciaceae, Bryophyta) in Russia. Arctoa. 2019;28(2):179–202. doi: 10.15298/arctoa.28.16. DOI
Ignatov MS, Ignatova EA. Mosses of middle part of European Russia. volume 2. Moscow, KMK-Press; 2004.
Ignatov MS, Kučera J, Hedenäs L, Kuznetsova OI, Ignatova EA. A revision of the genus Orthothecium (Plagiotheciaceae, Bryophyta) in Northern Eurasia. Arctoa. 2020;29(1):10–48. doi: 10.15298/arctoa.29.02. DOI
Ignatova EA, Kurbatova LE, Kuznetsova OI, Ivanov OV, Shevock JR, Carter B, Ignatov MS. The genus Scouleria (Bryophyta) in Russia revisited. Arctoa. 2015;24:47–66. doi: 10.15298/arctoa.24.09. DOI
Ignatova EA, Kuznetsova OI, Fedosov VE, Ignatov MS. On the genus Hedwigia (Hedwigiaceae, Bryophyta) in Russia. Arctoa. 2016;25(2):241–277. doi: 10.15298/arctoa.25.20. DOI
Ignatova EA, Kuznetsova OI, Ignatov MS. Further comments on the genus Hedwigia (Hedwigiaceae, Bryophyta) in Russia. Arctoa. 2017;26(2):132–143. doi: 10.15298/arctoa.26.13. DOI
Ignatova EA, Kuznetsova OI, Milyutina IA, Fedosov VE, Ignatov MS. The genus Fabronia (Fabroniaceae, Bryophyta) in Russia. Arctoa. 2017;26(1):11–34. doi: 10.15298/arctoa.26.02. DOI
Ignatova EA, Kuznetsova OI, Shafigullina NR, Fedosov VE, Ignatov MS. The genus Pylaisia (Pylaisiaceae, Bryophyta) in Russia. Arctoa. 2020;29(2):135–178. doi: 10.15298/arctoa.29.11. DOI
Ignatov MS, Tan BC, Iwatsuki Z, Ignatova EA. Moss flora of the Upper Bureya River (Russian Far East) Journal of the Hattori Botanical Laboratory. 2000;88:147–178.
Ivanov OV, Kolesnikova MA, Akatova TV, Afonina OM, Baisheva EZ, Bezgodov AG, Belkina OA, Czernyadjeva IV, Dudov SV, Fedosov VE, Ivanova EI, Ignatova EA, Kozhin MN, Lapshina ED, Notov AA, Oyu Pisarenko, Popova NN, Savchenko AN, Teleganova VV, Dya Ukrainskaya, Ignatov MS. The database of the moss flora of Russia. Arctoa. 2017;26(1):1–10. doi: 10.15298/arctoa.26.01. DOI
Iwatsuki Z. Catalog of the mosses of Japan. Nichinan. Hattori Botanical Laboratory; 1991.
Jamieson DW. PhD Thesis. 1976. A Monograph of the Genus Hygrohypnum Lindb. (Musci)
Jamieson DW. Flora of North America Editorial Committee. Flora of North America volume 28. New York: Oxford University Press; 2014. Hygrohypnum; pp. 269–282.
Jonsgard B, Birks HH. Late-glacial mosses and environmental reconstructions at Krakenes, western Norway. Lindbergia. 1996;20:64–82.
Kanda H. [1977]. A revision of the family Amblystegiaceae of Japan II. Journal of Science of the Hiroshima University, Series B, Division 2 (Botany) 1976;16:47–119.
Katoh K, Standley DN. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution. 2013;30(4):772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Kim W, Higuchi M, Yamaguchi T. An updated list of mosses of Korea. Journal of Species Research. 2020;9(4):377–412.
Kim W, Higuchi M, Yamaguchi T, Sato T, Yu Inoue. New and noteworthy records of the moss flora of Korea. Korean Journal of Plant Taxonomists. 2020;50(4):419–426. doi: 10.11110/kjpt.2020.50.4.419. DOI
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC
Kučera J, Kuznetsova OI, Manukjanová A, Ignatov MS. A phylogenetic revision of the genus Hypnum: Towards completion. Taxon. 2019;68(4):628–660. doi: 10.1002/tax.12095. DOI
Laenen B, Shaw B, Schneider H, Goffinet B, Paradis E, Désamoré A, Heinrichs J, Villarreal JC, Gradstein SR, McDaniel SF, Long DG, Forrest LL, Hollingsworth ML, Crandall-Stotler B, Davis EC, Engel J, Von Konrat M, Cooper ED, Patiño J, Cox CJ, Vanderpoorten A, Shaw AJ. Extant diversity of bryophytes emerged from successive post-Mesozoic diversification bursts. Nature Communications. 2014;5:6134. PubMed
Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution. 2017;34(3):772–773. doi: 10.1093/molbev/msw260. PubMed DOI
Liu L, Eronen JT, Fortelius M. Significant mid-latitude aridity in the middle Miocene of East Asia. Palaeogeography, Palaeoclimatology, Palaeoecology. 2009;279:201–206. doi: 10.1016/j.palaeo.2009.05.014. DOI
Lüth M. Mosses of Europe –A Photographic Flora. Freiburg: M. Lüth; 2019.
Mateo RG, Broennimann O, Normand S, Petitpierre B, Araújo MB, Svenning JC, Baselga A, Fernández-González F, Gómez-Rubio V, Muñoz J, Suarez GM, Luoto M, Guisan A, Vanderpoorten A. The mossy north: an inverse latitudinal diversity gradient in European bryophytes. Scientific Reports. 2016;6:25546. doi: 10.1038/srep25546. PubMed DOI PMC
Mayr E. The growth of biological thought. Cambridge, Mass: Harvard University Press; 1982.
Medina R, Lara F, Goffinet B, Garilleti R, Mazimpaka V. Unnoticed diversity within the disjunct moss Orthotrichum tenellum s.l. validated by morphological and molecular approaches. Taxon. 2013;62(6):1133–1152. doi: 10.12705/626.15. DOI
Merow C, Smith MJ, Silander Jr JA. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography. 2013;36(10):1058–1069. doi: 10.1111/j.1600-0587.2013.07872.x. DOI
Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES science gateway for inference of large phylogenetic trees. Proceedings of the gateway computing environments workshop (GCE), 14 Nov. 2010; New Orleans, LA. 2010. pp. 1–8.
Milne RI. Phylogeny and biogeography of Rhododendron subsection Pontica, a group with a tertiary relict distribution. Molecular Phylogenetics and Evolution. 2004;33:389–401. doi: 10.1016/j.ympev.2004.06.009. PubMed DOI
Moroni P, O’Leary N, Sassone A. Integrative taxonomy delimits species within the Duranta sprucei complex. Perspectives in Plant Ecology, Evolution and Systematics. 2019;41:125495. doi: 10.1016/j.ppees.2019.125495. DOI
Müller K. SeqState. Applied Bioinformatics. 2005;4(1):65–69. doi: 10.2165/00822942-200504010-00008. PubMed DOI
Nie B, Jiao B-H, Ren L-F, Gudkova PD, Chen W-L, Zhang W-H. Integrative taxonomy recognized a new cryptic species within Stipa grandis from Loess Plateau of China. Journal of Systematics and Evolution. 2020 doi: 10.1111/jse.12714. DOI
Noguchi A. Illustrated Moss Flora of Japan Part 4. Nichinan. Hattori Botanical Laboratory; 1991. pp. 743–1012.
Nyholm E. Illustrated moss flora of Fennoscandia. II. Musci, Fasc. 5. Lund: C.W.K. Gleerup; 1965.
Hammer Ø, Harper DAT, Ryan PD. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica. 2001;4:9.
Oliván G, Hedenäs L, Newton AE. Phylogeny of Hygrohypnum Lindb, based on molecular data. In: Newton AE, Tangney RS, editors. Pleurocarpous mosses, systematics and evolution. The Systematics Association Special Volume Series 71. Boca Raton (FL): CRC Press; 2007. pp. 215–226.
Pärtel M, Szava-Kovats R, Zobel M. Dark diversity: shedding light on absent species. Trends in Ecology & Evolution. 2011;26(3):124–128. doi: 10.1016/j.tree.2010.12.004. PubMed DOI
Patiño J, Goffinet B, Sim-Sim M, Vanderporten A. Is the sword moss (Bryoxiphium) a preglacial Tertiary relict? Molecular Phylogenetics and Evolution. 2016;96:200–206. doi: 10.1016/j.ympev.2015.12.004. PubMed DOI
Patiño J, Vanderoorten A. Bryophyte Biogeography. Critical Reviews in Plant Sciences. 2018;37:175–209. doi: 10.1080/07352689.2018.1482444. DOI
Peterson AT. Ecological niche conservatism: a time-structured review of evidence. Journal of Biogeography. 2011;38:817–827. doi: 10.1111/j.1365-2699.2010.02456.x. DOI
Phillips SJ, Anderson RP, Shapire RE. Maximum entropy modeling of species geographic distributions. Ecological Modelling. 2006;190(3-4):231–259. doi: 10.1016/j.ecolmodel.2005.03.026. DOI
Phillips SJ, Dudík M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography. 2008;31(2):161–175. doi: 10.1111/j.0906-7590.2008.5203.x. DOI
Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications. 2009;19(1):181–197. doi: 10.1890/07-2153.1. PubMed DOI
Podpěra J. Conspectus muscorum europaeorum. Praha: Czeskoslov. Akad. Ved; 1954.
Pound MJ, Haywood AM, Salzmann U, Riding JB. Global vegetation dynamics and latitudinal temperature gradients during the Mid to Late Miocene (15.97–5.33 Ma) Earth-Science Reviews. 2012;112(1–2):1–22. doi: 10.1016/j.earscirev.2012.02.005. DOI
Puillandre N, Brouillet S, Achaz G. ASAP: assemble species by automatic partitioning. Molecular Ecology. 2020 doi: 10.1111/1755-0998.13281. PubMed DOI
QGIS.org QGIS Geographic Information System. QGIS Association. http://www.qgis.org 2021
R Core Team . R Foundation for Statistical Computing; Vienna: 2021.
Radosavljevic A, Anderson RP. Making better Maxent models of species distributions: complexity, overfitting and evaluation. Journal of Biogeography. 2014;41(4):629–643. doi: 10.1111/jbi.12227. DOI
Rambaut A. 2009. FigTree, version 1.4.3. Computer program distributed by the author, website. http://tree.bio.ed.ac.uk/software/figtree/
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarization in bayesian phylogenetics using tracer 1.7. Systematic Biology. 2018;67(5):901–904. doi: 10.1093/sysbio/syy032. PubMed DOI PMC
Rapoport EH. Aerography: geographical strategies of species. Pergamon Press; 1982.
Romdal TS, Araújo MB, Rahbek C. Life on a tropical planet: niche conservatism and the global diversity gradient. Global Ecology and Biogeography. 2012;22:344–350.
Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology. 2012;61:539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC
Schlesak S, Hedenäs L, Nebel M, Quandt D. Cleaning a taxonomic dustbin: placing the European Hypnum species in a phylogenetic context! Bryophyte Diversity and Evolution. 2018;40(2):37–54. doi: 10.11646/bde.40.2.3. DOI
Schofield WB. Bryophyte disjunctions in the northern hemisphere: Europe and North America. Botanical Journal of the Linnean Society. 1988;98:211–224. doi: 10.1111/j.1095-8339.1988.tb02425.x. DOI
Schofield WB, Crum HA. Disjuctions in bryophytes. Annals of the Missouri Botanical Garden. 1973;59:174–202.
Shaw AJ. Biogeographic patterns and cryptic speciation in bryophytes. Journal of Biogeography. 2001;28:253–261. doi: 10.1046/j.1365-2699.2001.00530.x. DOI
Shaw AJ, Szövényi P, Shaw B. Bryophyte diversity and evolution: windows into the early evolution of land plants. American Journal of Botany. 2011;98:352–369. doi: 10.3732/ajb.1000316. PubMed DOI
Shaw AJ, Werner O, Ros RM. Intercontinental mediterranean disjunct mosses: morphological and molecular patterns. American Journal of Botany. 2003;90(4):540–550. doi: 10.3732/ajb.90.4.540. PubMed DOI
Shcheglovitova M, Anderson RP. Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes. Ecological Modelling. 2013;269:9–17. doi: 10.1016/j.ecolmodel.2013.08.011. DOI
Sheinkman VS, Melnikov VP, Sedov SN, Parnachev VP. New evidence of the nonglaciated development of the northern part of the Western Siberian lowland in the Quaternary period. Doklady Earth Sciences. 2017;477:1430–1433. doi: 10.1134/S1028334X17120078. DOI
Simmons MP, Ochoterena H. Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology. 2000;49(2):369–381. doi: 10.1093/sysbio/49.2.369. PubMed DOI
Smith AJE. The Moss Flora of Britain and Ireland. Cambridge University Press; Cambridge: 2004. DOI
Sofronova EA, Mamontov YuS, Potemkin AD. Frullania ignatovii (Porellales, Marchantiophyta), a new species from Siberia. Novosti Sistematiki Nizshikh Rastenij. 2013;47:334–343. doi: 10.31111/nsnr/2013.47.334. DOI
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Stech M, Quandt D. 20,000 species and five key markers: the status of molecular bryophyte phylogenetics. Phytotaxa. 2010;9:196–228.
Stevens GC. The latitudinal gradient in geographical range: how so many species coexist in the tropics. American Naturalist. 1989;133:240–256. doi: 10.1086/284913. DOI
Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution. 2018;4:vey016. doi: 10.1093/ve/vey016. PubMed DOI PMC
Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences of the United States of America. 2004;101:11030–11035. doi: 10.1073/pnas.0404206101. PubMed DOI PMC
Utescher T, Bondarenko OV, Mosbrugger V. The Cenozoic Cooling –continental signals from the Atlantic and Pacific side of Eurasia. Earth and Planetary Science Letters. 2015;415:121–133. doi: 10.1016/j.epsl.2015.01.019. DOI
Van Valen L. Ecological species, multi-species, and oaks. Taxon. 1976;25:233–239. doi: 10.2307/1219444. DOI
Vigalondo B, Garilleti R, Vanderpoorten A, Patiño J, Draper I, Calleja JA, Mazimpaka V, Lara F. Do mosses really exhibit so large distribution ranges? Insights from the integrative taxonomic study of the Lewinskya affinis complex (Orthotrichaceae, Bryopsida) Molecular Phylogenetics and Evolution. 2019;140:106598. doi: 10.1016/j.ympev.2019.106598. PubMed DOI
Vilnet AA, Borovichev EA, Bakalin VA. Frullania subarctica - a new species of the Frullania tamarisci complex (Frullaniaceae, Marchantiophyta) Phytotaxa. 2014;73(1):61–72.
Warren DL, Glor RE, Turelli M. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution: International Journal of Organic Evolution. 2008;62(11):2868–2883. doi: 10.1111/j.1558-5646.2008.00482.x. PubMed DOI
Warren DL, Glor RE, Turelli M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography. 2010;33:607–611. doi: 10.1111/j.1600-0587.2009.06142.x. DOI
Warren DL, Seifert SN. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications. 2011;21(2):335–342. doi: 10.1890/10-1171.1. PubMed DOI
Warren DL, Wright AN, Seifert SN, Shaffer HB. Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. Diversity and Distributions. 2014;20(3):334–343. doi: 10.1111/ddi.12160. DOI
Westerhold T, Marwan N, Drury AJ, Liebrand D, Agnini C, Anagnostou E, Barnet JSK, Bohaty SM, De Vleeschouwer D, Florindo F, Frederichs T, Hodell DA, Holbourn AE, Kroon D, Lauretano V, Littler K, Lourens LJ, Lyle M, Pälike H, Röhl U, Tian J, Wilkens RH, Wilson PA, Zachos JC. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science. 2020;369(6509):1383–1387. doi: 10.1126/science.aba6853. PubMed DOI
Zündorf H-J. Hygrohypnum eugyrium und Hyocomium armoricum –zwei bemerkenswerte Arten neu für Georgien und das Kaukasus-Gebiet. Herzogia. 2011;24:163–166. doi: 10.13158/heia.24.1.2011.163. DOI
Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, Zimmermann NE, Linder P, Kessler M. Climatologies at high resolution for the Earth land surface areas. Scientific Data. 2017;4:170122. doi: 10.1038/sdata.2017.122. PubMed DOI PMC
Zomer RJ, Trabucco A, Bossio DA, Verchot LV. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agriculture, Ecosystems & Environment. 2008;126(1–2):67–80. doi: 10.1016/j.agee.2008.01.014. DOI
New Taxonomic Arrangement of Dicranella s.l. and Aongstroemia s.l. (Dicranidae, Bryophyta)