Cardio-Oncology Rehabilitation and Telehealth: Rationale for Future Integration in Supportive Care of Cancer Survivors

. 2022 ; 9 () : 858334. [epub] 20220415

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35497988

The direct toxicity of cancer treatment threatens patients and survivors with an increased risk of cardiovascular disease or adverse functional changes with subsequent progression of cardiovascular complications. An accumulation of cardiovascular risk factors combined with an unhealthy lifestyle has recently become more common in cancer patients and survivors. It has been recommended to integrate a comprehensive cardiac rehabilitation model called cardio-oncology rehabilitation to mitigate cardiovascular risk. Nevertheless, cardiac rehabilitation interventions limit barriers in low utilization, further exacerbated by the restrictions associated with the COVID-19 pandemic. Therefore, it is essential to integrate alternative interventions such as telehealth, which can overcome several barriers. This literature review was designed as a framework for developing and evaluating telehealth interventions and mobile applications for comprehensive cardio-oncology rehabilitation. We identify knowledge gaps and propose strategies to facilitate the development and integration of cardio-oncology rehabilitation telehealth as an alternative approach to the standard of care for cancer patients and survivors. Despite the limited evidence, the pilot results from included studies support the feasibility and acceptability of telehealth and mobile technologies in cardio-oncology rehabilitation. This new area suggests that telehealth interventions are feasible and induce physiological and psychological benefits for cancer patients and survivors. There is an assumption that telehealth interventions and exercise may be an effective future alternative approach in supportive cancer care.

Zobrazit více v PubMed

Yusuf S, Joseph P, Rangarajan S, Islam S, Mente A, Hystad P, et al. Modifiable risk factors, cardiovascular disease, and mortality in 155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): a prospective cohort study. Lancet. (2020) 395:795–8. 10.1016/S0140-6736(19)32008-2 PubMed DOI PMC

Han X, Zhou Y, Liu W. Precision cardio-oncology: understanding the cardiotoxicity of cancer therapy. NPJ Precis Oncol. (2017) 12:31. 10.1038/s41698-017-0034-x PubMed DOI PMC

Bloom MW, Hamo CE, Cardinale D, Ky B, Nohria A, Baer L, et al. Cancer therapy-related cardiac dysfunction and heart failure: part 1: definitions, pathophysiology, risk factors, and imaging. Circ Heart Fail. (2016) 9:e002661. 10.1161/CIRCHEARTFAILURE.115.002661 PubMed DOI PMC

Babiker HM, McBride A, Newton M, Boehmer LM, Drucker AG, Gowan M, et al. Cardiotoxic effects of chemotherapy: a review of both cytotoxic and molecular targeted oncology therapies and their effect on the cardiovascular system. Crit Rev Oncol Hematol. (2018) 126:186–200. 10.1016/j.critrevonc.2018.03.014 PubMed DOI

Banfill K, Giuliani M, Aznar M, Franks K, McWilliam A, Schmitt M, et al. Cardiac toxicity of thoracic radiotherapy: existing evidence and future directions. J Thorac Oncol. (2021) 16:216–27. 10.1016/j.jtho.2020.11.002 PubMed DOI PMC

Maisch B. Cardio-immunology of myocarditis: focus on immune mechanisms and treatment options. Front Cardiovasc Med. (2019) 12:48. 10.3389/fcvm.2019.00048 PubMed DOI PMC

Kumar M, Thangavel C, Becker RC, Sadayappan S. Monoclonal antibody-based immunotherapy and its role in the development of cardiac toxicity. Cancers. (2020) 13:86. 10.3390/cancers13010086 PubMed DOI PMC

Koene RJ, Prizment AE, Blaes A, Konety SH. Shared risk factors in cardiovascular disease and cancer. Circulation. (2016) 133:1104–14. 10.1161/CIRCULATIONAHA.115.020406 PubMed DOI PMC

Strongman H, Gadd S, Matthews A, Mansfield KE, Stanway S, Lyon AR, et al. Medium and long-term risks of specific cardiovascular diseases in survivors of 20 adult cancers: a population-based cohort study using multiple linked UK electronic health records databases. Lancet. (2019) 394:1041–54. 10.1016/S0140-6736(19)31674-5 PubMed DOI PMC

Gilchrist SC, Barac A, Ades PA, Alfano CM, Franklin BA, Jones LW, et al. Cardio-oncology rehabilitation to manage cardiovascular outcomes in cancer patients and survivors: a scientific statement from the American heart association. Circulation. (2019) 139:e997–1012. 10.1161/CIR.0000000000000679 PubMed DOI PMC

Venturini E, Iannuzzo G, D’Andrea A, Pacileo M, Tarantini L, Canale ML, et al. Oncology and cardiac rehabilitation: an underrated relationship. J Clin Med. (2020) 9:1810. 10.3390/jcm9061810 PubMed DOI PMC

Kang DW, Wilson RL, Christopher CN, Normann AJ, Barnes O, Lesansee JD, et al. Exercise cardio-oncology: exercise as a potential therapeutic modality in the management of anthracycline-induced cardiotoxicity. Front Cardiovasc Med. (2022) 8:805735. 10.3389/fcvm.2021.805735 PubMed DOI PMC

Thomas R, Kenfield SA, Yanagisawa Y, Newton RU. Why exercise has a crucial role in cancer prevention, risk reduction and improved outcomes. Br Med Bull. (2021) 139:100–19. 10.1093/bmb/ldab019 PubMed DOI PMC

Patel AV, Friedenreich CM, Moore SC, Hayes SC, Silver JK, Campbell KL, et al. American college of sports medicine roundtable report on physical activity, sedentary behavior, and cancer prevention and control. Med Sci Sports Exerc. (2019) 51:2391–402. 10.1249/MSS.0000000000002117 PubMed DOI PMC

Thorsen L, Skovlund E, Strømme SB, Hornslien K, Dahl AA, Fosså SD. Effectiveness of physical activity on cardiorespiratory fitness and health-related quality of life in young and middle-aged cancer patients shortly after chemotherapy. J Clin Oncol. (2005) 23:2378–88. 10.1200/JCO.2005.04.106 PubMed DOI

Conlon BA, Kahan M, Martinez M, Hornslien K, Dahl AA, Fosså SD. Development and evaluation of the curriculum for BOLD (bronx oncology living daily) healthy living: a diabetes prevention and control program for underserved cancer survivors. J Cancer Educ. (2015) 30:535–45. 10.1007/s13187-014-0750-7 PubMed DOI PMC

Strasser B, Steindorf K, Wiskemann J, Ulrich CM. Impact of resistance training in cancer survivors: a meta-analysis. Med Sci Sports Exerc. (2013) 45:2080–90. 10.1249/MSS.0b013e31829a3b63 PubMed DOI

Schwenk M, Grewal GS, Holloway D, Muchna A, Garland L, Najafi B. Interactive sensor-based balance training in older cancer patients with chemotherapy-induced peripheral neuropathy: a randomized controlled trial. Gerontology. (2016) 62:553–63. 10.1159/000442253 PubMed DOI PMC

Jastrzębski D, Żebrowska A, Rutkowski S, Rutkowska A, Warzecha J, Ziaja B, et al. Pulmonary rehabilitation with a stabilometric platform after thoracic surgery: a preliminary report. J Hum Kinet. (2018) 65:79–87. 10.2478/hukin-2018-0044 PubMed DOI PMC

Pisu M, Demark-Wahnefried W, Kenzik KM, Oster RA, Lin CP, Manne S, et al. A dance intervention for cancer survivors and their partners (RHYTHM). J Cancer Surviv. (2017) 11:350–9. 10.1007/s11764-016-0593-9 PubMed DOI PMC

Carmack CL, Parker NH, Demark-Wahnefried W, Shely L, Baum G, Yuan Y, et al. Healthy moves to improve lifestyle behaviors of cancer survivors and their spouses: feasibility and preliminary results of intervention efficacy. Nutrients. (2021) 13:4460. 10.3390/nu13124460 PubMed DOI PMC

Zhou Y, Zhu J, Gu Z, Yin X. Efficacy of exercise interventions in patients with acute leukemia: a meta-analysis. PLoS One. (2016) 11:e0159966. 10.1371/journal.pone.0159966 PubMed DOI PMC

Mao JJ, Palmer CS, Healy KE, Desai K, Amsterdam J. Complementary and alternative medicine use among cancer survivors: a population-based study. J Cancer Surviv. (2011) 5:8–17. 10.1007/s11764-010-0153-7 PubMed DOI PMC

Winters-Stone KM, Lyons KS, Dieckmann NF, Bennett JA, Nail L, Dobek J, et al. Benefits of partnered strength training for prostate cancer survivors and spouses: results from a randomized controlled trial of the exercising together project. J Cancer Surviv. (2016) 10:633–44. 10.1007/s11764-015-0509-0 PubMed DOI

Barber FD. Effects of social support on physical activity, self-efficacy, and quality of life in adult cancer survivors and their caregivers. Oncol Nurs Forum. (2013) 40:481–9. 10.1188/13.ONF.481-489 PubMed DOI

Winnige P, Filakova K, Hnatiak J, Dosbaba F, Bocek O, Pepera G, et al. Validity and reliability of the cardiac rehabilitation barriers scale in the czech republic (CRBS-CZE): determination of key barriers in east-central Europe. Int J Environ Res Public Health. (2021) 18:13113. 10.3390/ijerph182413113 PubMed DOI PMC

Dunlay SM, Witt BJ, Allison TG, Hayes SN, Weston SA, Koepsell E, et al. Barriers to participation in cardiac rehabilitation. Am Heart J. (2009) 158:852–9. 10.1016/j.ahj.2009.08.010 PubMed DOI PMC

Stefanakis M, Batalik L, Papathanasiou J, Dipla L, Antoniou V, Pepera G. Exercise-based cardiac rehabilitation programs in the era of COVID-19: a critical review. Rev Cardiovas Med. (2021) 22:1143–55. 10.31083/j.rcm2204123 PubMed DOI

Gajarawala SN, Pelkowski JN. Telehealth benefits and barriers. J Nurse Pract. (2021) 17:218–21. 10.1016/j.nurpra.2020.09.013 PubMed DOI PMC

Tong CKW, Lau B, Davis MK. Exercise training for cancer survivors. Curr Treat Options Oncol. (2020) 21:53. 10.1007/s11864-020-00752-w PubMed DOI

Venturini E, Gilchrist S, Corsi E, Di Lorenzo A, Cuomo G, D’Ambrosio G, et al. The core components of cardio-oncology rehabilitation. Panminerva Med. (2021) 63:170–83. 10.23736/S0031-0808.21.04303-2 PubMed DOI

Pepera GK, Bromley PD, Sandercock GRH. A pilot study to investigate the safety of exercise training and exercise testing in cardiac rehabilitation patients. Br J Cardiol. (2013) 20:78. 10.5837/bjc.2013.012 DOI

Balady GJ, Arena R, Sietsema K, Myers J, Coke L, Fletcher GF, et al. Clinician’s guide to cardiopulmonary exercise testing in adults: a scientific statement from the American heart association. Circulation. (2010) 122:191–225. 10.1161/CIR.0b013e3181e52e69 PubMed DOI

Jones LW, Eves ND, Peppercorn J. Pre-exercise screening and prescription guidelines for cancer patients. Lancet Oncol. (2010) 11:914–6. 10.1016/S1470-2045(10)70184-4 PubMed DOI PMC

De Lazzari N, Niels T, Tewes M, Götte M. A systematic review of the safety, feasibility and benefits of exercise for patients with advanced cancer. Cancers. (2021) 13:4478. 10.3390/cancers13174478 PubMed DOI PMC

Maginador G, Lixandrão ME, Bortolozo HI, Vechin FC, Sarian LO, Derchain S, et al. Aerobic exercise-induced changes in cardiorespiratory fitness in breast cancer patients receiving chemotherapy: a systematic review and meta-analysis. Cancers. (2020) 12:2240. 10.3390/cancers12082240 PubMed DOI PMC

Clifford B, Koizumi S, Wewege MA, Leake HB, Ha L, Macdonald E, et al. The effect of resistance training on body composition during and after cancer treatment: a systematic review and meta-analysis. Sports Med. (2021) 51:2527–46. 10.1007/s40279-021-01542-6 PubMed DOI

Pepera G, Ingle L, Sandercock GR. Predictors of the 6-minute walk test in patients with chronic heart failure. Br J Cardiac Nurs. (2015) 10:454–9. 10.12968/bjca.2015.10.9.454 DOI

Schmidt K, Vogt L, Thiel C, Jäger E, Banzer W. Validity of the six-minute walk test in cancer patients. Int J Sports Med. (2013) 34:631–6. 10.1055/s-0032-1323746 PubMed DOI

Tubiana-Mathieu N, Cornette T, Mandigout S, Leobon S, Vincent F, Venat L, et al. Can the six-minute walk test be used to individualize physical activity intensity in patients with breast cancer? Cancers. (2021) 13:5851. 10.3390/cancers13225851 PubMed DOI PMC

2018 Physical Activity Guidelines Advisory Committee. Physical Activity Guidelines Advisory Committee Scientific Report. Washington, DC: U.S. Department of Health and Human Services; (2018).

McTiernan A, Friedenreich CM, Katzmarzyk PT, Powell KE, Macko R, Buchner D, et al. Physical activity in cancer prevention and survival: a systematic review. Med Sci Sports Exerc. (2019) 51:1252–61. 10.1249/MSS.0000000000001937 PubMed DOI PMC

Wild C, Weiderpass E, Steward BW. World Cancer Report: Cancer Research for Cancer Prevention. Lyon: International Agency for Research on Cancer; (2020).

Schmitz KH, Campbell AM, Stuiver MM, Pinto BM, Schwartz AL, Morris GS, et al. Exercise is medicine in oncology: engaging clinicians to help patients move through cancer. CA Cancer J Clin. (2019) 69:468–84. 10.3322/caac.21579 PubMed DOI PMC

Pudil R, Mueller C, Čelutkienė J, Henriksen PA, Lenihan D, Dent S, et al. Role of serum biomarkers in cancer patients receiving cardiotoxic cancer therapies: a position statement from the cardio-oncology study group of the heart failure association and the cardio-oncology council of the European society of cardiology. Eur J Heart Fail. (2020) 22:1966–83. 10.1002/ejhf.2017 PubMed DOI

Campbell KL, Winters-Stone KM, Wiskemann J, May AM, Schwartz AL, Courneya KS, et al. Exercise guidelines for cancer survivors: consensus statement from international multidisciplinary roundtable. Med Sci Sports Exerc. (2019) 51:2375–90. 10.1249/MSS.0000000000002116 PubMed DOI PMC

Scherrenberg M, Wilhelm M, Hansen D, Völler H, Cornelissen V, Frederix I, et al. The future is now: a call for action for cardiac telerehabilitation in the COVID-19 pandemic from the secondary prevention and rehabilitation section of the European association of preventive cardiology. Eur J Prev Cardiol. (2020) 2:2047487320939671. 10.1177/2047487320939671 PubMed DOI PMC

Batalik L, Winnige P, Dosbaba F, Vlazna D, Janikova A. Home-based aerobic and resistance exercise interventions in cancer patients and survivors: a systematic review. Cancers. (2021) 13:1915. 10.3390/cancers13081915 PubMed DOI PMC

Hudis CA, Jones L. Promoting exercise after a cancer diagnosis: easier said than done. Br J Cancer. (2014) 110:829–30. 10.1038/bjc.2014.12 PubMed DOI PMC

Armstrong GT, Chen Y, Yasui Y, Leisenring W, Gibson TM, Mertens AC, et al. Reduction in late mortality among 5-year survivors of childhood cancer. N Engl J Med. (2016) 374:833–42. 10.1056/NEJMoa1510795 PubMed DOI PMC

Armenian SH, Xu L, Ky B, Sun C, Farol LT, Pal SK, et al. Cardiovascular disease among survivors of adult-onset cancer: a community-based retrospective cohort study. J Clin Oncol. (2016) 34:1122–30. 10.1200/JCO.2015.64.0409 PubMed DOI PMC

Patnaik JL, Byers T, DiGuiseppi C, Dabelea D, Denberg TD. Cardiovascular disease competes with breast cancer as the leading cause of death for older females diagnosed with breast cancer: a retrospective cohort study. Breast Cancer Res. (2011) 13:R64. 10.1186/bcr2901 PubMed DOI PMC

Yeh JM, Ward ZJ, Chaudhry A, Liu Q, Yasui Y, Armstrong GT, et al. Life expectancy of adult survivors of childhood cancer over 3 decades. JAMA Oncol. (2020) 6:350–7. 10.1001/jamaoncol.2019.5582 PubMed DOI PMC

Wenger NK, Froelicher ES, Smith LK, Ades PA, Berra K, Blumenthal JA, et al. Cardiac rehabilitation as secondary prevention. Agency for health care policy and research and national heart, lung, and blood institute. Clin Pract Guidel Quick Ref Guide Clin. (1995) 17:1–23. PubMed

Stout NL, Alfano CM, Belter CW, Nitkin R, Cernich A, Lohmann Siegel K, et al. A bibliometric analysis of the landscape of cancer rehabilitation research (1992-2016). J Natl Cancer Inst. (2018) 110:815–24. 10.1093/jnci/djy108 PubMed DOI PMC

Thomas RJ, King M, Lui K, Oldridge N, Piña IL, Spertus J, et al. Performance measures on cardiac rehabilitation for referral to cardiac rehabilitation/secondary prevention services: a report of the American association of cardiovascular and pulmonary rehabilitation and the American college of cardiology foundation/American heart association task force on performance measures (writing committee to develop clinical performance measures for cardiac rehabilitation). J Cardiopulm Rehabil Prev. (2010) 30:279–88. 10.1097/HCR.0b013e3181f5e36f PubMed DOI

Sandercock GRH, Cardoso F, Almodhy M, Pepera G. Cardiorespiratory fitness changes in patient receiving comprehensive outpatient cardiac rehabilitation in the United Kingdom: a multicentre study. Heart. (2012) 99:785–90. 10.1136/heartjnl-2012-303055 PubMed DOI

Ades PA, Pashkow FJ, Nestor JR. Cost-effectiveness of cardiac rehabilitation after myocardial infarction. J Cardiopulm Rehabil Prev. (1997) 17:222–31. 10.1097/00008483-199707000-00002 PubMed DOI

Anderson L, Thompson DR, Oldridge N, Zwisler AD, Rees K, Martin N, et al. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst Rev. (2016) 2016:CD001800. 10.1002/14651858.CD001800.pub3 PubMed DOI PMC

Balady GJ, Williams MA, Ades PA, Bittner V, Comoss P, Foody JM, et al. Core components of cardiac rehabilitation/secondary prevention programs: 2007 update: a scientific statement from the American heart association exercise, cardiac rehabilitation, and prevention committee, the council on clinical cardiology; the councils on cardiovascular nursing, epidemiology and prevention, and nutrition, physical activity, and metabolism; and the American association of cardiovascular and pulmonary rehabilitation. Circulation. (2007) 115:2675–82. 10.1161/CIRCULATIONAHA.106.180945 PubMed DOI

Giannuzzi P, Mezzani A, Saner H, Björnstad H, Fioretti P, Mendes M, et al. Position paper of the working group on cardiac rehabilitation and exercise physiology of the European society of cardiology. Eur J Cardiovasc Prev Rehabil. (2003) 10:319–27. 10.1097/01.hjr.0000086303.28200.50 PubMed DOI

Piepoli MF, Corrà U, Adamopoulos S, Benzer W, Bjarnason-Wehrens B, Cupples M, et al. Secondary prevention in the clinical management of patients with cardiovascular diseases. core components, standards and outcome measures for referral and delivery: a policy statement from the cardiac rehabilitation section of the European association for cardiovascular prevention & rehabilitation. Endorsed by the committee for practice guidelines of the European society of cardiology. Eur J Prev Cardiol. (2014) 21:664–81. 10.1177/2047487312449597 PubMed DOI

Suaya JA, Shepard DS, Normand SL, Ades PA, Prottas J, Stason WB. Use of cardiac rehabilitation by medicare beneficiaries after myocardial infarction or coronary bypass surgery. Circulation. (2007) 116:1653–62. 10.1161/CIRCULATIONAHA.107.701466 PubMed DOI

Ades PA, Keteyian SJ, Wright JS, Hamm LF, Lui K, Newlin K, et al. Increasing cardiac rehabilitation participation from 20% to 70%: a road map from the million hearts cardiac rehabilitation collaborative. Mayo Clin Proc. (2017) 92:234–42. 10.1016/j.mayocp.2016.10.014 PubMed DOI PMC

Scott JM, Nilsen TS, Gupta D, Jones LW. Exercise therapy and cardiovascular toxicity in cancer. Circulation. (2018) 137:1176–91. 10.1161/CIRCULATIONAHA.117.024671 PubMed DOI PMC

Wittekind SG, Gilchrist SC. Exercise testing and cardiac rehabilitation in patients treated for cancer. J Thromb Thrombolysis. (2021) 51:870–6. 10.1007/s11239-020-02265-7 PubMed DOI

Inoue-Choi M, Robien K, Lazovich D. Adherence to the WCRF/AICR guidelines for cancer prevention is associated with lower mortality among older female cancer survivors. Cancer Epidemiol Biomarkers Prev. (2013) 22:792–802. 10.1158/1055-9965.EPI-13-0054 PubMed DOI PMC

Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin. (2016) 66:271–89. 10.3322/caac.21349 PubMed DOI

Adams SC, DeLorey DS, Davenport MH, Stickland MK, Fairey AS, North S, et al. Effects of high-intensity aerobic interval training on cardiovascular disease risk in testicular cancer survivors: a phase 2 randomized controlled trial. Cancer. (2017) 123:4057–65. 10.1002/cncr.30859 PubMed DOI

Mulrooney DA, Hyun G, Ness KK, Ehrhardt MJ, Yasui Y, Duprez D, et al. Major cardiac events for adult survivors of childhood cancer diagnosed between 1970 and 1999: report from the childhood cancer survivor study cohort. BMJ. (2020) 368:l6794. 10.1136/bmj.l6794 PubMed DOI PMC

Galiano-Castillo N, Cantarero-Villanueva I, Fernández-Lao C, Ariza-García A, Díaz-Rodríguez L, Del-Moral-Ávila R, et al. Telehealth system: a randomized controlled trial evaluating the impact of an internet-based exercise intervention on quality of life, pain, muscle strength, and fatigue in breast cancer survivors. Cancer. (2016) 122:3166–74. 10.1002/cncr.30172 PubMed DOI

Galiano-Castillo N, Arroyo-Morales M, Lozano-Lozano M, Fernández-Lao C, Martín-Martín L, Del-Moral-Ávila R, et al. Effect of an internet-based telehealth system on functional capacity and cognition in breast cancer survivors: a secondary analysis of a randomized controlled trial. Support Care Cancer. (2017) 25:3551–9. 10.1007/s00520-017-3782-9 PubMed DOI

Alibhai SMH, Santa Mina D, Ritvo P, Tomlinson G, Sabiston C, Krahn M, et al. A phase II randomized controlled trial of three exercise delivery methods in men with prostate cancer on androgen deprivation therapy. BMC Cancer. (2019) 19:2. 10.1186/s12885-018-5189-5 PubMed DOI PMC

Ariza-Garcia A, Lozano-Lozano M, Galiano-Castillo N, Postigo-Martin P, Arroyo-Morales M, Cantarero-Villanueva I. A web-based exercise system (e-CuidateChemo) to counter the side effects of chemotherapy in patients with breast cancer: randomized controlled trial. J Med Internet Res. (2019) 21:e14418. 10.2196/14418 PubMed DOI PMC

Cornette T, Vincent F, Mandigout S, Antonini MT, Leobon S, Labrunie A, et al. Effects of home-based exercise training on VO2 in breast cancer patients under adjuvant or neoadjuvant chemotherapy (SAPA): a randomized controlled trial. Eur J Phys Rehabil Med. (2016) 52:223–32. PubMed

Gehring K, Kloek CJ, Aaronson NK, Janssen KW, Jones LW, Sitskoorn MM, et al. Feasibility of a home-based exercise intervention with remote guidance for patients with stable grade II and III gliomas: a pilot randomized controlled trial. Clin Rehabil. (2018) 32:352–66. 10.1177/0269215517728326 PubMed DOI PMC

Hvid T, Lindegaard B, Winding K, Iversen P, Brasso K, Solomon TP, et al. Effect of a 2-year home-based endurance training intervention on physiological function and PSA doubling time in prostate cancer patients. Cancer Causes Control. (2016) 27:165–74. 10.1007/s10552-015-0694-1 PubMed DOI

Cheville AL, Moynihan T, Herrin J, Loprinzi C, Kroenke K. Effect of collaborative telerehabilitation on functional impairment and pain among patients with advanced-stage cancer: a randomized clinical trial. JAMA Oncol. (2019) 5:644–52. 10.1001/jamaoncol.2019.0011 PubMed DOI PMC

Lahart IM, Carmichael AR, Nevill AM, Kitas GD, Metsios GS. The effects of a home-based physical activity intervention on cardiorespiratory fitness in breast cancer survivors; a randomised controlled trial. J Sports Sci. (2018) 36:1077–86. 10.1080/02640414.2017.1356025 PubMed DOI

McNeil J, Brenner DR, Stone CR, O’Reilly R, Ruan Y, Vallance JK, et al. Activity tracker to prescribe various exercise intensities in breast cancer survivors. Med Sci Sports Exerc. (2019) 51:930–40. 10.1249/MSS.0000000000001890 PubMed DOI

Morales JS, Valenzuela PL, Velázquez-Díaz D, Castillo-García A, Jiménez-Pavón D, Lucia A, et al. Exercise and childhood cancer–a historical review. Cancers. (2021) 14:82. 10.3390/cancers14010082 PubMed DOI PMC

Howden EJ, Bigaran A, Beaudry R, Fraser S, Selig S, Foulkes S, et al. Exercise as a diagnostic and therapeutic tool for the prevention of cardiovascular dysfunction in breast cancer patients. Eur J Prev Cardiol. (2019) 26:305–15. 10.1177/2047487318811181 PubMed DOI

Jones LW, Hornsby WE, Goetzinger A, Forbes LM, Sherrard EL, Quist M, et al. Prognostic significance of functional capacity and exercise behavior in patients with metastatic non-small cell lung cancer. Lung Cancer. (2012) 76:248–52. 10.1016/j.lungcan.2011.10.009 PubMed DOI PMC

Jones LW, Liang Y, Pituskin EN, Battaglini CL, Scott JM, Hornsby WE, et al. Effect of exercise training on peak oxygen consumption in patients with cancer: a meta-analysis. Oncologist. (2011) 16:112–20. 10.1634/theoncologist.2010-0197 PubMed DOI PMC

Yu AF, Flynn JR, Moskowitz CS, Scott JM, Oeffinger KC, Dang CT, et al. Long-term cardiopulmonary consequences of treatment-induced cardiotoxicity in survivors of ERBB2-positive breast cancer. JAMA Cardiol. (2020) 5:309–17. 10.1001/jamacardio.2019.5586 PubMed DOI PMC

Peel AB, Barlow CE, Leonard D, DeFina LF, Jones LW, Lakoski SG. Cardiorespiratory fitness in survivors of cervical, endometrial, and ovarian cancers: the cooper center longitudinal study. Gynecol Oncol. (2015) 138:394–7. 10.1016/j.ygyno.2015.05.027 PubMed DOI

Canada JM, Trankle CR, Carbone S, Buckley LF, Chazal M, Billingsley H, et al. Determinants of cardiorespiratory fitness following thoracic radiotherapy in lung or breast cancer survivors. Am J Cardiol. (2020) 125:988–96. 10.1016/j.amjcard.2019.12.019 PubMed DOI PMC

Morales JS, Valenzuela PL, Herrera-Olivares AM, Baño-Rodrigo A, Castillo-García A, Rincón-Castanedo C, et al. Exercise interventions and cardiovascular health in childhood cancer: a meta-analysis. Int J Sports Med. (2020) 41:141–53. 10.1055/a-1073-8104 PubMed DOI

Klassen O, Schmidt ME, Scharhag-Rosenberger F, Sorkin M, Ulrich CM, Schneeweiss A, et al. Cardiorespiratory fitness in breast cancer patients undergoing adjuvant therapy. Acta Oncol. (2014) 53:1356–65. 10.3109/0284186X.2014.899435 PubMed DOI

Hung RK, Al-Mallah MH, McEvoy JW, Whelton SP, Blumenthal RS, Nasir K, et al. Prognostic value of exercise capacity in patients with coronary artery disease: the FIT (henry ford exercise testing) project. Mayo Clin Proc. (2014) 89:1644–54. 10.1016/j.mayocp.2014.07.011 PubMed DOI

Medina-Inojosa JR, Grace SL, Supervia M, Stokin G, Bonikowske AR, Thomas R, et al. Dose of cardiac rehabilitation to reduce mortality and morbidity: a population-based study. J Am Heart Assoc. (2021) 10:e021356. 10.1161/JAHA.120.021356 PubMed DOI PMC

Scott JM, Zabor EC, Schwitzer E, Koelwyn GJ, Adams SC, Nilsen TS, et al. Efficacy of exercise therapy on cardiorespiratory fitness in patients with cancer: a systematic review and meta-analysis. J Clin Oncol. (2018) 36:2297–305. 10.1200/JCO.2017.77.5809 PubMed DOI PMC

World Health Organization. Framework for the Implementation of a Telemedicine Service. (2016). Available online at: https://iris.paho.org/bitstream/handle/10665.2/28414/9789275119037_eng.pdf (accessed January 1, 2022).

Beatty AL, Fukuoka Y, Whooley MA. Using mobile technology for cardiac rehabilitation: a review and framework for development and evaluation. J Am Heart Assoc. (2013) 2:e000568. 10.1161/JAHA.113.000568 PubMed DOI PMC

Grustam AS, Severens JL, De Massari D, Buyukkaramikli N, Koymans R, Vrijhoef H. Cost-effectiveness analysis in telehealth: a comparison between home telemonitoring, nurse telephone support, and usual care in chronic heart failure management. Value Health. (2018) 21:772–82. 10.1016/j.jval.2017.11.011 PubMed DOI

World Health Organization. Telemedicine Opportunities and Developments in Member States. (2009). Available online at: https://www.who.int/goe/publications/goe_telemedicine_2010.pdf (accessed January 1, 2022).

Varnfield M, Karunanithi M, Lee CK, Honeyman E, Arnold D, Ding H, et al. Smartphone-based home care model improved use of cardiac rehabilitation in postmyocardial infarction patients: results from a randomised controlled trial. Heart. (2014) 100:1770–9. 10.1136/heartjnl-2014-305783 PubMed DOI

Tang LH, Kikkenborg Berg S, Christensen J, Lawaetz J, Doherty P, Taylor RS, et al. Patients’ preference for exercise setting and its influence on the health benefits gained from exercise-based cardiac rehabilitation. Int J Cardiol. (2017) 232:33–9. 10.1016/j.ijcard.2017.01.126 PubMed DOI

Dnes N, Coley B, Frisby K, Keller A, Suyom J, Tsui C, et al. “A little bit of a guidance and a little bit of group support”: a qualitative study of preferences, barriers, and facilitators to participating in community-based exercise opportunities among adults living with chronic pain. Disabil Rehabil. (2021) 43:3347–56. 10.1080/09638288.2020.1742801 PubMed DOI

D’Ascenzi F, Anselmi F, Fiorentini C, Mannucci R, Bonifazi M, Mondillo S. The benefits of exercise in cancer patients and the criteria for exercise prescription in cardio-oncology. Eur J Prev Cardiol. (2019) 16:2047487319874900. 10.1177/2047487319874900 PubMed DOI

Batalik L, Pepera G, Papathanassiou J, Rutkowski S, Líška D, Batalikova K, et al. Is the training intensity in phase two cardiovascular rehabilitation different in telehealth versus outpatient rehabilitation? J Clin Med. (2021) 10:4069. 10.3390/jcm10184069 PubMed DOI PMC

Tomioka K, Iwamoto J, Saeki K, Okamoto N. Reliability and validity of the international physical activity questionnaire (IPAQ) in elderly adults: the Fujiwara-kyo study. J Epidemiol. (2011) 21:459–65. 10.2188/jea.je20110003 PubMed DOI PMC

Stefani L, Klika R, Mascherini G, Mazzoni F, Lunghi A, Petri C, et al. Effects of a home-based exercise rehabilitation program for cancer survivors. J Sports Med Phys Fitness. (2019) 59:846–52. 10.23736/S0022-4707.18.08908-9 PubMed DOI

Rutkowski S, Czech O, Wrzeciono A, Kiper P, Szczepañska-Gieracha J, Malicka I. Virtual reality as a chemotherapy support in treatment of anxiety and fatigue in patients with cancer: a systematic review and meta-analysis and future research directions. Complement Ther Med. (2021) 61:102767. 10.1016/j.ctim.2021.102767 PubMed DOI

Sunjaya AP, Chris A, Novianti D. Efficacy, patient-doctor relationship, costs and benefits of utilizing telepsychiatry for the management of post-traumatic stress disorder (PTSD): a systematic review. Trends Psychiatry Psychother. (2020) 42:102–10. 10.1590/2237-6089-2019-0024 PubMed DOI

Longacre CF, Nyman JA, Visscher SL, Borah BJ, Cheville AL. Cost-effectiveness of the collaborative care to preserve performance in cancer (COPE) trial tele-rehabilitation interventions for patients with advanced cancers. Cancer Med. (2020) 9:2723–31. 10.1002/cam4.2837 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The Digital Revolution in Medicine: Applications in Cardio-Oncology

. 2025 Dec ; 27 (1) : . [epub] 20241105

Feasibility, safety, and adherence of home-based exercise interventions in people diagnosed with cancer: a systematic review

. 2025 Mar 22 ; () : . [epub] 20250322

Effects of home-based exercise with telehealth guidance in lymphoma cancer survivors entering cardio-oncology rehabilitation: rationale and design of the tele@home study

. 2024 Jul 30 ; 10 (1) : 46. [epub] 20240730

Effect of exercise-based cancer rehabilitation via telehealth: a systematic review and meta-analysis

. 2024 May 17 ; 24 (1) : 600. [epub] 20240517

Efficacy of supervised home-based, real time, videoconferencing telerehabilitation in patients with type 2 diabetes: a single-blind randomized controlled trial

. 2023 Oct ; 59 (5) : 628-639. [epub] 20230623

The cost-effectiveness of exercise-based cardiac telerehabilitation intervention: a systematic review

. 2023 Apr ; 59 (2) : 248-258. [epub] 20230124

Home-based cardio-oncology rehabilitation using a telerehabilitation platform in hematological cancer survivors: a feasibility study

. 2023 Mar 23 ; 15 (1) : 38. [epub] 20230323

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...