WHIRLIES Are Multifunctional DNA-Binding Proteins With Impact on Plant Development and Stress Resistance
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
35528945
PubMed Central
PMC9070903
DOI
10.3389/fpls.2022.880423
Knihovny.cz E-zdroje
- Klíčová slova
- DNA-binding, WHIRLY, development, nucleoid, stress,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
WHIRLIES are plant-specific proteins binding to DNA in plastids, mitochondria, and nucleus. They have been identified as significant components of nucleoids in the organelles where they regulate the structure of the nucleoids and diverse DNA-associated processes. WHIRLIES also fulfil roles in the nucleus by interacting with telomers and various transcription factors, among them members of the WRKY family. While most plants have two WHIRLY proteins, additional WHIRLY proteins evolved by gene duplication in some dicot families. All WHIRLY proteins share a conserved WHIRLY domain responsible for ssDNA binding. Structural analyses revealed that WHIRLY proteins form tetramers and higher-order complexes upon binding to DNA. An outstanding feature is the parallel localization of WHIRLY proteins in two or three cell compartments. Because they translocate from organelles to the nucleus, WHIRLY proteins are excellent candidates for transducing signals between organelles and nucleus to allow for coordinated activities of the different genomes. Developmental cues and environmental factors control the expression of WHIRLY genes. Mutants and plants with a reduced abundance of WHIRLY proteins gave insight into their multiple functionalities. In chloroplasts, a reduction of the WHIRLY level leads to changes in replication, transcription, RNA processing, and DNA repair. Furthermore, chloroplast development, ribosome formation, and photosynthesis are impaired in monocots. In mitochondria, a low level of WHIRLIES coincides with a reduced number of cristae and a low rate of respiration. The WHIRLY proteins are involved in the plants' resistance toward abiotic and biotic stress. Plants with low levels of WHIRLIES show reduced responsiveness toward diverse environmental factors, such as light and drought. Consequently, because such plants are impaired in acclimation, they accumulate reactive oxygen species under stress conditions. In contrast, several plant species overexpressing WHIRLIES were shown to have a higher resistance toward stress and pathogen attacks. By their multiple interactions with organelle proteins and nuclear transcription factors maybe a comma can be inserted here? and their participation in organelle-nucleus communication, WHIRLY proteins are proposed to serve plant development and stress resistance by coordinating processes at different levels. It is proposed that the multifunctionality of WHIRLY proteins is linked to the plasticity of land plants that develop and function in a continuously changing environment.
Zobrazit více v PubMed
Abbondanzieri E. A., Meyer A. S. (2019). More than just a phase: the search for membraneless organelles in the bacterial cytoplasm. Curr. Genet. 65, 691–694. doi: 10.1007/s00294-018-00927-x, PMID: PubMed DOI
Akbudak M. A., Filiz E. (2019). Whirly (why) transcription factors in tomato (Solanum lycopersicum L.): genome-wide identification and transcriptional profiling under drought and salt stresses. Mol. Biol. Rep. 46, 4139–4150. doi: 10.1007/s11033-019-04863-y, PMID: PubMed DOI
Ambawat S., Sharma P., Yadav N. R., Yadav R. C. (2013). MYB transcription factor genes as regulators for plant responses: an overview. Physiol. Mol. Biol. Plants 19, 307–321. doi: 10.1007/s12298-013-0179-1, PMID: PubMed DOI PMC
An C. F., Mou Z. L. (2011). Salicylic acid and its function in plant immunity. J. Integr. Plant Biol. 53, 412–428. doi: 10.1111/j.1744-7909.2011.01043.x, PMID: PubMed DOI
Artsatbanov V. Y., Vostroknutova G. N., Shleeva M. O., Goncharenko A. V., Zinin A. I., Ostrovsky D. N., et al. . (2012). Influence of oxidative and nitrosative stress on accumulation of diphosphate intermediates of the non-mevalonate pathway of isoprenoid biosynthesis in Corynebacteria and mycobacteria. Biochemistry 77, 362–371. doi: 10.1134/S0006297912040074, PMID: PubMed DOI
Arunachalam M., Ramesh M., Thiagarajan V., Singla S. K., Mudhol S., Muthukumar S. P. (2021). Current perspectives of healthy mitochondrial function for healthy neurons. Curr. Drug Targets 22, 1688–1703. doi: 10.2174/1389450122666210222163528, PMID: PubMed DOI
Baumgartner B. J., Rapp J. C., Mullet J. E. (1989). Plastid transcription activity and DNA copy number increase early in barley chloroplast development. Plant Physiol. 89, 1011–1018. doi: 10.1104/pp.89.3.1011, PMID: PubMed DOI PMC
Behringer C., Schwechheimer C. (2015). B-GATA transcription factors: insights into their structure, regulation, and role in plant development. Front. Plant Sci. 6:90. doi: 10.3389/fpls.2015.00090, PMID: PubMed DOI PMC
Belcher S., Williams-Carrier R., Stiffler N., Barkan A. (2015). Large-scale genetic analysis of chloroplast biogenesis in maize. Biochim. Biophys. Acta Bioenerg. 1847, 1004–1016. doi: 10.1016/j.bbabio.2015.02.014, PMID: PubMed DOI
Bobik K., Burch-Smith T. M. (2015). Chloroplast signaling within, between and beyond cells. Front. Plant Sci. 6:781. doi: 10.3389/fpls.2015.00781, PMID: PubMed DOI PMC
Bohne A. V. (2014). The nucleoid as a site of rRNA processing and ribosome assembly. Front. Plant Sci. 5:257. doi: 10.3389/fpls.2014.00257, PMID: PubMed DOI PMC
Börner T., Aleynikova A. Y., Zubo Y. O., Kusnetsov V. V. (2015). Chloroplast RNA polymerases: role in chloroplast biogenesis. Biochim. Biophys. Acta Bioenerg. 1847, 761–769. doi: 10.1016/j.bbabio.2015.02.004, PMID: PubMed DOI
Bryant N., Lloyd J., Sweeney C., Myouga F., Meinke D. (2011). Identification of nuclear genes encoding chloroplast-localized proteins required for embryo development in Arabidopsis. Plant Physiol. 155, 1678–1689. doi: 10.1104/pp.110.168120, PMID: PubMed DOI PMC
Cai Q., Guo L., Shen Z. R., Wang D. Y., Zhang Q., Sodmergen (2015). Elevation of pollen mitochondrial DNA copy number by WHIRLY2: altered respiration and pollen tube growth in Arabidopsis. Plant Physiol. 169, 660–673. doi: 10.1104/pp.15.00437, PMID: PubMed DOI PMC
Cannon G. C., Ward L. N., Case C. I., Heinhorst S. (1999). The 68 kDa DNA compacting nucleoid protein from soybean chloroplasts inhibits DNA synthesis in vitro. Plant Mol. Biol. 39, 835–845. doi: 10.1023/A:1006135615924, PMID: PubMed DOI
Cappadocia L., Parent J. S., Sygusch J., Brisson N. (2013). A family portrait: structural comparison of the Whirly proteins from Arabidopsis thaliana and Solanum tuberosum. Acta Crystallogr. F:Struct. Biol. Commun. 69, 1207–1211. doi: 10.1107/S1744309113028698, PMID: PubMed DOI PMC
Cappadocia L., Parent J. S., Zampini E., Lepage E., Sygusch J., Brisson N. (2012). A conserved lysine residue of plant Whirly proteins is necessary for higher order protein assembly and protection against DNA damage. Nucleic Acids Res. 40, 258–269. doi: 10.1093/nar/gkr740, PMID: PubMed DOI PMC
Castelan-Munoz N., Herrera J., Cajero-Sanchez W., Arrizubieta M., Trejo C., Garcia-Ponce B., et al. . (2019). MADS-box genes are key components of genetic regulatory networks involved in abiotic stress and plastic developmental responses in plants. Front. Plant Sci. 10:853. doi: 10.3389/fpls.2019.00853, PMID: PubMed DOI PMC
Chan K. X., Phua S. Y., Crisp P., Mcquinn R., Pogson B. J. (2016). “Learning the languages of the chloroplast: retrograde signaling and beyond” in Annual Review of Plant Biology. 67, 25–53. PubMed
Chen Y. E., Ma J., Wu N., Su Y. Q., Zhang Z. W., Yuan M., et al. . (2018). The roles of Arabidopsis proteins of Lhcb4, Lhcb5 and Lhcb6 in oxidative stress under natural light conditions. Plant Physiol. Biochem. 130, 267–276. doi: 10.1016/j.plaphy.2018.07.014, PMID: PubMed DOI
Chen H. Y., Zou W. X., Zhao J. (2015). Ribonuclease J is required for chloroplast and embryo development in Arabidopsis. J. Exp. Bot. 66, 2079–2091. doi: 10.1093/jxb/erv010, PMID: PubMed DOI PMC
Choi K., Kim J., Muller S. Y., Oh M., Underwood C., Henderson I., et al. . (2016). Regulation of microRNA-mediated developmental changes by the SWR1 chromatin remodeling complex. Plant Physiol. 171, 1128–1143. doi: 10.1104/pp.16.00332, PMID: PubMed DOI PMC
Ciolkowski I., Wanke D., Birkenbihl R. P., Somssich I. E. (2008). Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Mol. Biol. 68, 81–92. doi: 10.1007/s11103-008-9353-1, PMID: PubMed DOI PMC
Comadira G., Rasool B., Karpinska B., Garcia B. M., Morris J., Verrall S. R., et al. . (2015). WHIRLY1 functions in the control of responses to nitrogen deficiency but not aphid infestation in barley. Plant Physiol. 168, 1140–1151. doi: 10.1104/pp.15.00580, PMID: PubMed DOI PMC
Dame R. T., Rashid F. Z. M., Grainger D. C. (2020). Chromosome organization in bacteria: mechanistic insights into genome structure and function. Nat. Rev. Genet. 21, 227–242. doi: 10.1038/s41576-019-0185-4, PMID: PubMed DOI
Després C., Subramaniam R., Matton D., Brisson N. (1995). The activation of the potatoe PR-10a gene requires phosphorylation of the nuclear factor PBF-1. Plant Cell 7, 589–598. PubMed PMC
Desveaux D., Allard J., Brisson N., Sygusch J. (2002). A new family of plant transcription factors displays a novel ssDNA-binding surface. Nat. Struct. Biol. 9, 512–517. doi: 10.1038/nsb814, PMID: PubMed DOI
Desveaux D., Despres C., Joyeux A., Subramaniam R., Brisson N. (2000). PBF-2 is a novel single-stranded DNA binding factor implicated in PR-10a gene activation in potato. Plant Cell 12, 1477–1489. doi: 10.1105/tpc.12.8.1477, PMID: PubMed DOI PMC
Desveaux D., Maréchal A., Brisson N. (2005). Whirly transcription factors: defense gene regulation and beyond. Trends Plant Sci. 10, 95–102. doi: 10.1016/j.tplants.2004.12.008, PMID: PubMed DOI
Desveaux D., Subramanian R., Després C., Mess J.-N., Lévesque C., Fobert P., et al. . (2004). A "Whirly" transcription factor is required for salicylic acid-dependent disease resistance in Arabidopsis. Dev. Cell 6, 229–240. doi: 10.1016/S1534-5807(04)00028-0, PMID: PubMed DOI
Di Giorgio J. A. P., Lepage E., Tremblay-Belzile S., Truche S., Loubert-Hudon A., Brisson N. (2019). Transcription is a major driving force for plastid genome instability in Arabidopsis. PLoS One 14. doi: 10.1371/journal.pone.0214552 PubMed DOI PMC
Dillon S. C., Dorman C. J. (2010). Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat. Rev. Microbiol. 8, 185–195. doi: 10.1038/nrmicro2261, PMID: PubMed DOI
Duan S. J., Hu L. L., Dong B. B., Jin H. L., Wang H. B. (2020). Signaling from plastid genome stability modulates endoreplication and cell cycle during plant development. Cell Rep. 32, 1–13. doi: 10.1016/j.celrep.2020.108019, PMID: PubMed DOI
Fang X. F., Zhao G. Z., Zhang S., Li Y. X., Gu H. Q., Li Y., et al. . (2019). Chloroplast-to-nucleus signaling regulates microRNA biogenesis in Arabidopsis. Dev. Cell 48, 371.e4–382.e4. doi: 10.1016/j.devcel.2018.11.046, PMID: PubMed DOI
Fey V., Wagner R., Bräutigam K., Wirtz M., Hell R., Dietzmann A., et al. . (2005). Retrograde plastid redox signals in the expression of nuclear genes for chloroplast proteins of Arabidopsis thaliana. J. Biol. Chem. 280, 5318–5328. doi: 10.1074/jbc.M406358200, PMID: PubMed DOI
Fleischmann T. T., Scharff L. B., Alkatib S., Hasdorf S., Schottler M. A., Bock R. (2011). Nonessential plastid-encoded ribosomal proteins in tobacco: a developmental role for plastid translation and implications for reductive genome evolution. Plant Cell 23, 3137–3155. doi: 10.1105/tpc.111.088906, PMID: PubMed DOI PMC
Foyer C. H., Karpinska B., Krupinska K. (2014). The functions of WHIRLY1 and REDOX-RESPONSIVE TRANSCRIPTION FACTOR 1 in cross tolerance responses in plants: a hypothesis. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 369:20130226. doi: 10.1098/rstb.2013.0226, PMID: PubMed DOI PMC
Gamez-Arjona F. M., De La Concepcion J. C., Raynaud S., Merida A. (2014). Arabidopsis thaliana plastoglobule-associated fibrillin 1a interacts with fibrillin 1b in vivo. FEBS Lett. 588, 2800–2804. doi: 10.1016/j.febslet.2014.06.024, PMID: PubMed DOI
Gatz C. (2013). From pioneers to team players: TGA transcription factors provide a molecular link between different stress pathways. Mol. Plant-Microbe Interact. 26, 151–159. doi: 10.1094/MPMI-04-12-0078-IA, PMID: PubMed DOI
Golin S., Negroni Y. L., Bennewitz B., Klösgen R. B., Mulisch M., La Rocca N., et al. . (2020). WHIRLY2 plays a key role in mitochondria morphology, dynamics, and functionality in Arabidopsis thaliana. Plant Direct 4:e00229. doi: 10.1002/pld3.229, PMID: PubMed DOI PMC
Grabowski E., Miao Y., Mulisch M., Krupinska K. (2008). Single-stranded DNA binding protein Whirly1 in barley leaves is located in plastids and the nucleus of the same cell. Plant Physiol. 147, 1800–1804. doi: 10.1104/pp.108.122796, PMID: PubMed DOI PMC
Guan Z., Wang W. Z., Yu X. L., Lin W. F., Miao Y. (2018). Comparative proteomic analysis of coregulation of CIPK14 and WHIRLY1/3 mediated pale yellowing of leaves in Arabidopsis. Int. J. Mol. Sci. 19:2231. doi: 10.3390/ijms19082231, PMID: PubMed DOI PMC
Guo J. G., Hu Y. H., Zhou Y. P., Zhu Z. N., Sun Y. J., Li J. A., et al. . (2019). Profiling of the receptor for activated C kinase 1a (RACK1a) interaction network in Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 520, 366–372. doi: 10.1016/j.bbrc.2019.09.142, PMID: PubMed DOI
Halpert M., Liveanu V., Glaser F., Schuster G. (2019). The Arabidopsis chloroplast RNase J displays both exo- and robust endonucleolytic activities. Plant Mol. Biol. 99, 17–29. doi: 10.1007/s11103-018-0799-5, PMID: PubMed DOI
He P., Zhang Y. Z., Liu H., Yuan Y., Wang C., Yu J. N., et al. . (2019). Comprehensive analysis of WOX genes uncovers that WOX13 is involved in phytohormone-mediated fiber development in cotton. BMC Plant Biol. 19:12. doi: 10.1186/s12870-019-1892-x, PMID: PubMed DOI PMC
Hess W., Börner T. (1999a). Organellar RNA polymerases of higher plants. Int. Rev. Cytol. 190, 1–59. doi: 10.1016/S0074-7696(08)62145-2 PubMed DOI
Hess W. R., Börner T. (1999b). “Organellar RNA polymerases of higher plants,” in International Review of Cytology: A Survey of Cell Biology. ed. Jeon K. W., vol. 190 (San Diego: Elsevier Academic Press Inc.), 1–59. PubMed
Holowka J., Zakrzewska-Czerwinska J. (2020). Nucleoid associated proteins: the small organizers that help to cope with stress. Front. Microbiol. 11:590. doi: 10.3389/fmicb.2020.00590, PMID: PubMed DOI PMC
Hotto A. M., Stern D. B., Schuster G. (2020). Plant ribonuclease J: an essential player in maintaining chloroplast RNA quality control for gene expression. Plants 9:11. doi: 10.3390/plants9030334, PMID: PubMed DOI PMC
Hu Y. Y., Shu B. (2021). Identifying strawberry Whirly family transcription factors and their expressions in response to crown rot. Not. Bot. Horti Agrobot. Cluj Napoca 49:12323. doi: 10.15835/nbha49212323 DOI
Huang D. M., Lan W., Li D. J., Deng B., Lin W. F., Ren Y. J., et al. . (2018a). WHIRLY1 occupancy affects histone lysine modification and WRKY53 transcription in Arabidopsis developmental manner. Front. Plant Sci. 9:1503. doi: 10.3389/fpls.2018.01503, PMID: PubMed DOI PMC
Huang D. M., Lin W. F., Deng B., Ren Y. J., Miao Y. (2017). Dual-located WHIRLY1 interacting with LHCA1 alters photochemical activities of photosystem I and is involved in light adaptation in Arabidopsis. Int. J. Mol. Sci. 18:2352. doi: 10.3390/ijms18112352, PMID: PubMed DOI PMC
Huang K. L., Ma G. J., Zhang M. L., Xiong H., Wu H., Zhao C. Z., et al. . (2018b). The ARF7 and ARF19 transcription factors positively regulate PHOSPHATE STARVATION RESPONSE1 in Arabidopsis roots. Plant Physiol. 178, 413–427. doi: 10.1104/pp.17.01713, PMID: PubMed DOI PMC
Huang C. X., Yu J. F., Cai Q., Chen Y. X., Li Y. Y., Ren Y. J., et al. . (2020). Triple-localized WHIRLY2 influences leaf senescence and silique development via carbon allocation. Plant Physiol. 184, 1348–1362. doi: 10.1104/pp.20.00832, PMID: PubMed DOI PMC
Husaini A. M. (2022). High-value pleiotropic genes for developing multiple stress-tolerant biofortified crops for 21st-century challenges. Heredity. doi: 10.1038/s41437-022-00500-w [Epub ahead of print, PMID: PubMed DOI PMC
Isemer R. (2013). Die WHIRLY-proteine von Arabidopsis thaliana. dissertation/master’s thesis. Kiel.
Isemer R., Krause K., Grabe N., Kitahata N., Asami T., Krupinska K. (2012a). Plastid located WHIRLY1 enhances the responsiveness of Arabidopsis seedlings toward abscisic acid. Front. Plant Sci. 3:283. doi: 10.3389/fpls.2012.00283, PMID: PubMed DOI PMC
Isemer R., Mulisch M., Schäfer A., Kirchner S., Koop H. U., Krupinska K. (2012b). Recombinant Whirly1 translocates from transplastomic chloroplasts to the nucleus. FEBS Lett. 586, 85–88. doi: 10.1016/j.febslet.2011.11.029 PubMed DOI
Janack B., Sosoi P., Krupinska K., Humbeck K. (2016). Knockdown of WHIRLY1 affects drought stress-induced leaf senescence and histone modifications of the senescence-associated gene HvS40. Plan. Theory 5:37. doi: 10.3390/plants5030037, PMID: PubMed DOI PMC
Janda M., Ruelland E. (2015). Magical mystery tour: salicylic acid signalling. Environ. Exp. Bot. 114, 117–128. doi: 10.1016/j.envexpbot.2014.07.003 DOI
Janicka S., Kuhn K., Le Ret M., Bonnard G., Imbault P., Augustyniak H., et al. . (2012). A RAD52-like single-stranded DNA binding protein affects mitochondrial DNA repair by recombination. Plant J. 72, 423–435. doi: 10.1111/j.1365-313X.2012.05097.x, PMID: PubMed DOI
Janissen R., Arens M. M. A., Vtyurina N. N., Rivai Z., Sunday N. D., Eslami-Mossallam B., et al. . (2018). Global DNA compaction in stationary-phase bacteria does not affect transcription. Cell 174, 1188.e14–1199.e14. doi: 10.1016/j.cell.2018.06.049, PMID: PubMed DOI PMC
Karpinska B., Alomrani S. O., Foyer C. H. (2017). Inhibitor-induced oxidation of the nucleus and cytosol in Arabidopsis thaliana: implications for organelle to nucleus retrograde signalling. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 372. doi: 10.1098/rstb.2016.0392 PubMed DOI PMC
Karpinski S., Szechynska-Hebda M., Wituszynska W., Burdiak P. (2013). Light acclimation, retrograde signalling, cell death and immune defences in plants. Plant Cell Environ. 36, 736–744. doi: 10.1111/pce.12018, PMID: PubMed DOI
Kobayashi Y., Takusagawa M., Harada N., Fukao Y., Yamaoka S., Kohchi T., et al. . (2016). Eukaryotic components remodeled chloroplast nucleoid organization during the green plant evolution. Genome Biol. Evol. 8, 1–16. doi: 10.1093/gbe/evv233, PMID: PubMed DOI PMC
Krause K., Herrmann U., Fuß J., Miao Y., Krupinska K. (2009). Whirly proteins as communicators between plant organelles and the nucleus? Endocytosis Cell Res. 19, 51–62.
Krause K., Kilbienski I., Mulisch M., Rödiger A., Schäfer A., Krupinska K. (2005). DNA-binding proteins of the Whirly family in Arabidopsis thaliana are targeted to the organelles. FEBS Lett. 579, 3707–3712. doi: 10.1016/j.febslet.2005.05.059, PMID: PubMed DOI
Krause K., Krupinska K. (2009). Nuclear regulators with a second home in organelles. Trends Plant Sci. 14, 194–199. doi: 10.1016/j.tplants.2009.01.005, PMID: PubMed DOI
Krause K., Krupinska K. (2017). TAC-the transcriptionally acives chromosomes of plastids. Endocytobiosis Cell Res. 28, 54–61.
Krieger-Liszkay A., Krupinska K., Shimakawa G. (2019). The impact of photosynthesis on initiation of leaf senescence. Physiol. Plant. 166, 148–164. doi: 10.1111/ppl.12921, PMID: PubMed DOI
Kroll D., Meierhoff K., Bechtold N., Kinoshita M., Westphal S., Vothknecht U. C., et al. . (2001). VIPP1, a nuclear gene of Arabidopsis thaliana essential for thylakoid membrane formation. Proc. Natl. Acad. Sci. U. S. A. 98, 4238–4242. doi: 10.1073/pnas.061500998, PMID: PubMed DOI PMC
Krupinska K., Blanco N. E., Oetke S., Zottini M. (2020). Genome communication in plants mediated by organelle-nucleus-located proteins. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 375:20190397. doi: 10.1098/rstb.2019.0397, PMID: PubMed DOI PMC
Krupinska K., Braun S., Saeid Nia M., Schäfer A., Hensel G., Bilger W. (2019). The nucleoid-associated protein WHIRLY1 is required for the coordinate assembly of plastid and nucleus-encoded proteins during chloroplast development. Planta 249, 1337–1347. doi: 10.1007/s00425-018-03085-z, PMID: PubMed DOI
Krupinska K., Dähnhardt D., Fischer-Kilbienski I., Kucharewicz W., Scharrenberg C., Trosch M., et al. . (2014a). Identification of WHIRLY1 as a factor binding to the promoter of the stress- and senescence-associated gene HvS40. J. Plant Growth Regul. 33, 91–105. doi: 10.1007/s00344-013-9378-9 DOI
Krupinska K., Melonek J., Krause K. (2013). New insights into plastid nucleoid structure and functionality. Planta 237, 653–664. doi: 10.1007/s00425-012-1817-5, PMID: PubMed DOI
Krupinska K., Oetke S., Desel C., Mulisch M., Schäfer A., Hollmann J., et al. . (2014b). WHIRLY1 is a major organizer of chloroplast nucleoids. Front. Plant Sci. 5:432. doi: 10.3389/fpls.2014.00432 PubMed DOI PMC
Kucharewicz W., Distelfeld A., Bilger W., Muller M., Munne-Bosch S., Hensel G., et al. . (2017). Acceleration of leaf senescence is slowed down in transgenic barley plants deficient in the DNA/RNA-binding protein WHIRLY1. J. Exp. Bot. 68, 983–996. doi: 10.1093/jxb/erw501, PMID: PubMed DOI PMC
Kühn K., Gualberto J. M. (2012). “Recombination in the stability, repair and evolution of the mitochondrial genome,” in Mitochondrial Genome Evolution. ed. Marechaldrouard L. (London: Academic Press Ltd-Elsevier Science Ltd.), 215–252.
Kumar M., Kesawat M. S., Ali A., Lee S. C., Gill S. S., Kim H. U. (2019). Integration of abscisic acid signaling with other signaling pathways in plant stress responses and development. Plan. Theory 8:20. doi: 10.3390/plants8120592, PMID: PubMed DOI PMC
Lee W. K., Cho M. H. (2019). Epigenetic aspects of telomeric chromatin in Arabidopsis thaliana. BMB Rep. 52, 175–180. doi: 10.5483/BMBRep.2019.52.3.047, PMID: PubMed DOI PMC
Lee H. W., Cho C., Pandey S. K., Park Y., Kim M. J., Kim J. (2019). LBD16 and LBD18 acting downstream of ARF7 and ARF19 are involved in adventitious root formation in Arabidopsis. BMC Plant Biol. 19:46. doi: 10.1186/s12870-019-1659-4, PMID: PubMed DOI PMC
Legen J., Kemp S., Krause K., Profanter B., Herrmann R., Maier R. (2002). Comparative analysis of plastid transcription profiles of entire plastid chromosomes from tobacco attributed to wild-type and PEP-deficient transcription machineries. Plant J. 31, 171–188. doi: 10.1046/j.1365-313X.2002.01349.x, PMID: PubMed DOI
Lepage E., Zampini E., Brisson N. (2013). Plastid genome instability leads to reactive oxygen species production and plastid-to-nucleus retrograde signaling in Arabidopsis. Plant Physiol. 163, 867–881. doi: 10.1104/pp.113.223560, PMID: PubMed DOI PMC
Liebthal M., Schuetze J., Dreyer A., Mock H. P., Dietz K. J. (2020). Redox conformation-specific protein–protein interactions of the 2-cysteine peroxiredoxin in Arabidopsis. Antioxidants 9:515. doi: 10.3390/antiox9060515, PMID: PubMed DOI PMC
Lin W. F., Huang D. M., Shi X. M., Deng B., Ren Y. J., Lin W. X., et al. . (2019). H2O2 as a feedback signal on dual-located WHIRLY1 associates with leaf senescence in Arabidopsis. Cell 8:1585. doi: 10.3390/cells8121585, PMID: PubMed DOI PMC
Lin W. F., Zhang H., Huang D. M., Schenke D., Cai D. G., Wu B. H., et al. . (2020). Dual-localized WHIRLY1 affects salicylic acid biosynthesis via coordination of ISOCHORISMATE SYNTHASE1, PHENYLALANINE AMMONIA LYASE1, and S-ADENOSYL-L-METHIONINE-DEPENDENT METHYLTRANSFERASE1. Plant Physiol. 184, 1884–1899. doi: 10.1104/pp.20.009964 PubMed DOI PMC
Liu W., Yan Y., Zeng H. Q., Li X. L., Wei Y. X., Liu G. Y., et al. . (2018). Functional characterization of WHY-WRKY75 transcriptional module in plant response to cassava bacterial blight. Tree Physiol. 38, 1502–1512. doi: 10.1093/treephys/tpy053, PMID: PubMed DOI
Luijsterburg M. S., Noom M. C., Wuite G. J. L., Dame R. T. (2006). The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: a molecular perspective. J. Struct. Biol. 156, 262–272. doi: 10.1016/j.jsb.2006.05.006, PMID: PubMed DOI
Luijsterburg M. S., White M. F., Van Driel R., Dame R. T. (2008). The major architects of chromatin: architectural proteins in bacteria, archaea and eukaryotes. Crit. Rev. Biochem. Mol. Biol. 43, 393–418. doi: 10.1016/j.jsb.2006.05.006 PubMed DOI
Majeran W., Friso G., Asakura Y., Qu X., Huang M., Ponnala L., et al. . (2012). Nucleoid-enriched proteomes in developing plastids and chloroplasts from maize leaves; a new conceptual framework for nucleoid function. Plant Physiol. 158, 156–189. doi: 10.1104/pp.111.188474, PMID: PubMed DOI PMC
Majerska J., Schrumpfova P. P., Dokladal L., Schorova S., Stejskal K., Oboril M., et al. . (2017). Tandem affinity purification of AtTERT reveals putative interaction partners of plant telomerase in vivo. Protoplasma 254, 1547–1562. doi: 10.1007/s00709-016-1042-3, PMID: PubMed DOI
Maréchal A., Brisson N. (2010). Recombination and the maintenance of plant organelle genome stability. New Phytol. 186, 299–317. doi: 10.1111/j.1469-8137.2010.03195.x, PMID: PubMed DOI
Maréchal A., Parent J.-B., Sabar M., Veronneau-Laforturne F., Abou-Rached C., Brisson N. (2008). Overexpression of mtDNA-associated AtWhy2 compromises mitochondrial function. BMC Plant Biol. 8:42. doi: 10.1186/1471-2229-8-42, PMID: PubMed DOI PMC
Maréchal A., Parent J. S., Veronneau-Lafortune F., Joyeux A., Lang B. F., Brisson N. (2009). Whirly proteins maintain plastid genome stability in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 106, 14693–14698. doi: 10.1073/pnas.0901710106, PMID: PubMed DOI PMC
McCoy R. M., Julian R., Kumar S. R. V., Ranjan R., Varala K., Li Y. (2021). A systems biology approach to identify essential epigenetic regulators for specific biological processes in plants. Plan. Theory 10:364. doi: 10.3390/plants10020364, PMID: PubMed DOI PMC
Melonek J., Matros A., Trösch C. M., Mock H. P., Krupinska K. (2012). The core of chloroplast nucleoids contains architectural SWIB-domain proteins. Plant Cell 24, 3060–3073. doi: 10.1105/tpc.112.099721, PMID: PubMed DOI PMC
Melonek J., Mulisch M., Schmitz-Linneweber C., Grabowski E., Hensel G., Krupinska K. (2010). Whirly1 in chloroplasts associates with intron containing RNAs and rarely co-localizes with nucleoids. Planta 232, 471–481. doi: 10.1007/s00425-010-1183-0, PMID: PubMed DOI
Melonek J., Oetke S., Krupinska K. (2016). Multifunctionality of plastid nucleoids as revealed by proteome analyses. Biochim. Biophys. Acta Proteins Proteom. 1864, 1016–1038. doi: 10.1016/j.bbapap.2016.03.009, PMID: PubMed DOI
Meng C., Yang M. M., Wang Y. X., Chen C., Sui N., Meng Q. W., et al. . (2020). SlWHY2 interacts with SlRECA2 to maintain mitochondrial function under drought stress in tomato. Plant Sci. 301:110674. doi: 10.1016/j.plantsci.2020.110674, PMID: PubMed DOI
Miao Y., Jiang J. J., Ren Y. J., Zhao Z. W. (2013). The single-stranded DNA-binding protein WHIRLY1 represses WRKY53 expression and delays leaf senescence in a developmental stage-dependent manner in Arabidopsis. Plant Physiol. 163, 746–756. doi: 10.1104/pp.113.223412, PMID: PubMed DOI PMC
Nguyen X. T. A., Tran T. H., Cojoc D., Legname G. (2019). Copper binding regulates cellular prion protein function. Mol. Neurobiol. 56, 6121–6133. doi: 10.1007/s12035-019-1510-9, PMID: PubMed DOI
Odijk T. (1998). Osmotic compaction of supercoiled DNA into a bacterial nucleoid. Biophys. Chem. 73, 23–29. doi: 10.1016/S0301-4622(98)00115-X, PMID: PubMed DOI
Oetke S., Scheidig A., Krupinska K. (2022). WHIRLY1 of barley and maize share a PRAPP motif conferring nucleoid compaction. Plant Cell Physiol. 63, 234–247. doi: 10.1093/pcp/pcab164 PubMed DOI
Olinares P. D. B., Kim J., Van Wijk K. J. (2011). The Clp protease system; a central component of the chloroplast protease network. Biochim. Biophys. Acta Bioenerg. 1807, 999–1011. doi: 10.1016/j.bbabio.2010.12.003, PMID: PubMed DOI
Ono S., Suzuki S., Ito D., Tagawa S., Shiina T., Masuda S. (2020). Plastidial (p)ppGpp synthesis by the Ca2+-dependent RelA-SpoT homolog regulates the adaptation of chloroplast gene expression to darkness in Arabidopsis. Plant Cell Physiol. 61, 2077–2086. doi: 10.1093/pcp/pcaa124 PubMed DOI
Parent J. S., Lepage E., Brisson N. (2011). Divergent roles for the two PolI-like organelle DNA polymerases of Arabidopsis. Plant Physiol. 156, 254–262. doi: 10.1104/pp.111.173849, PMID: PubMed DOI PMC
Pfalz J., Liere K., Kandlbinder A., Dietz K.-J., Oelmüller R. (2006). pTAC2, −6, and −12 are components of the transcriptionally active plastid chromosome that are required for plastid gene expression. Plant Cell 18, 176–197. doi: 10.1105/rpc.105.036392 PubMed DOI PMC
Pfannschmidt T., Munné-Bosch S. (2013). “Plastid signaling during the plant life cycle,” in Plastid Development in Leaves during Growth and Senescence. eds. Biswal B., Krupinska K., Biswal U. C. (Dordrecht, Heidelberg, New York, London: Springer; ), 503–528.
Phinney B. S., Thelen J. J. (2005). Proteomic characterization of a triton-insoluble fraction from chloroplasts defines a novel group of proteins associated with macromolecular structures. J. Proteome Res. 4, 497–506. doi: 10.1021/pr049791k, PMID: PubMed DOI
Powikrowska M., Oetke S., Jensen P. E., Krupinska K. (2014). Dynamic composition, shaping and organization of plastid nucleoids. Front. Plant Sci. 5:424. doi: 10.3389/fpls.2014.00424, PMID: PubMed DOI PMC
Prikryl J., Watkins K. P., Friso G., Van Wijk K. J., Barkan A. (2008). A member of the Whirly family is a multifunctional RNA- and DNA-binding protein that is essential for chloroplast biogenesis. Nucleic Acids Res. 36, 5152–5165. doi: 10.1093/nar/gkn492, PMID: PubMed DOI PMC
Prince R. C., Gunson D. E. (1998). Prions are copper-binding proteins. Trends Biochem. Sci. 23, 197–198. doi: 10.1016/S0968-0004(98)01209-2, PMID: PubMed DOI
Przybyla-Toscano J., Christ L., Keech O., Rouhier N. (2021). Iron sulfur proteins in plant mitochondria: roles and maturation. J. Exp. Bot. 72, 2014–2044. doi: 10.1093/jxb/eraa578, PMID: PubMed DOI
Qin Y. Z., Li X., Guo M., Deng K. Q., Lin J. Z., Tang D. Y., et al. . (2008). Regulation of salt and ABDA responses by CIPK14, a calcium sensor interacting protein kinase in Arabidopsis. Sci. China Life Sci. 51, 391–401. doi: 10.1007/s11427-008-0059-z, PMID: PubMed DOI
Rekhter D., Ludke D., Ding Y. L., Feussner K., Zienkiewicz K., Lipka V., et al. . (2019). Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science 365, 498–502. doi: 10.1126/science.aaw1720, PMID: PubMed DOI
Remesh S. G., Verma S. C., Chen J. H., Ekman A. A., Larabell C. A., Adhya S., et al. . (2020). Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling. Nat. Commun. 11:2905. doi: 10.1038/s41467-020-16724-5, PMID: PubMed DOI PMC
Ren Y. J., Li Y. Y., Jiang Y. Q., Wu B. H., Miao Y. (2017). Phosphorylation of WHIRLY1 by CIPK14 shifts its localization and dual functions in Arabidopsis. Mol. Plant 10, 749–763. doi: 10.1016/j.molp.2017.03.011, PMID: PubMed DOI
Reyes J. C., Muro-Pastor M. I., Florencio F. J. (2004). The GATA family of transcription factors in Arabidopsis and rice. Plant Physiol. 134, 1718–1732. doi: 10.1104/pp.103.037788, PMID: PubMed DOI PMC
Rogalski M., Ruf S., Bock R. (2006). Tobacco plastid ribosomal protein S18 is essential for cell survival. Nucleic Acids Res. 34, 4537–4545. doi: 10.1093/nar/gkl634, PMID: PubMed DOI PMC
Rothman-Denes L. B., Dai X., Davydova E., Carter R., Kazmierczak K. (1998). Transcriptional regulation by DNA structural transitions and single-stranded DNA-binding proteins. Cold Spring Harb. Symp. Quant. Biol. 63, 63–74. doi: 10.1101/sqb.1998.63.63, PMID: PubMed DOI
Saeid-Nia M., Repnik U., Krupinska K., Bilger W. (2022). The plastid-nucleus localized DNA-binding protein WHIRLY1 is required for acclimation of barley leaves to high light. Planta 255:84. doi: 10.1007/s00425-022-03854-x, PMID: PubMed DOI PMC
Sakai A., Takano H., Kuroiwa T. (2004). Organelle nuclei in higher plants: structure, composition, function and evolution. Int. Rev. Cytol. 238, 59–118. doi: 10.1016/S0074-7696(04)38002-2 PubMed DOI
Senoura T., Kobayashi T., An G., Nakanishi H., Nishizawa N. K. (2020). Defects in the rice aconitase-encodingOsACO1gene alter iron homeostasis. Plant Mol. Biol. 104, 629–645. doi: 10.1007/s11103-020-01065-0, PMID: PubMed DOI
Sharma M., Bennewitz B., Klösgen R. B. (2018). Dual or not dual? Comparative analysis of fluorescence microscopy-based approaches to study organelle targeting specificity of nuclear-encoded plant proteins. Front. Plant Sci. 9:1350. doi: 10.3389/fpls.2018.01350, PMID: PubMed DOI PMC
Sharma J., Kumari R., Bhargava A., Tiwari R., Mishra P. K. (2021). Mitochondrial-induced epigenetic modifications: from biology to clinical translation. Curr. Pharm. Des. 27, 159–176. doi: 10.2174/1381612826666200826165735, PMID: PubMed DOI
Sharwood R. E., Halpert M., Luro S., Schuster G., Stern D. B. (2011). Chloroplast RNase J compensates for inefficient transcription termination by removal of antisense RNA. RNA 17, 2165–2176. doi: 10.1261/rna.028043.111, PMID: PubMed DOI PMC
Singh D. K., Maximova S. N., Jensen P. J., Lehman B. L., Ngugi H. K., Mcnellis T. W. (2010). FIBRILLIN4 is required for plastoglobule development and stress resistance in apple and Arabidopsis. Plant Physiol. 154, 1281–1293. doi: 10.1104/pp.110.164095, PMID: PubMed DOI PMC
Singh D. K., Mcnellis T. W. (2011). Fibrillin protein function: the tip of the iceberg? Trends Plant Sci. 16, 432–441. doi: 10.1016/j.tplants.2011.03.014, PMID: PubMed DOI
Song X. W., Li Y., Cao X. F., Qi Y. J. (2019). MicroRNAs and their regulatory roles in plant-environment interactions. Annu. Rev. Plant Biol. 70, 489–525. doi: 10.1146/annurev-arplant-050718-100334 PubMed DOI
Subramaniam R., Despres C., Brisson N. (1997). A functional homolog of mammalian protein kinase C participates in the elicitor-induced defense response in potato. Plant Cell 9, 653–664. PubMed PMC
Sunkar R., Li Y. F., Jagadeeswaran G. (2012). Functions of microRNAs in plant stress responses. Trends Plant Sci. 17, 196–203. doi: 10.1016/j.tplants.2012.01.010 PubMed DOI
Swida-Barteczka A., Krieger-Liszkay A., Bilger W., Voigt U., Hensel G., Szweykowska-Kulinska Z., et al. . (2018). The plastid-nucleus located DNA/RNA binding protein WHIRLY1 regulates microRNA-levels during stress in barley (Hordeum vulgare L.). RNA Biol. 15, 886–891. doi: 10.1080/15476286.2018.1481695, PMID: PubMed DOI PMC
Takeda Y., Hirokawa H., Nagata T. (1992). The replication of origin of proplastid DNA in cultured cells of tobacco. Mol. Gen. Genet. 232, 191–198. doi: 10.1007/BF00279996, PMID: PubMed DOI
Tarasenko V. I., Katyshev A. I., Subota I. Y., Konstantinov Y. M. (2012). Recombinant Arabidopsis WHY2 protein binds unspecifically to single-stranded DNA and is phosphorylated by mitochondrial protein kinases. Plant Omics 5, 372–375.
Telman W., Liebthal M., Dietz K. J. (2020). Redox regulation by peroxiredoxins is linked to their thioredoxin-dependent oxidase function. Photosynth. Res. 145, 31–41. doi: 10.1007/s11120-019-00691-0 PubMed DOI
Till B. J., Reynolds S. H., Greene E. A., Codomo C. A., Enns L. C., Johnson J. E., et al. . (2003). Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res. 13, 524–530. doi: 10.1101/gr.977903, PMID: PubMed DOI PMC
Till B., Schmitz-Linneweber C., Williams-Carrier R., Barkan A. (2001). CRS1 is a novel group II intron splicing factor that was derived from a domain of ancient origin. RNA 7, 1227–1238. doi: 10.1017/S1355838201010445, PMID: PubMed DOI PMC
Tiller N., Bock R. (2014). The translational apparatus of plastids and its role in plant development. Mol. Plant 7, 1105–1120. doi: 10.1093/mp/ssu022, PMID: PubMed DOI PMC
Trigg S. A., Garza R. M., Macwilliams A., Nery J. R., Bartlett A., Castanon R., et al. . (2017). CrY2H-seq: a massively multiplexed assay for deep-coverage interactome mapping. Nat. Methods 14, 819–825. doi: 10.1038/nmeth.4343, PMID: PubMed DOI PMC
Torres-Romero D., Gómez-Zambrano Á., Serrato A. J., Sahrawy M., Mérida À. (2022). Arabidopsis fibrillin 1-2 subfamily members exert their functions via specific protein-protein interactions. J. Exp. Bot. 73, 903–914. doi: 10.1093/jxb/erab452 PubMed DOI PMC
Tvorogova V. E., Krasnoperova E. Y., Potsenkovskaia E. A., Kudriashov A. A., Dodueva I. E., Lutova L. A. (2021). What does the WOX say? Review of regulators, targets, partners. Mol. Biol. 55, 311–337. doi: 10.1134/S002689332102031X, PMID: PubMed DOI
Valkenburg J. A. C., Woldringh C. L. (1984). Phase-separation between nucleoid and cytoplasm in Escherichia coli as defined by immersive refractometry. J. Bacteriol. 160, 1151–1157. doi: 10.1128/jb.160.3.1151-1157.1984, PMID: PubMed DOI PMC
Vlot A. C., Dempsey D. A., Klessig D. F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 47, 177–206. doi: 10.1146/annurev.phyto.050908.135202, PMID: PubMed DOI
Wang W. J., Li K., Yang Z., Hou Q. C., Zhao W. W., Sun Q. W. (2021). RNase H1C collaborates with ssDNA binding proteins WHY1/3 and recombinase RecA1 to fulfill the DNA damage repair in Arabidopsis chloroplasts. Nucleic Acids Res. 49, 6771–6787. doi: 10.1093/nar/gkab479, PMID: PubMed DOI PMC
Williams-Carrier R., Zoschke R., Belcher S., Pfalz J., Barkan A. (2014). A major role for the plastid-encoded RNA polymerase complex in the expression of plastid transfer RNAs. Plant Physiol. 164, 239–248. doi: 10.1104/pp.113.228726, PMID: PubMed DOI PMC
Wolf S. G., Frenkiel D., Arad T., Finkel S. E., Kolter R., Minsky A. (1999). DNA protection by stress-induced biocrystallization. Nature 400, 83–85. PubMed
Xiao Y. M., Savchenko T., Baidoo E. E. K., Chehab W. E., Hayden D. M., Tolstikov V., et al. . (2012). Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress-response genes. Cell 149, 1525–1535. doi: 10.1016/j.cell.2012.04.038, PMID: PubMed DOI
Xiao Y. M., Wang J. Z., Dehesh K. (2013). Review of stress specific organelles-to-nucleus metabolic signal molecules in plants. Plant Sci. 212, 102–107. doi: 10.1016/j.plantsci.2013.08.003, PMID: PubMed DOI
Xiong J. Y., Lai C. X., Qu Z., Yang X. Y., Qin X. H., Liu G. Q. (2009). Recruitment of AtWHY1 and AtWHY3 by a distal element upstream of the kinesin gene AtKP1 to mediate transcriptional repression. Plant Mol. Biol. 71, 437–449. doi: 10.1007/s11103-009-9533-7, PMID: PubMed DOI
Xu Y. H., Liu R., Yan L., Liu Z. Q., Jiang S. C., Shen Y. Y., et al. . (2012). Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in Arabidopsis. J. Exp. Bot. 63, 1095–1106. doi: 10.1093/jxb/err315, PMID: PubMed DOI PMC
Xu F., Tang J. Y., Gao S. P., Chang X., Du L., Chu C. C. (2019). The coordinated action of PPR4 and EMB2654 on each intron half mediates trans-splicing of rps12 transcripts in plant chloroplasts. Plant J. 100, 1193–1207. doi: 10.1111/tpj.14509, PMID: PubMed DOI
Yan Y., Liu W., Wei Y. X., Shi H. T. (2020). MeCIPK23 interacts with Whirly transcription factors to activate abscisic acid biosynthesis and regulate drought resistance in cassava. Plant Biotechnol. J. 18, 1504–1506. doi: 10.1111/pbi.13321, PMID: PubMed DOI PMC
Yang Z., Hou Q. C., Cheng L. L., Xu W., Hong Y. T., Li S., et al. . (2017). RNase H1 cooperates with DNA gyrases to restrict R-loops and maintain genome integrity in Arabidopsis chloroplasts. Plant Cell 29, 2478–2497. doi: 10.1105/tpc.17.00305, PMID: PubMed DOI PMC
Yogev O., Pines O. (2011). Dual targeting of mitochondrial proteins: mechanism, regulation and function. Biochim. Biophys. Acta 1808, 1012–1020. doi: 10.1016/j.bbamem.2010.07.004, PMID: PubMed DOI
Yoo H. H., Kwon C., Lee M. M., Chung I. K. (2007). Single-stranded DNA binding factor AtWHY1 modulates telomere length homeostasis in Arabidopsis. Plant J. 49, 442–451. doi: 10.1111/j.1365-313X.2006.02974.x, PMID: PubMed DOI
Yu F., Fu A. G., Aluru M., Park S., Xu Y., Liu H. Y., et al. . (2007). Variegation mutants and mechanisms of chloroplast biogenesis. Plant Cell Environ. 30, 350–365. doi: 10.1111/j.1365-3040.2006.01630.x, PMID: PubMed DOI
Zampini E., Lepage E., Tremblay-Belzile S., Truche S., Brisson N. (2015). Organelle DNA rearrangement mapping reveals U-turn-like inversions as a major source of genomic instability in Arabidopsis and humans. Genome Res. 25, 645–654. doi: 10.1101/gr.188573.114, PMID: PubMed DOI PMC
Zaitlin D., Hu J., Bogorad L. (1989). Binding and transcription of relaxed DNA templates by fractions of maize chloroplast extracts. Proc. Natl. Acad. Sci. U.S.A. 86, 876–880. PubMed PMC
Zentgraf U., Doll J. (2019). Arabidopsis WRKY53, a node of multi-layer regulation in the network of senescence. Plants 8:578. doi: 10.3390/plants8120578, PMID: PubMed DOI PMC
Zhang Y. F., Hou M. M., Tan B. C. (2013). The requirement of WHIRLY1 for embryogenesis is dependent on genetic background in maize. PLoS One 8:12. doi: 10.1371/journal.pone.0067369, PMID: PubMed DOI PMC
Zhang J. X., Yuan H., Yang Y., Fish T., Lyi S. M., Thannhauser T. W., et al. . (2016). Plastid ribosomal protein S5 is involved in photosynthesis, plant development, and cold stress tolerance in Arabidopsis. J. Exp. Bot. 67, 2731–2744. doi: 10.1093/jxb/erw106, PMID: PubMed DOI PMC
Zhao S. Y., Wang G. D., Zhao W. Y., Zhang S., Kong F. Y., Dong X. C., et al. . (2018). Overexpression of tomato WHIRLY protein enhances tolerance to drought stress and resistance to pseudomonas solanacearum in transgenic tobacco. Biol. Plant. 62, 55–68. doi: 10.1007/s10535-017-0714-y PubMed DOI
Zheng B., Halperin T., Hruskova-Heidingsfeldova O., Adam Z., Clarke A. K. (2002). Characterization of chloroplast Clp proteins in Arabidopsis: localization, tissue specificity and stress responses. Physiol. Plant. 114, 92–101. doi: 10.1034/j.1399-3054.2002.1140113.x, PMID: PubMed DOI
Zhuang K. Y., Gao Y. Y., Liu Z. B., Diao P. F., Sui N., Meng Q. W., et al. . (2020a). WHIRLY1 regulates HSP21.5A expression to promote thermotolerance in tomato. Plant Cell Physiol. 61, 169–177. doi: 10.1093/pcp/pcz189 PubMed DOI
Zhuang K. Y., Kong F. Y., Zhang S., Meng C., Yang M. M., Liu Z. B., et al. . (2019). Whirly1 enhances tolerance to chilling stress in tomato via protection of photosystem II and regulation of starch degradation. New Phytol. 221, 1998–2012. doi: 10.1111/nph.15532, PMID: PubMed DOI
Zhuang K. Y., Wang J. Y., Jiao B. Z., Chen C., Zhang J. J., Ma N. N., et al. . (2020b). WHIRLY1 maintains leaf photosynthetic capacity in tomato by regulating the expression of RbcS1 under chilling stress. J. Exp. Bot. 71, 3653–3663. doi: 10.1093/jxb/eraa145, PMID: PubMed DOI