Modelling the effect of ephaptic coupling on spike propagation in peripheral nerve fibres

. 2022 Aug ; 116 (4) : 461-473. [epub] 20220510

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35538379
Odkazy

PubMed 35538379
PubMed Central PMC9287264
DOI 10.1007/s00422-022-00934-9
PII: 10.1007/s00422-022-00934-9
Knihovny.cz E-zdroje

Experimental and theoretical studies have shown that ephaptic coupling leads to the synchronisation and slowing down of spikes propagating along the axons within peripheral nerve bundles. However, the main focus thus far has been on a small number of identical axons, whereas realistic peripheral nerve bundles contain numerous axons with different diameters. Here, we present a computationally efficient spike propagation model, which captures the essential features of propagating spikes and their ephaptic interaction, and facilitates the theoretical investigation of spike volleys in large, heterogeneous fibre bundles. We first lay out the theoretical basis to describe how the spike in an active axon changes the membrane potential of a passive axon. These insights are then incorporated into the spike propagation model, which is calibrated with a biophysically realistic model based on Hodgkin-Huxley dynamics. The fully calibrated model is then applied to fibre bundles with a large number of axons and different types of axon diameter distributions. One key insight of this study is that the heterogeneity of the axonal diameters has a dispersive effect, and that a higher level of heterogeneity requires stronger ephaptic coupling to achieve full synchronisation between spikes.

Zobrazit více v PubMed

Anastassiou C, Koch C. Ephaptic coupling to endogenous electric field activity: why bother? Curr Opin Neurobiol. 2015;31:95–103. doi: 10.1016/j.conb.2014.09.002. PubMed DOI

Anastassiou C, Perin R, Markram H, Koch C. Ephaptic coupling of cortical neurons. Nat Neurosci. 2011;14:217–223. doi: 10.1038/nn.2727. PubMed DOI

Arvanitaki A. Effects evoked in an axon by the activity of a contiguous one. J Neurophysiol. 1942;5:89–108. doi: 10.1152/jn.1942.5.2.89. DOI

Assaf Y, Blumenfeld-Katzir T, Yovel Y, Basser P. AxCaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn Reson Med. 2008;59:1347–1354. doi: 10.1002/mrm.21577. PubMed DOI PMC

Barr R, Plonsey R. Electrophysiological interaction through the interstitial space between adjacent unmyelinated fibers. Biophys J . 1992;61:1164–1175. doi: 10.1016/S0006-3495(92)81925-2. PubMed DOI PMC

Basser P. Cable equation for a myelinated axon derived from its microstructure. Med Biol Eng Comput. 1993;31:S87–S92. doi: 10.1007/BF02446655. PubMed DOI

Bell J. Modelling parallel, unmyelinated axons: pulse trapping and ephaptic transmission. SIAM J Appl Math. 1981;41:168–180. doi: 10.1137/0141012. DOI

Binczak S, Eilbeck J, Scott A. Ephaptic coupling of myelinated nerve fibers. Physica D. 2001;148:159–174. doi: 10.1016/S0167-2789(00)00173-1. DOI

Bokil H, Laaris N, Blinder K, Ennis M, Keller A. Ephaptic interactions in the mammalian olfactory system. J Neurosci. 2001;21:173. doi: 10.1523/jneurosci.21-20-j0004.2001. PubMed DOI PMC

Brill M, Waxman S, Moore J, Joyner R. Conduction velocity and spike configuration in myelinated fibres: computed dependence on internode distance. J Neurol Neurosurg Psychiatry. 1977;40:769–774. doi: 10.1136/jnnp.40.8.769. PubMed DOI PMC

Buzsáki G, Anastassiou C, Koch C. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat Rev Neurosci. 2012;13:407–420. doi: 10.1038/nrn3241. PubMed DOI PMC

Capllonch-Juan M, Sepulveda F. Modelling the effects of ephaptic coupling on selectivity and response patterns during artificial stimulation of peripheral nerves. PLoS Comput Biol. 2020;16:e1007826. doi: 10.1371/journal.pcbi.1007826. PubMed DOI PMC

Clark J, Plonsey R. A mathematical study of nerve interaction. Biophys J . 1970;10:937–957. doi: 10.1016/S0006-3495(70)86344-5. PubMed DOI PMC

Eichel M, Gargareta VI, D’Este E, Fledrich R, Kungl T, Buscham T, Lüders K, Miracle C, Jung R, Distler U, Kusch K, Möbius W, Hülsmann S, Tenzer S, Nave KA, Werner H. CMTM6 expressed on the Adaxonal Schwann cell surface restricts axonal diameters in peripheral nerves. Nat Commun. 2020;11:4514. doi: 10.1038/s41467-020-18172-7. PubMed DOI PMC

Eilbeck J, Luzader S, Scott A. Pulse evolution on coupled nerve fibres. Bull Math Biol. 1981;43:389–400. doi: 10.1007/BF02459429. PubMed DOI

Goldman L, Albus J. Computation of impulse conduction in myelinated fibers; theoretical basis of the velocity-diameter relation. Biophys J . 1968;8:596–607. doi: 10.1016/S0006-3495(68)86510-5. PubMed DOI PMC

Goldwyn J, Rinzel J. Neuronal coupling by endogenous electric fields: cable theory and applications to coincidence detector neurons in the auditory brain stem. J Neurophysiol. 2016;115:2033–2051. doi: 10.1152/jn.00780.2015. PubMed DOI PMC

Hodgkin A, Huxley A. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952;117:500–544. doi: 10.1113/jphysiol.1952.sp004764. PubMed DOI PMC

Holt G, Koch C. Electrical interactions via the extracellular potential near cell bodies. J Comput Neurosci. 1999;6:169–184. doi: 10.1023/a:1008832702585. PubMed DOI

Hursh J. Conduction velocity and diameter of nerve fibers. Am J Physiol. 1939;127:131–139. doi: 10.1152/ajplegacy.1939.127.1.131. DOI

Ikeda M, Oka Y. The relationship between nerve conduction velocity and fiber morphology during peripheral nerve regeneration. Brain Behav. 2012;2:382–390. doi: 10.1002/brb3.61. PubMed DOI PMC

Katz B, Schmitt O. Electric interaction between two adjacent nerve fibres. J Physiol. 1940;97:471–488. doi: 10.1113/jphysiol.1940.sp003823. PubMed DOI PMC

Kuramoto Y. Chemical oscillations, waves, and turbulence. New York: Springer; 1984.

Maïna I, Tabi C, Fouda HE, Mohamadou A, Kofané T (2015) Discrete impulses in ephaptically coupled nerve fibers. Chaos 25:043118. 10.1063/1.4919077 PubMed

Marrazzi A, Lorente de Nó R. Interaction of neighbouring fibres in myelinated nerve. J Neurophysiol. 1944;7:83. doi: 10.1152/jn.1944.7.2.83. DOI

McColgan T, Liu J, Kuokkanen P, Carr C, Wagner H, Kempter R (2017) Dipolar extracellular potentials generated by axonal projections. eLife 6:e26106. 10.7554/eLife.26106 PubMed PMC

Parker J, Shariati N, Karantonis D. Electrically evoked compound action potential recording in peripheral nerves. Bioelectron Med. 2018;1:71–83. doi: 10.2217/bem-2017-0005. DOI

Pikovsky A, Rosenblum M, Kurths J (2001) Synchronization: a universal concept in nonlinear science. Cambridge University Press

Rall W (1977) Core conductor theory and cable properties of neurons. In: Poeter R (ed) Handbook of physiology: the nervous system, vol 3. American Physiological Society, Bethesda, pp 39–97

Reutskiy S, Rossoni E, Tirozzi B. Conduction in bundles of demyelinated nerve fibers: computer simulation. Biol Cybern. 2003;89:439–448. doi: 10.1007/s00422-003-0430-x. PubMed DOI

Rosenblueth A. The stimulation of myelinated axons by nerve impulses in adjacent myelinated axons. Am J Physiol. 1941;132:119–128. doi: 10.1152/ajplegacy.1941.132.1.119. DOI

Sanders F. The thickness of the myelin sheaths of normal and regenerating peripheral nerve fibres. Proc Roy Soc Lond Ser B. 1947;135:323–357. doi: 10.1098/rspb.1948.0015. DOI

Schmidt H, Knösche T. Action potential propagation and synchronisation in myelinated axons. PLoS Comput Biol. 2019;15:e1007004. doi: 10.1371/journal.pcbi.1007004. PubMed DOI PMC

Schmidt H, Hahn G, Deco G, Knosche TR. Ephaptic coupling in white matter fibre bundles modulates axonal transmission delays. PLOS Comput Biol. 2021;17:e1007858. doi: 10.1371/journal.pcbi.1007858. PubMed DOI PMC

Sheheitli H, Jirsa V. A mathematical model of ephaptic interactions in neuronal fiber pathways: could there be more than transmission along the tracts? Network Neurosci. 2020;4:595–610. doi: 10.1162/netn_a_00134. PubMed DOI PMC

Shneider M, Pekker M. Correlation of action potentials in adjacent neurons. Phys Biol. 2015;12:066009. doi: 10.1088/1478-3975/12/6/066009. PubMed DOI

Trayanova N, Henriquez C, Plonsey R. Limitations of approximate solutions for computing the extracellular potential of single fibers and bundle equivalents. IEEE Trans Biomed Eng. 1990;37:22–35. doi: 10.1109/10.43608. PubMed DOI

Tveit A, Jaeger K, Lines G, Paszkowski L, Edwards A, Maki-Marttunen T, Halnes G, Einevoll G. An evaluation of the accuracy of classical models for computing the membrane potential and extracellular potential for neurons. Front Comput Neurosci. 2017;11:27. doi: 10.3389/fncom.2017.00027. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...