The Role of miR-20 in Health and Disease of the Central Nervous System

. 2022 May 03 ; 11 (9) : . [epub] 20220503

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35563833

Current understanding of the mechanisms underlying central nervous system (CNS) injury is limited, and traditional therapeutic methods lack a molecular approach either to prevent acute phase or secondary damage, or to support restorative mechanisms in the nervous tissue. microRNAs (miRNAs) are endogenous, non-coding RNA molecules that have recently been discovered as fundamental and post-transcriptional regulators of gene expression. The capacity of microRNAs to regulate the cell state and function through post-transcriptionally silencing hundreds of genes are being acknowledged as an important factor in the pathophysiology of both acute and chronic CNS injuries. In this study, we have summarized the knowledge concerning the pathophysiology of several neurological disorders, and the role of most canonical miRNAs in their development. We have focused on the miR-20, the miR-17~92 family to which miR-20 belongs, and their function in the normal development and disease of the CNS.

Zobrazit více v PubMed

Bhalala O.G., Srikanth M., Kessler J.A. The Emerging Roles of MicroRNAs in CNS Injuries. Nat. Rev. Neurol. 2013;9:328–339. doi: 10.1038/nrneurol.2013.67. PubMed DOI PMC

Prince M., Bryce R., Albanese E., Wimo A., Ribeiro W., Ferri C.P. The Global Prevalence of Dementia: A Systematic Review and Metaanalysis. Alzheimer’s Dement. 2013;9:63. doi: 10.1016/j.jalz.2012.11.007. PubMed DOI

De Rosa S., Curcio A., Indolfi C. Emerging Role of MicroRNAs in Cardiovascular Diseases. Circ. J. 2014;78:567–575. doi: 10.1253/circj.CJ-14-0086. PubMed DOI

Dharap A., Bowen K., Place R., Li L.-C., Vemuganti R. Transient Focal Ischemia Induces Extensive Temporal Changes in Rat Cerebral MicroRNAome. J. Cereb. Blood Flow Metab. 2009;29:675–687. doi: 10.1038/jcbfm.2008.157. PubMed DOI PMC

Nieto-Diaz M., Esteban F.J., Reigada D., Munoz-Galdeano T., Yunta M., Caballero-Lopez M., Navarro-Ruiz R., Del Aguila A., Maza R.M. MicroRNA Dysregulation in Spinal Cord Injury: Causes, Consequences and Therapeutics. Front. Cell. Neurosci. 2014;8:53. doi: 10.3389/fncel.2014.00053. PubMed DOI PMC

Ning B., Gao L., Liu R.H., Liu Y., Zhang N.S., Chen Z.Y. MicroRNAs in Spinal Cord Injury: Potential Roles and Therapeutic Implications. Int. J. Biol. Sci. 2014;10:997–1006. doi: 10.7150/ijbs.9058. PubMed DOI PMC

Rajgor D. Macro Roles for MicroRNAs in Neurodegenerative Diseases. Non-Coding RNA Res. 2018;3:154–159. doi: 10.1016/j.ncrna.2018.07.001. PubMed DOI PMC

Quinlan S., Kenny A., Medina M., Engel T., Jimenez-Mateos E.M. MicroRNAs in Neurodegenerative Diseases. Int. Rev. Cell Mol. Biol. 2017;334:309–343. doi: 10.1016/bs.ircmb.2017.04.002. PubMed DOI

Iida A., Shinoe T., Baba Y., Mano H., Watanabe S. Dicer Plays Essential Roles for Retinal Development by Regulation of Survival and Differentiation. Investig. Ophthalmol. Vis. Sci. 2011;52:3008–3017. doi: 10.1167/iovs.10-6428. PubMed DOI

Yang P., Cai L., Zhang G., Bian Z., Han G. The Role of the MiR-17-92 Cluster in Neurogenesis and Angiogenesis in the Central Nervous System of Adults. J. Neurosci. Res. 2017;95:1574–1581. doi: 10.1002/jnr.23991. PubMed DOI

Fuziwara C.S., Kimura E.T. Insights into Regulation of the MiR-17-92 Cluster of MiRNAs in Cancer. Front. Med. (Lausanne) 2015;2:64. doi: 10.3389/fmed.2015.00064. PubMed DOI PMC

Hayashita Y., Osada H., Tatematsu Y., Yamada H., Yanagisawa K., Tomida S., Yatabe Y., Kawahara K., Sekido Y., Takahashi T. A Polycistronic MicroRNA Cluster, MiR-17-92, Is Overexpressed in Human Lung Cancers and Enhances Cell Proliferation. Cancer Res. 2005;65:9628–9632. doi: 10.1158/0008-5472.CAN-05-2352. PubMed DOI

Gu H., Liu Z., Zhou L. Roles of MiR-17-92 Cluster in Cardiovascular Development and Common Diseases. Biomed. Res. Int. 2017;2017:9102909. doi: 10.1155/2017/9102909. PubMed DOI PMC

He L., Thomson J.M., Hemann M.T., Hernando-Monge E., Mu D., Goodson S., Powers S., Cordon-Cardo C., Lowe S.W., Hannon G.J., et al. A MicroRNA Polycistron as a Potential Human Oncogene. Nature. 2005;435:828–833. doi: 10.1038/nature03552. PubMed DOI PMC

Xia X., Wang Y., Zheng J.C. The MicroRNA-17 ~ 92 Family as a Key Regulator of Neurogenesis and Potential Regenerative Therapeutics of Neurological Disorders. Stem Cell Rev. Rep. 2022;18:401–411. doi: 10.1007/s12015-020-10050-5. PubMed DOI PMC

Xia X., Lu H., Li C., Huang Y., Wang Y., Yang X., Zheng J.C. MiR-106b Regulates the Proliferation and Differentiation of Neural Stem/Progenitor Cells through Tp53inp1-Tp53-Cdkn1a Axis. Stem Cell Res. Ther. 2019;10:282. doi: 10.1186/s13287-019-1387-6. PubMed DOI PMC

Garg N., Po A., Miele E., Campese A.F., Begalli F., Silvano M., Infante P., Capalbo C., De Smaele E., Canettieri G., et al. MicroRNA-17-92 Cluster Is a Direct Nanog Target and Controls Neural Stem Cell through Trp53inp1. EMBO J. 2013;32:2819–2832. doi: 10.1038/emboj.2013.214. PubMed DOI PMC

Bian S., Hong J., Li Q., Schebelle L., Pollock A., Knauss J.L., Garg V., Sun T. MicroRNA Cluster MiR-17-92 Regulates Neural Stem Cell Expansion and Transition to Intermediate Progenitors in the Developing Mouse Neocortex. Cell Rep. 2013;3:1398–1406. doi: 10.1016/j.celrep.2013.03.037. PubMed DOI PMC

Toyoshima M., Akamatsu W., Okada Y., Ohnishi T., Balan S., Hisano Y., Iwayama Y., Toyota T., Matsumoto T., Itasaka N., et al. Analysis of Induced Pluripotent Stem Cells Carrying 22q11.2 Deletion. Transl. Psychiatry. 2016;6:e934. doi: 10.1038/tp.2016.206. PubMed DOI PMC

Brett J.O., Renault V.M., Rafalski V.A., Webb A.E., Brunet A. The MicroRNA Cluster MiR-106b~25 Regulates Adult Neural Stem/Progenitor Cell Proliferation and Neuronal Differentiation. Aging. 2011;3:108–124. doi: 10.18632/aging.100285. PubMed DOI PMC

Naka-Kaneda H., Nakamura S., Igarashi M., Aoi H., Kanki H., Tsuyama J., Tsutsumi S., Aburatani H., Shimazaki T., Okano H. The MiR-17/106-P38 Axis Is a Key Regulator of the Neurogenic-to-Gliogenic Transition in Developing Neural Stem/Progenitor Cells. Proc. Natl. Acad. Sci. USA. 2014;111:1604–1609. doi: 10.1073/pnas.1315567111. PubMed DOI PMC

Pan W.L., Chopp M., Fan B., Zhang R., Wang X., Hu J., Zhang X.M., Zhang Z.G., Liu X.S. Ablation of the MicroRNA-17-92 Cluster in Neural Stem Cells Diminishes Adult Hippocampal Neurogenesis and Cognitive Function. FASEB J. 2019;33:5257–5267. doi: 10.1096/fj.201801019R. PubMed DOI PMC

Ghosh T., Aprea J., Nardelli J., Engel H., Selinger C., Mombereau C., Lemonnier T., Moutkine I., Schwendimann L., Dori M., et al. MicroRNAs Establish Robustness and Adaptability of a Critical Gene Network to Regulate Progenitor Fate Decisions during Cortical Neurogenesis. Cell Rep. 2014;7:1779–1788. doi: 10.1016/j.celrep.2014.05.029. PubMed DOI

Wakabayashi T., Hidaka R., Fujimaki S., Asashima M., Kuwabara T. Advances in Genetics. Volume 86. Elsevier; Amsterdam, The Netherlands: 2014. MicroRNAs and Epigenetics in Adult Neurogenesis; pp. 27–44. PubMed

Budde H., Schmitt S., Fitzner D., Opitz L., Salinas-Riester G., Simons M. Control of Oligodendroglial Cell Number by the MiR-17-92 Cluster. Development. 2010;137:2127–2132. doi: 10.1242/dev.050633. PubMed DOI

Sun X., Zhou Z., Fink D.J., Mata M. HspB1 Silences Translation of PDZ-RhoGEF by Enhancing MiR-20a and MiR-128 Expression to Promote Neurite Extension. Mol. Cell. Neurosci. 2013;57:111–119. doi: 10.1016/j.mcn.2013.10.006. PubMed DOI PMC

Mymrikov E.V., Seit-Nebi A.S., Gusev N.B. Large Potentials of Small Heat Shock Proteins. Physiol. Rev. 2011;91:1123–1159. doi: 10.1152/physrev.00023.2010. PubMed DOI

Perng M.D., Cairns L., van den IJssel P., Prescott A., Hutcheson A.M., Quinlan R.A. Intermediate Filament Interactions Can Be Altered by HSP27 and AlphaB-Crystallin. J. Cell Sci. 1999;112:2099–2112. doi: 10.1242/jcs.112.13.2099. PubMed DOI

Wagstaff M.J.D., Collaço-Moraes Y., Smith J., de Belleroche J.S., Coffin R.S., Latchman D.S. Protection of Neuronal Cells from Apoptosis by Hsp27 Delivered with a Herpes Simplex Virus-Based Vector. J. Biol. Chem. 1999;274:5061–5069. doi: 10.1074/jbc.274.8.5061. PubMed DOI

Jin J., Kim S.-N., Liu X., Zhang H., Zhang C., Seo J.-S., Kim Y., Sun T. MiR-17-92 Cluster Regulates Adult Hippocampal Neurogenesis, Anxiety, and Depression. Cell Rep. 2016;16:1653–1663. doi: 10.1016/j.celrep.2016.06.101. PubMed DOI PMC

Guo F., Han X., Zhang J., Zhao X., Lou J., Chen H., Huang X. Repetitive Transcranial Magnetic Stimulation Promotes Neural Stem Cell Proliferation via the Regulation of MiR-25 in a Rat Model of Focal Cerebral Ischemia. PLoS ONE. 2014;9:e109267. doi: 10.1371/journal.pone.0109267. PubMed DOI PMC

Xin H., Katakowski M., Wang F., Qian J.-Y., Liu X.S., Ali M.M., Buller B., Zhang Z.G., Chopp M. MicroRNA-17–92 Cluster in Exosomes Enhance Neuroplasticity and Functional Recovery After Stroke in Rats. Stroke. 2017;48:747–753. doi: 10.1161/STROKEAHA.116.015204. PubMed DOI PMC

He S., Yang S., Deng G., Liu M., Zhu H., Zhang W., Yan S., Quan L., Bai J., Xu N. Aurora Kinase A Induces MiR-17-92 Cluster through Regulation of E2F1 Transcription Factor. Cell. Mol. Life Sci. 2010;67:2069–2076. doi: 10.1007/s00018-010-0340-8. PubMed DOI PMC

Yan Y., Hanse E.A., Stedman K., Benson J.M., Lowman X.H., Subramanian S., Kelekar A. Transcription Factor C/EBP-β Induces Tumor-Suppressor Phosphatase PHLPP2 through Repression of the MiR-17-92 Cluster in Differentiating AML Cells. Cell Death Differ. 2016;23:1232–1242. doi: 10.1038/cdd.2016.1. PubMed DOI PMC

Liu X.S., Chopp M., Wang X.L., Zhang L., Hozeska-Solgot A., Tang T., Kassis H., Zhang R.L., Chen C., Xu J., et al. MicroRNA-17-92 Cluster Mediates the Proliferation and Survival of Neural Progenitor Cells after Stroke. J. Biol. Chem. 2013;288:12478–12488. doi: 10.1074/jbc.M112.449025. PubMed DOI PMC

Lin D., Shi Y., Hu Y., Du X., Tu G. MiR-329-3p Regulates Neural Stem Cell Proliferation by Targeting E2F1. Mol. Med. Rep. 2019;19:4137–4146. doi: 10.3892/mmr.2019.10096. PubMed DOI PMC

Cortes-Canteli M., Aguilar-Morante D., Sanz-Sancristobal M., Megias D., Santos A., Perez-Castillo A. Role of C/EBPβ Transcription Factor in Adult Hippocampal Neurogenesis. PLoS ONE. 2011;6:e24842. doi: 10.1371/journal.pone.0024842. PubMed DOI PMC

Woods K., Thomson J.M., Hammond S.M. Direct Regulation of an Oncogenic Micro-RNA Cluster by E2F Transcription Factors. J. Biol. Chem. 2007;282:2130–2134. doi: 10.1074/jbc.C600252200. PubMed DOI

Fehlings M.G., Tator C.H. The Relationships among the Severity of Spinal Cord Injury, Residual Neurological Function, Axon Counts, and Counts of Retrogradely Labeled Neurons after Experimental Spinal Cord Injury. Exp. Neurol. 1995;132:220–228. doi: 10.1016/0014-4886(95)90027-6. PubMed DOI

Arbour N., Vanderluit J.L., Le Grand J.N., Jahani-Asl A., Ruzhynsky V.A., Cheung E.C.C., Kelly M.A., MacKenzie A.E., Park D.S., Opferman J.T., et al. Mcl-1 Is a Key Regulator of Apoptosis during CNS Development and after DNA Damage. J. Neurosci. 2008;28:6068–6078. doi: 10.1523/JNEUROSCI.4940-07.2008. PubMed DOI PMC

Dumont R.J., Okonkwo D.O., Verma S., Hurlbert R.J., Boulos P.T., Ellegala D.B., Dumont A.S. Acute Spinal Cord Injury, Part I: Pathophysiologic Mechanisms. Clin. Neuropharmacol. 2001;24:254–264. doi: 10.1097/00002826-200109000-00002. PubMed DOI

Oyinbo C.A. Secondary Injury Mechanisms in Traumatic Spinal Cord Injury: A Nugget of This Multiply Cascade. Acta Neurobiol. Exp. (Wars) 2011;71:281–299. PubMed

Alizadeh A., Dyck S.M., Karimi-Abdolrezaee S. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Front. Neurol. 2019;10:282. doi: 10.3389/fneur.2019.00282. PubMed DOI PMC

Mautes A.E., Weinzierl M.R., Donovan F., Noble L.J. Vascular Events after Spinal Cord Injury: Contribution to Secondary Pathogenesis. Phys. Ther. 2000;80:673–687. doi: 10.1093/ptj/80.7.673. PubMed DOI

Siddiqui A.M., Khazaei M., Fehlings M.G. Progress in Brain Research. Volume 218. Elsevier; Amsterdam, The Netherlands: 2015. Translating Mechanisms of Neuroprotection, Regeneration, and Repair to Treatment of Spinal Cord Injury; pp. 15–54. PubMed

Carmel J.B., Galante A., Soteropoulos P., Tolias P., Recce M., Young W., Hart R.P. Gene Expression Profiling of Acute Spinal Cord Injury Reveals Spreading Inflammatory Signals and Neuron Loss. Physiol. Genom. 2001;7:201–213. doi: 10.1152/physiolgenomics.00074.2001. PubMed DOI

Aimone J., Leasure J., Perreau V., Thallmair M. Thechristopherreeveparalysisfounda Spatial and Temporal Gene Expression Profiling of the Contused Rat Spinal Cord. Exp. Neurol. 2004;189:204–221. doi: 10.1016/j.expneurol.2004.05.042. PubMed DOI

Strasser A., Puthalakath H., Bouillet P., Huang D.C.S., O’Connor L., O’Reilly L.A., Cullen L., Cory S., Adams J.M. The Role of Bim, a Proapoptotic BH3-Only Member of the Bcl-2 Family, in Cell-Death Control. Ann. N. Y. Acad. Sci. 2006;917:541–548. doi: 10.1111/j.1749-6632.2000.tb05419.x. PubMed DOI

Hu J.-R., Lv G.-H., Yin B.-L. Altered MicroRNA Expression in the Ischemic-Reperfusion Spinal Cord with Atorvastatin Therapy. J. Pharmacol. Sci. 2013;121:343–346. doi: 10.1254/jphs.12235SC. PubMed DOI

Liu N.-K., Wang X.-F., Lu Q.-B., Xu X.-M. Altered MicroRNA Expression Following Traumatic Spinal Cord Injury. Exp. Neurol. 2009;219:424–429. doi: 10.1016/j.expneurol.2009.06.015. PubMed DOI PMC

Strickland E.R., Hook M.A., Balaraman S., Huie J.R., Grau J.W., Miranda R.C. MicroRNA Dysregulation Following Spinal Cord Contusion: Implications for Neural Plasticity and Repair. Neuroscience. 2011;186:146–160. doi: 10.1016/j.neuroscience.2011.03.063. PubMed DOI PMC

Yunta M., Nieto-Díaz M., Esteban F.J., Caballero-López M., Navarro-Ruíz R., Reigada D., Pita-Thomas D.W., del Águila A., Muñoz-Galdeano T., Maza R.M. MicroRNA Dysregulation in the Spinal Cord Following Traumatic Injury. PLoS ONE. 2012;7:e34534. doi: 10.1371/journal.pone.0034534. PubMed DOI PMC

De Biase A., Knoblach S.M., Di Giovanni S., Fan C., Molon A., Hoffman E.P., Faden A.I. Gene Expression Profiling of Experimental Traumatic Spinal Cord Injury as a Function of Distance from Impact Site and Injury Severity. Physiol. Genom. 2005;22:368–381. doi: 10.1152/physiolgenomics.00081.2005. PubMed DOI

Buller B., Liu X., Wang X., Zhang R.L., Zhang L., Hozeska-Solgot A., Chopp M., Zhang Z.G. MicroRNA-21 Protects Neurons from Ischemic Death. FEBS J. 2010;277:4299–4307. doi: 10.1111/j.1742-4658.2010.07818.x. PubMed DOI PMC

Hafez M.M., Hassan Z.K., Zekri A.R.N., Gaber A.A., Al Rejaie S.S., Sayed-Ahmed M.M., Al Shabanah O. MicroRNAs and Metastasis-Related Gene Expression in Egyptian Breast Cancer Patients. Asian Pac. J. Cancer Prev. 2012;13:591–598. doi: 10.7314/APJCP.2012.13.2.591. PubMed DOI

Frankel L.B., Christoffersen N.R., Jacobsen A., Lindow M., Krogh A., Lund A.H. Programmed Cell Death 4 (PDCD4) Is an Important Functional Target of the MicroRNA MiR-21 in Breast Cancer Cells. J. Biol. Chem. 2008;283:1026–1033. doi: 10.1074/jbc.M707224200. PubMed DOI

Carrillo E.D., Escobar Y., González G., Hernández A., Galindo J.M., García M.C., Sánchez J.A. Posttranscriptional Regulation of the Β2-Subunit of Cardiac L-Type Ca2+ Channels by MicroRNAs during Long-Term Exposure to Isoproterenol in Rats. J. Cardiovasc. Pharmacol. 2011;58:470–478. doi: 10.1097/FJC.0b013e31822a789b. PubMed DOI

Hutchison E.R., Kawamoto E.M., Taub D.D., Lal A., Abdelmohsen K., Zhang Y., Wood W.H., Lehrmann E., Camandola S., Becker K.G., et al. Evidence for MiR-181 Involvement in Neuroinflammatory Responses of Astrocytes. Glia. 2013;61:1018–1028. doi: 10.1002/glia.22483. PubMed DOI PMC

Tili E., Michaille J.-J., Cimino A., Costinean S., Dumitru C.D., Adair B., Fabbri M., Alder H., Liu C.G., Calin G.A., et al. Modulation of MiR-155 and MiR-125b Levels Following Lipopolysaccharide/TNF-Alpha Stimulation and Their Possible Roles in Regulating the Response to Endotoxin Shock. J. Immunol. 2007;179:5082–5089. doi: 10.4049/jimmunol.179.8.5082. PubMed DOI

Iliopoulos D., Jaeger S.A., Hirsch H.A., Bulyk M.L., Struhl K. STAT3 Activation of MiR-21 and MiR-181b-1 via PTEN and CYLD Are Part of the Epigenetic Switch Linking Inflammation to Cancer. Mol. Cell. 2010;39:493–506. doi: 10.1016/j.molcel.2010.07.023. PubMed DOI PMC

Theis T., Yoo M., Park C.S., Chen J., Kügler S., Gibbs K.M., Schachner M. Lentiviral Delivery of MiR-133b Improves Functional Recovery After Spinal Cord Injury in Mice. Mol. Neurobiol. 2017;54:4659–4671. doi: 10.1007/s12035-016-0007-z. PubMed DOI

Agostini M., Tucci P., Steinert J.R., Shalom-Feuerstein R., Rouleau M., Aberdam D., Forsythe I.D., Young K.W., Ventura A., Concepcion C.P., et al. MicroRNA-34a Regulates Neurite Outgrowth, Spinal Morphology, and Function. Proc. Natl. Acad. Sci. USA. 2011;108:21099–21104. doi: 10.1073/pnas.1112063108. PubMed DOI PMC

Jee M.K., Jung J.S., Im Y.B., Jung S.J., Kang S.K. Silencing of MiR20a Is Crucial for Ngn1-Mediated Neuroprotection in Injured Spinal Cord. Hum. Gene Ther. 2012;23:508–520. doi: 10.1089/hum.2011.121. PubMed DOI

Wang T., Li B., Yuan X., Cui L., Wang Z., Zhang Y., Yu M., Xiu Y., Zhang Z., Li W., et al. MiR-20a Plays a Key Regulatory Role in the Repair of Spinal Cord Dorsal Column Lesion via PDZ-RhoGEF/RhoA/GAP43 Axis in Rat. Cell. Mol. Neurobiol. 2019;39:87–98. doi: 10.1007/s10571-018-0635-0. PubMed DOI PMC

Zhao L., Gong L., Li P., Qin J., Xu L., Wei Q., Xie H., Mao S., Yu B., Gu X., et al. MiR-20a Promotes the Axon Regeneration of DRG Neurons by Targeting Nr4a3. Neurosci. Bull. 2021;37:569–574. doi: 10.1007/s12264-021-00647-2. PubMed DOI PMC

Liu D.-Z., Tian Y., Ander B.P., Xu H., Stamova B.S., Zhan X., Turner R.J., Jickling G., Sharp F.R. Brain and Blood MicroRNA Expression Profiling of Ischemic Stroke, Intracerebral Hemorrhage, and Kainate Seizures. J. Cereb. Blood Flow Metab. 2010;30:92–101. doi: 10.1038/jcbfm.2009.186. PubMed DOI PMC

Liu X.S., Chopp M., Zhang R.L., Tao T., Wang X.L., Kassis H., Hozeska-Solgot A., Zhang L., Chen C., Zhang Z.G. MicroRNA Profiling in Subventricular Zone after Stroke: MiR-124a Regulates Proliferation of Neural Progenitor Cells through Notch Signaling Pathway. PLoS ONE. 2011;6:e23461. doi: 10.1371/journal.pone.0023461. PubMed DOI PMC

Yin K.-J., Deng Z., Huang H., Hamblin M., Xie C., Zhang J., Chen Y.E. MiR-497 Regulates Neuronal Death in Mouse Brain after Transient Focal Cerebral Ischemia. Neurobiol. Dis. 2010;38:17–26. doi: 10.1016/j.nbd.2009.12.021. PubMed DOI PMC

Yin K.-J., Deng Z., Hamblin M., Xiang Y., Huang H., Zhang J., Jiang X., Wang Y., Chen Y.E. Peroxisome Proliferator-Activated Receptor Delta Regulation of MiR-15a in Ischemia-Induced Cerebral Vascular Endothelial Injury. J. Neurosci. 2010;30:6398–6408. doi: 10.1523/JNEUROSCI.0780-10.2010. PubMed DOI PMC

Sepramaniam S., Armugam A., Lim K.Y., Karolina D.S., Swaminathan P., Tan J.R., Jeyaseelan K. MicroRNA 320a Functions as a Novel Endogenous Modulator of Aquaporins 1 and 4 as Well as a Potential Therapeutic Target in Cerebral Ischemia. J. Biol. Chem. 2010;285:29223–29230. doi: 10.1074/jbc.M110.144576. PubMed DOI PMC

Zhong L., Yan J., Li H., Meng L. HDAC9 Silencing Exerts Neuroprotection Against Ischemic Brain Injury via MiR-20a-Dependent Downregulation of NeuroD1. Front. Cell. Neurosci. 2020;14:544285. doi: 10.3389/fncel.2020.544285. PubMed DOI PMC

Eriksen J.L., Mackenzie I.R.A. Progranulin: Normal Function and Role in Neurodegeneration. J. Neurochem. 2008;104:287–297. doi: 10.1111/j.1471-4159.2007.04968.x. PubMed DOI

Wang Y., Guo F., Pan C., Lou Y., Zhang P., Guo S., Yin J., Deng Z. Effects of Low Temperatures on Proliferation-Related Signaling Pathways in the Hippocampus after Traumatic Brain Injury. Exp. Biol. Med. (Maywood) 2012;237:1424–1432. doi: 10.1258/ebm.2012.012123. PubMed DOI

Ge X.-T., Lei P., Wang H.-C., Zhang A.-L., Han Z.-L., Chen X., Li S.-H., Jiang R.-C., Kang C.-S., Zhang J.-N. MiR-21 Improves the Neurological Outcome after Traumatic Brain Injury in Rats. Sci. Rep. 2014;4:6718. doi: 10.1038/srep06718. PubMed DOI PMC

Sabirzhanov B., Stoica B.A., Zhao Z., Loane D.J., Wu J., Dorsey S.G., Faden A.I. MiR-711 Upregulation Induces Neuronal Cell Death after Traumatic Brain Injury. Cell Death Differ. 2016;23:654–668. doi: 10.1038/cdd.2015.132. PubMed DOI PMC

Hébert S.S., Horré K., Nicolaï L., Bergmans B., Papadopoulou A.S., Delacourte A., De Strooper B. MicroRNA Regulation of Alzheimer’s Amyloid Precursor Protein Expression. Neurobiol. Dis. 2009;33:422–428. doi: 10.1016/j.nbd.2008.11.009. PubMed DOI

Wang M., Qin L., Tang B. MicroRNAs in Alzheimer’s Disease. Front. Genet. 2019;10:153. doi: 10.3389/fgene.2019.00153. PubMed DOI PMC

Zhao Y., Zhao R., Wu J., Wang Q., Pang K., Shi Q., Gao Q., Hu Y., Dong X., Zhang J., et al. Melatonin Protects against Aβ-Induced Neurotoxicity in Primary Neurons via MiR-132/PTEN/AKT/FOXO3a Pathway. Biofactors. 2018;44:609–618. doi: 10.1002/biof.1411. PubMed DOI

Tian Z., Dong Q., Wu T., Guo J. MicroRNA-20b-5p Aggravates Neuronal Apoptosis Induced by β-Amyloid via down-Regulation of Ras Homolog Family Member C in Alzheimer’s Disease. Neurosci. Lett. 2021;742:135542. doi: 10.1016/j.neulet.2020.135542. PubMed DOI

Kanagaraj N., Beiping H., Dheen S.T., Tay S.S.W. Downregulation of MiR-124 in MPTP-Treated Mouse Model of Parkinson’s Disease and MPP Iodide-Treated MN9D Cells Modulates the Expression of the Calpain/Cdk5 Pathway Proteins. Neuroscience. 2014;272:167–179. doi: 10.1016/j.neuroscience.2014.04.039. PubMed DOI

Kim W., Lee Y., McKenna N.D., Yi M., Simunovic F., Wang Y., Kong B., Rooney R.J., Seo H., Stephens R.M., et al. MiR-126 Contributes to Parkinson’s Disease by Dysregulating the Insulin-like Growth Factor/Phosphoinositide 3-Kinase Signaling. Neurobiol. Aging. 2014;35:1712–1721. doi: 10.1016/j.neurobiolaging.2014.01.021. PubMed DOI PMC

Miñones-Moyano E., Porta S., Escaramís G., Rabionet R., Iraola S., Kagerbauer B., Espinosa-Parrilla Y., Ferrer I., Estivill X., Martí E. MicroRNA Profiling of Parkinson’s Disease Brains Identifies Early Downregulation of MiR-34b/c Which Modulate Mitochondrial Function. Hum. Mol. Genet. 2011;20:3067–3078. doi: 10.1093/hmg/ddr210. PubMed DOI

Rezaei O., Nateghinia S., Estiar M.A., Taheri M., Ghafouri-Fard S. Assessment of the Role of Non-Coding RNAs in the Pathophysiology of Parkinson’s Disease. Eur. J. Pharmacol. 2021;896:173914. doi: 10.1016/j.ejphar.2021.173914. PubMed DOI

Frankel L.B., Di Malta C., Wen J., Eskelinen E.-L., Ballabio A., Lund A.H. A Non-Conserved MiRNA Regulates Lysosomal Function and Impacts on a Human Lysosomal Storage Disorder. Nat. Commun. 2014;5:5840. doi: 10.1038/ncomms6840. PubMed DOI

Rauch I., Rosebrock F., Hainzl E., Heider S., Majoros A., Wienerroither S., Strobl B., Stockinger S., Kenner L., Müller M., et al. Noncanonical Effects of IRF9 in Intestinal Inflammation: More than Type I and Type III Interferons. Mol. Cell. Biol. 2015;35:2332–2343. doi: 10.1128/MCB.01498-14. PubMed DOI PMC

Bertrand N., Castro D.S., Guillemot F. Proneural Genes and the Specification of Neural Cell Types. Nat. Rev. Neurosci. 2002;3:517–530. doi: 10.1038/nrn874. PubMed DOI

Carraro G., El-Hashash A., Guidolin D., Tiozzo C., Turcatel G., Young B.M., De Langhe S.P., Bellusci S., Shi W., Parnigotto P.P., et al. MiR-17 Family of MicroRNAs Controls FGF10-Mediated Embryonic Lung Epithelial Branching Morphogenesis through MAPK14 and STAT3 Regulation of E-Cadherin Distribution. Dev. Biol. 2009;333:238–250. doi: 10.1016/j.ydbio.2009.06.020. PubMed DOI PMC

Chen R.-L., Balami J.S., Esiri M.M., Chen L.-K., Buchan A.M. Ischemic Stroke in the Elderly: An Overview of Evidence. Nat. Rev. Neurol. 2010;6:256–265. doi: 10.1038/nrneurol.2010.36. PubMed DOI

Donnan G.A., Fisher M., Macleod M., Davis S.M. Stroke. Lancet. 2008;371:1612–1623. doi: 10.1016/S0140-6736(08)60694-7. PubMed DOI

Roy-O’Reilly M., McCullough L.D. Age and Sex Are Critical Factors in Ischemic Stroke Pathology. Endocrinology. 2018;159:3120–3131. doi: 10.1210/en.2018-00465. PubMed DOI PMC

Benjamin E.J., Muntner P., Alonso A., Bittencourt M.S., Callaway C.W., Carson A.P., Chamberlain A.M., Chang A.R., Cheng S., Das S.R., et al. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation. 2019;139:e56–e528. doi: 10.1161/CIR.0000000000000659. PubMed DOI

GBD 2016 Stroke Collaborators Global, Regional, and National Burden of Stroke, 1990-2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:439–458. doi: 10.1016/S1474-4422(19)30034-1. PubMed DOI PMC

Puig B., Brenna S., Magnus T. Molecular Communication of a Dying Neuron in Stroke. Int. J. Mol. Sci. 2018;19:2834. doi: 10.3390/ijms19092834. PubMed DOI PMC

Saver J.L. Time Is Brain—Quantified. Stroke. 2006;37:263–266. doi: 10.1161/01.STR.0000196957.55928.ab. PubMed DOI

Jeyaseelan K., Lim K.Y., Armugam A. MicroRNA Expression in the Blood and Brain of Rats Subjected to Transient Focal Ischemia by Middle Cerebral Artery Occlusion. Stroke. 2008;39:959–966. doi: 10.1161/STROKEAHA.107.500736. PubMed DOI

Laterza O.F., Lim L., Garrett-Engele P.W., Vlasakova K., Muniappa N., Tanaka W.K., Johnson J.M., Sina J.F., Fare T.L., Sistare F.D., et al. Plasma MicroRNAs as Sensitive and Specific Biomarkers of Tissue Injury. Clin. Chem. 2009;55:1977–1983. doi: 10.1373/clinchem.2009.131797. PubMed DOI

Tan K.S., Armugam A., Sepramaniam S., Lim K.Y., Setyowati K.D., Wang C.W., Jeyaseelan K. Expression Profile of MicroRNAs in Young Stroke Patients. PLoS ONE. 2009;4:e7689. doi: 10.1371/journal.pone.0007689. PubMed DOI PMC

Rink C., Khanna S. MicroRNA in Ischemic Stroke Etiology and Pathology. Physiol Genom. 2011;43:521–528. doi: 10.1152/physiolgenomics.00158.2010. PubMed DOI PMC

Siegel C., Li J., Liu F., Benashski S.E., McCullough L.D. MiR-23a Regulation of X-Linked Inhibitor of Apoptosis (XIAP) Contributes to Sex Differences in the Response to Cerebral Ischemia. Proc. Natl. Acad. Sci. USA. 2011;108:11662–11667. doi: 10.1073/pnas.1102635108. PubMed DOI PMC

Ouyang Y.-B., Lu Y., Yue S., Xu L.-J., Xiong X.-X., White R.E., Sun X., Giffard R.G. MiR-181 Regulates GRP78 and Influences Outcome from Cerebral Ischemia in Vitro and in Vivo. Neurobiol. Dis. 2012;45:555–563. doi: 10.1016/j.nbd.2011.09.012. PubMed DOI PMC

Shi G., Liu Y., Liu T., Yan W., Liu X., Wang Y., Shi J., Jia L. Upregulated MiR-29b Promotes Neuronal Cell Death by Inhibiting Bcl2L2 after Ischemic Brain Injury. Exp. Brain Res. 2012;216:225–230. doi: 10.1007/s00221-011-2925-3. PubMed DOI

Selvamani A., Sathyan P., Miranda R.C., Sohrabji F. An Antagomir to MicroRNA Let7f Promotes Neuroprotection in an Ischemic Stroke Model. PLoS ONE. 2012;7:e32662. doi: 10.1371/journal.pone.0032662. PubMed DOI PMC

Branyan T.E., Selvamani A., Park M.J., Korula K.E., Kosel K.F., Srinivasan R., Sohrabji F. Functional Assessment of Stroke-Induced Regulation of MiR-20a-3p and Its Role as a Neuroprotectant. Transl. Stroke Res. 2021;13:432–448. doi: 10.1007/s12975-021-00945-x. PubMed DOI PMC

Sugo N., Yamamoto N. Visualization of HDAC9 Spatiotemporal Subcellular Localization in Primary Neuron Cultures. Methods Mol. Biol. 2016;1436:119–127. doi: 10.1007/978-1-4939-3667-0_9. PubMed DOI

Lang B., Alrahbeni T.M.A., Clair D.S., Blackwood D.H., International Schizophrenia Consortium. McCaig C.D., Shen S. HDAC9 Is Implicated in Schizophrenia and Expressed Specifically in Post-Mitotic Neurons but Not in Adult Neural Stem Cells. Am. J. Stem Cells. 2012;1:31–41. PubMed PMC

Shi W., Wei X., Wang Z., Han H., Fu Y., Liu J., Zhang Y., Guo J., Dong C., Zhou D., et al. HDAC9 Exacerbates Endothelial Injury in Cerebral Ischaemia/Reperfusion Injury. J. Cell. Mol. Med. 2016;20:1139–1149. doi: 10.1111/jcmm.12803. PubMed DOI PMC

Kim H.J., Rowe M., Ren M., Hong J.-S., Chen P.-S., Chuang D.-M. Histone Deacetylase Inhibitors Exhibit Anti-Inflammatory and Neuroprotective Effects in a Rat Permanent Ischemic Model of Stroke: Multiple Mechanisms of Action. J. Pharmacol. Exp. Ther. 2007;321:892–901. doi: 10.1124/jpet.107.120188. PubMed DOI

Management of Concussion/mTBI Working Group VA/DoD Clinical Practice Guideline for Management of Concussion/Mild Traumatic Brain Injury. J. Rehabil. Res. Dev. 2009;46:CP1–CP68. doi: 10.1682/JRRD.2008.03.0038. PubMed DOI

Finfer S.R., Cohen J. Severe Traumatic Brain Injury. Resuscitation. 2001;48:77–90. doi: 10.1016/S0300-9572(00)00321-X. PubMed DOI

Blennow K., Hardy J., Zetterberg H. The Neuropathology and Neurobiology of Traumatic Brain Injury. Neuron. 2012;76:886–899. doi: 10.1016/j.neuron.2012.11.021. PubMed DOI

Bartel D.P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell. 2004;116:281–297. doi: 10.1016/S0092-8674(04)00045-5. PubMed DOI

Lozano D., Gonzales-Portillo G.S., Acosta S., de la Pena I., Tajiri N., Kaneko Y., Borlongan C.V. Neuroinflammatory Responses to Traumatic Brain Injury: Etiology, Clinical Consequences, and Therapeutic Opportunities. Neuropsychiatr. Dis. Treat. 2015;11:97–106. doi: 10.2147/NDT.S65815. PubMed DOI PMC

Werner C., Engelhard K. Pathophysiology of Traumatic Brain Injury. Br. J. Anaesth. 2007;99:4–9. doi: 10.1093/bja/aem131. PubMed DOI

Yang S.H., Gustafson J., Gangidine M., Stepien D., Schuster R., Pritts T.A., Goodman M.D., Remick D.G., Lentsch A.B. A Murine Model of Mild Traumatic Brain Injury Exhibiting Cognitive and Motor Deficits. J. Surg. Res. 2013;184:981–988. doi: 10.1016/j.jss.2013.03.075. PubMed DOI PMC

Zweckberger K., Erös C., Zimmermann R., Kim S.-W., Engel D., Plesnila N. Effect of Early and Delayed Decompressive Craniectomy on Secondary Brain Damage after Controlled Cortical Impact in Mice. J. Neurotrauma. 2006;23:1083–1093. doi: 10.1089/neu.2006.23.1083. PubMed DOI

Besenski N. Traumatic Injuries: Imaging of Head Injuries. Eur. Radiol. 2002;12:1237–1252. doi: 10.1007/s00330-002-1355-9. PubMed DOI

Jalali R., Rezaei M. A Comparison of the Glasgow Coma Scale Score with Full Outline of Unresponsiveness Scale to Predict Patients’ Traumatic Brain Injury Outcomes in Intensive Care Units. Crit. Care Res. Pract. 2014;2014:289803. doi: 10.1155/2014/289803. PubMed DOI PMC

Redell J.B., Moore A.N., Ward N.H., Hergenroeder G.W., Dash P.K. Human Traumatic Brain Injury Alters Plasma MicroRNA Levels. J. Neurotrauma. 2010;27:2147–2156. doi: 10.1089/neu.2010.1481. PubMed DOI PMC

Meissner L., Gallozzi M., Balbi M., Schwarzmaier S., Tiedt S., Terpolilli N.A., Plesnila N. Temporal Profile of MicroRNA Expression in Contused Cortex after Traumatic Brain Injury in Mice. J. Neurotrauma. 2016;33:713–720. doi: 10.1089/neu.2015.4077. PubMed DOI

Hu Z., Yu D., Almeida-Suhett C., Tu K., Marini A.M., Eiden L., Braga M.F., Zhu J., Li Z. Expression of MiRNAs and Their Cooperative Regulation of the Pathophysiology in Traumatic Brain Injury. PLoS ONE. 2012;7:e39357. doi: 10.1371/journal.pone.0039357. PubMed DOI PMC

Wang W.-X., Wilfred B.R., Madathil S.K., Tang G., Hu Y., Dimayuga J., Stromberg A.J., Huang Q., Saatman K.E., Nelson P.T. MiR-107 Regulates Granulin/Progranulin with Implications for Traumatic Brain Injury and Neurodegenerative Disease. Am. J. Pathol. 2010;177:334–345. doi: 10.2353/ajpath.2010.091202. PubMed DOI PMC

Redell J.B., Zhao J., Dash P.K. Altered Expression of MiRNA-21 and Its Targets in the Hippocampus after Traumatic Brain Injury. J. Neurosci. Res. 2011;89:212–221. doi: 10.1002/jnr.22539. PubMed DOI PMC

Bao T., Miao W., Han J., Yin M., Yan Y., Wang W., Zhu Y. Spontaneous Running Wheel Improves Cognitive Functions of Mouse Associated with MiRNA Expressional Alteration in Hippocampus Following Traumatic Brain Injury. J. Mol. Neurosci. 2014;54:622–629. doi: 10.1007/s12031-014-0344-1. PubMed DOI

Hu T., Zhou F.-J., Chang Y.-F., Li Y.-S., Liu G.-C., Hong Y., Chen H.-L., Xiyang Y.-B., Bao T. MiR21 Is Associated with the Cognitive Improvement Following Voluntary Running Wheel Exercise in TBI Mice. J. Mol. Neurosci. 2015;57:114–122. doi: 10.1007/s12031-015-0584-8. PubMed DOI

Bhomia M., Balakathiresan N.S., Wang K.K., Papa L., Maheshwari R.K. A Panel of Serum MiRNA Biomarkers for the Diagnosis of Severe to Mild Traumatic Brain Injury in Humans. Sci. Rep. 2016;6:28148. doi: 10.1038/srep28148. PubMed DOI PMC

Di Pietro V., Yakoub K.M., Scarpa U., Di Pietro C., Belli A. MicroRNA Signature of Traumatic Brain Injury: From the Biomarker Discovery to the Point-of-Care. Front. Neurol. 2018;9:429. doi: 10.3389/fneur.2018.00429. PubMed DOI PMC

Di Pietro V., Porto E., Ragusa M., Barbagallo C., Davies D., Forcione M., Logan A., Di Pietro C., Purrello M., Grey M., et al. Salivary MicroRNAs: Diagnostic Markers of Mild Traumatic Brain Injury in Contact-Sport. Front. Mol. Neurosci. 2018;11:290. doi: 10.3389/fnmol.2018.00290. PubMed DOI PMC

Masters C.L., Simms G., Weinman N.A., Multhaup G., McDonald B.L., Beyreuther K. Amyloid Plaque Core Protein in Alzheimer Disease and Down Syndrome. Proc. Natl. Acad. Sci. USA. 1985;82:4245–4249. doi: 10.1073/pnas.82.12.4245. PubMed DOI PMC

Olsson B., Lautner R., Andreasson U., Öhrfelt A., Portelius E., Bjerke M., Hölttä M., Rosén C., Olsson C., Strobel G., et al. CSF and Blood Biomarkers for the Diagnosis of Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Lancet Neurol. 2016;15:673–684. doi: 10.1016/S1474-4422(16)00070-3. PubMed DOI

Rabizadeh S., Bitler C.M., Butcher L.L., Bredesen D.E. Expression of the Low-Affinity Nerve Growth Factor Receptor Enhances Beta-Amyloid Peptide Toxicity. Proc. Natl. Acad. Sci. USA. 1994;91:10703–10706. doi: 10.1073/pnas.91.22.10703. PubMed DOI PMC

Costantini C., Rossi F., Formaggio E., Bernardoni R., Cecconi D., Della-Bianca V. Characterization of the Signaling Pathway Downstream P75 Neurotrophin Receptor Involved in Beta-Amyloid Peptide-Dependent Cell Death. J. Mol. Neurosci. 2005;25:141–156. doi: 10.1385/JMN:25:2:141. PubMed DOI

Shankar G.M., Bloodgood B.L., Townsend M., Walsh D.M., Selkoe D.J., Sabatini B.L. Natural Oligomers of the Alzheimer Amyloid-Beta Protein Induce Reversible Synapse Loss by Modulating an NMDA-Type Glutamate Receptor-Dependent Signaling Pathway. J. Neurosci. 2007;27:2866–2875. doi: 10.1523/JNEUROSCI.4970-06.2007. PubMed DOI PMC

Baranello R.J., Bharani K.L., Padmaraju V., Chopra N., Lahiri D.K., Greig N.H., Pappolla M.A., Sambamurti K. Amyloid-Beta Protein Clearance and Degradation (ABCD) Pathways and Their Role in Alzheimer’s Disease. Curr. Alzheimer Res. 2015;12:32–46. doi: 10.2174/1567205012666141218140953. PubMed DOI PMC

Haass C., Kaether C., Thinakaran G., Sisodia S. Trafficking and Proteolytic Processing of APP. Cold Spring Harb. Perspect. Med. 2012;2:a006270. doi: 10.1101/cshperspect.a006270. PubMed DOI PMC

Lahiri D.K., Farlow M.R., Sambamurti K., Greig N.H., Giacobini E., Schneider L.S. A Critical Analysis of New Molecular Targets and Strategies for Drug Developments in Alzheimer’s Disease. Curr. Drug Targets. 2003;4:97–112. doi: 10.2174/1389450033346957. PubMed DOI

Selkoe D.J. Treatments for Alzheimer’s Disease Emerge. Science. 2021;373:624–626. doi: 10.1126/science.abi6401. PubMed DOI

Zhao Y., Zong Z., Xu H. RhoC Expression Level Is Correlated with the Clinicopathological Characteristics of Ovarian Cancer and the Expression Levels of ROCK-I, VEGF, and MMP9. Gynecol. Oncol. 2010;116:563–571. doi: 10.1016/j.ygyno.2009.11.015. PubMed DOI

Zhang C., Ge X., Lok K., Zhao L., Yin M., Wang Z.-J. RhoC Involved in the Migration of Neural Stem/Progenitor Cells. Cell. Mol. Neurobiol. 2014;34:409–417. doi: 10.1007/s10571-014-0026-0. PubMed DOI PMC

Narumiya S., Thumkeo D. Rho Signaling Research: History, Current Status and Future Directions. FEBS Lett. 2018;592:1763–1776. doi: 10.1002/1873-3468.13087. PubMed DOI PMC

Wang R., Chopra N., Nho K., Maloney B., Obukhov A.G., Nelson P.T., Counts S.E., Lahiri D.K. Human MicroRNA (MiR-20b-5p) Modulates Alzheimer’s Disease Pathways and Neuronal Function, and a Specific Polymorphism Close to the MIR20B Gene Influences Alzheimer’s Biomarkers. Mol. Psychiatry. 2022 doi: 10.1038/s41380-021-01351-3. PubMed DOI PMC

Dorsey E.R., Bloem B.R. The Parkinson Pandemic-A Call to Action. JAMA Neurol. 2018;75:9–10. doi: 10.1001/jamaneurol.2017.3299. PubMed DOI

Goh S.Y., Chao Y.X., Dheen S.T., Tan E.-K., Tay S.S.-W. Role of MicroRNAs in Parkinson’s Disease. Int. J. Mol. Sci. 2019;20:5649. doi: 10.3390/ijms20225649. PubMed DOI PMC

Jankovic J. Parkinson’s Disease: Clinical Features and Diagnosis. J. Neurol. Neurosurg. Psychiatry. 2008;79:368–376. doi: 10.1136/jnnp.2007.131045. PubMed DOI

Poewe W., Seppi K., Tanner C.M., Halliday G.M., Brundin P., Volkmann J., Schrag A.-E., Lang A.E. Parkinson Disease. Nat. Rev. Dis. Primers. 2017;3:17013. doi: 10.1038/nrdp.2017.13. PubMed DOI

Hallett P.J., Engelender S., Isacson O. Lipid and Immune Abnormalities Causing Age-Dependent Neurodegeneration and Parkinson’s Disease. J. Neuroinflamm. 2019;16:153. doi: 10.1186/s12974-019-1532-2. PubMed DOI PMC

Schulz J., Takousis P., Wohlers I., Itua I.O.G., Dobricic V., Rücker G., Binder H., Middleton L., Ioannidis J.P.A., Perneczky R., et al. Meta-Analyses Identify Differentially Expressed Micrornas in Parkinson’s Disease. Ann. Neurol. 2019;85:835–851. doi: 10.1002/ana.25490. PubMed DOI

Kabaria S., Choi D.C., Chaudhuri A.D., Mouradian M.M., Junn E. Inhibition of MiR-34b and MiR-34c Enhances α-Synuclein Expression in Parkinson’s Disease. FEBS Lett. 2015;589:319–325. doi: 10.1016/j.febslet.2014.12.014. PubMed DOI PMC

Lehmann S.M., Krüger C., Park B., Derkow K., Rosenberger K., Baumgart J., Trimbuch T., Eom G., Hinz M., Kaul D., et al. An Unconventional Role for MiRNA: Let-7 Activates Toll-like Receptor 7 and Causes Neurodegeneration. Nat. Neurosci. 2012;15:827–835. doi: 10.1038/nn.3113. PubMed DOI

Wang Q., Wang Y., Zhou F., Li J., Lu G., Zhao Y. MiR-20a-5p Regulates MPP+-Induced Oxidative Stress and Neuroinflammation in HT22 Cells by Targeting IRF9/NF-ΚB Axis. Evid. Based Complement. Alternat. Med. 2021;2021:6621206. doi: 10.1155/2021/6621206. PubMed DOI PMC

Nan J., Wang Y., Yang J., Stark G.R. IRF9 and Unphosphorylated STAT2 Cooperate with NF-ΚB to Drive IL6 Expression. Proc. Natl. Acad. Sci. USA. 2018;115:3906–3911. doi: 10.1073/pnas.1714102115. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...