The Role of miR-20 in Health and Disease of the Central Nervous System
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
35563833
PubMed Central
PMC9100679
DOI
10.3390/cells11091525
PII: cells11091525
Knihovny.cz E-zdroje
- Klíčová slova
- central nervous system, miR-20a, microRNA,
- MeSH
- centrální nervový systém metabolismus MeSH
- lidé MeSH
- mikro RNA * genetika metabolismus MeSH
- nemoci nervového systému * metabolismus MeSH
- poranění nervového systému * metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- mikro RNA * MeSH
Current understanding of the mechanisms underlying central nervous system (CNS) injury is limited, and traditional therapeutic methods lack a molecular approach either to prevent acute phase or secondary damage, or to support restorative mechanisms in the nervous tissue. microRNAs (miRNAs) are endogenous, non-coding RNA molecules that have recently been discovered as fundamental and post-transcriptional regulators of gene expression. The capacity of microRNAs to regulate the cell state and function through post-transcriptionally silencing hundreds of genes are being acknowledged as an important factor in the pathophysiology of both acute and chronic CNS injuries. In this study, we have summarized the knowledge concerning the pathophysiology of several neurological disorders, and the role of most canonical miRNAs in their development. We have focused on the miR-20, the miR-17~92 family to which miR-20 belongs, and their function in the normal development and disease of the CNS.
Zobrazit více v PubMed
Bhalala O.G., Srikanth M., Kessler J.A. The Emerging Roles of MicroRNAs in CNS Injuries. Nat. Rev. Neurol. 2013;9:328–339. doi: 10.1038/nrneurol.2013.67. PubMed DOI PMC
Prince M., Bryce R., Albanese E., Wimo A., Ribeiro W., Ferri C.P. The Global Prevalence of Dementia: A Systematic Review and Metaanalysis. Alzheimer’s Dement. 2013;9:63. doi: 10.1016/j.jalz.2012.11.007. PubMed DOI
De Rosa S., Curcio A., Indolfi C. Emerging Role of MicroRNAs in Cardiovascular Diseases. Circ. J. 2014;78:567–575. doi: 10.1253/circj.CJ-14-0086. PubMed DOI
Dharap A., Bowen K., Place R., Li L.-C., Vemuganti R. Transient Focal Ischemia Induces Extensive Temporal Changes in Rat Cerebral MicroRNAome. J. Cereb. Blood Flow Metab. 2009;29:675–687. doi: 10.1038/jcbfm.2008.157. PubMed DOI PMC
Nieto-Diaz M., Esteban F.J., Reigada D., Munoz-Galdeano T., Yunta M., Caballero-Lopez M., Navarro-Ruiz R., Del Aguila A., Maza R.M. MicroRNA Dysregulation in Spinal Cord Injury: Causes, Consequences and Therapeutics. Front. Cell. Neurosci. 2014;8:53. doi: 10.3389/fncel.2014.00053. PubMed DOI PMC
Ning B., Gao L., Liu R.H., Liu Y., Zhang N.S., Chen Z.Y. MicroRNAs in Spinal Cord Injury: Potential Roles and Therapeutic Implications. Int. J. Biol. Sci. 2014;10:997–1006. doi: 10.7150/ijbs.9058. PubMed DOI PMC
Rajgor D. Macro Roles for MicroRNAs in Neurodegenerative Diseases. Non-Coding RNA Res. 2018;3:154–159. doi: 10.1016/j.ncrna.2018.07.001. PubMed DOI PMC
Quinlan S., Kenny A., Medina M., Engel T., Jimenez-Mateos E.M. MicroRNAs in Neurodegenerative Diseases. Int. Rev. Cell Mol. Biol. 2017;334:309–343. doi: 10.1016/bs.ircmb.2017.04.002. PubMed DOI
Iida A., Shinoe T., Baba Y., Mano H., Watanabe S. Dicer Plays Essential Roles for Retinal Development by Regulation of Survival and Differentiation. Investig. Ophthalmol. Vis. Sci. 2011;52:3008–3017. doi: 10.1167/iovs.10-6428. PubMed DOI
Yang P., Cai L., Zhang G., Bian Z., Han G. The Role of the MiR-17-92 Cluster in Neurogenesis and Angiogenesis in the Central Nervous System of Adults. J. Neurosci. Res. 2017;95:1574–1581. doi: 10.1002/jnr.23991. PubMed DOI
Fuziwara C.S., Kimura E.T. Insights into Regulation of the MiR-17-92 Cluster of MiRNAs in Cancer. Front. Med. (Lausanne) 2015;2:64. doi: 10.3389/fmed.2015.00064. PubMed DOI PMC
Hayashita Y., Osada H., Tatematsu Y., Yamada H., Yanagisawa K., Tomida S., Yatabe Y., Kawahara K., Sekido Y., Takahashi T. A Polycistronic MicroRNA Cluster, MiR-17-92, Is Overexpressed in Human Lung Cancers and Enhances Cell Proliferation. Cancer Res. 2005;65:9628–9632. doi: 10.1158/0008-5472.CAN-05-2352. PubMed DOI
Gu H., Liu Z., Zhou L. Roles of MiR-17-92 Cluster in Cardiovascular Development and Common Diseases. Biomed. Res. Int. 2017;2017:9102909. doi: 10.1155/2017/9102909. PubMed DOI PMC
He L., Thomson J.M., Hemann M.T., Hernando-Monge E., Mu D., Goodson S., Powers S., Cordon-Cardo C., Lowe S.W., Hannon G.J., et al. A MicroRNA Polycistron as a Potential Human Oncogene. Nature. 2005;435:828–833. doi: 10.1038/nature03552. PubMed DOI PMC
Xia X., Wang Y., Zheng J.C. The MicroRNA-17 ~ 92 Family as a Key Regulator of Neurogenesis and Potential Regenerative Therapeutics of Neurological Disorders. Stem Cell Rev. Rep. 2022;18:401–411. doi: 10.1007/s12015-020-10050-5. PubMed DOI PMC
Xia X., Lu H., Li C., Huang Y., Wang Y., Yang X., Zheng J.C. MiR-106b Regulates the Proliferation and Differentiation of Neural Stem/Progenitor Cells through Tp53inp1-Tp53-Cdkn1a Axis. Stem Cell Res. Ther. 2019;10:282. doi: 10.1186/s13287-019-1387-6. PubMed DOI PMC
Garg N., Po A., Miele E., Campese A.F., Begalli F., Silvano M., Infante P., Capalbo C., De Smaele E., Canettieri G., et al. MicroRNA-17-92 Cluster Is a Direct Nanog Target and Controls Neural Stem Cell through Trp53inp1. EMBO J. 2013;32:2819–2832. doi: 10.1038/emboj.2013.214. PubMed DOI PMC
Bian S., Hong J., Li Q., Schebelle L., Pollock A., Knauss J.L., Garg V., Sun T. MicroRNA Cluster MiR-17-92 Regulates Neural Stem Cell Expansion and Transition to Intermediate Progenitors in the Developing Mouse Neocortex. Cell Rep. 2013;3:1398–1406. doi: 10.1016/j.celrep.2013.03.037. PubMed DOI PMC
Toyoshima M., Akamatsu W., Okada Y., Ohnishi T., Balan S., Hisano Y., Iwayama Y., Toyota T., Matsumoto T., Itasaka N., et al. Analysis of Induced Pluripotent Stem Cells Carrying 22q11.2 Deletion. Transl. Psychiatry. 2016;6:e934. doi: 10.1038/tp.2016.206. PubMed DOI PMC
Brett J.O., Renault V.M., Rafalski V.A., Webb A.E., Brunet A. The MicroRNA Cluster MiR-106b~25 Regulates Adult Neural Stem/Progenitor Cell Proliferation and Neuronal Differentiation. Aging. 2011;3:108–124. doi: 10.18632/aging.100285. PubMed DOI PMC
Naka-Kaneda H., Nakamura S., Igarashi M., Aoi H., Kanki H., Tsuyama J., Tsutsumi S., Aburatani H., Shimazaki T., Okano H. The MiR-17/106-P38 Axis Is a Key Regulator of the Neurogenic-to-Gliogenic Transition in Developing Neural Stem/Progenitor Cells. Proc. Natl. Acad. Sci. USA. 2014;111:1604–1609. doi: 10.1073/pnas.1315567111. PubMed DOI PMC
Pan W.L., Chopp M., Fan B., Zhang R., Wang X., Hu J., Zhang X.M., Zhang Z.G., Liu X.S. Ablation of the MicroRNA-17-92 Cluster in Neural Stem Cells Diminishes Adult Hippocampal Neurogenesis and Cognitive Function. FASEB J. 2019;33:5257–5267. doi: 10.1096/fj.201801019R. PubMed DOI PMC
Ghosh T., Aprea J., Nardelli J., Engel H., Selinger C., Mombereau C., Lemonnier T., Moutkine I., Schwendimann L., Dori M., et al. MicroRNAs Establish Robustness and Adaptability of a Critical Gene Network to Regulate Progenitor Fate Decisions during Cortical Neurogenesis. Cell Rep. 2014;7:1779–1788. doi: 10.1016/j.celrep.2014.05.029. PubMed DOI
Wakabayashi T., Hidaka R., Fujimaki S., Asashima M., Kuwabara T. Advances in Genetics. Volume 86. Elsevier; Amsterdam, The Netherlands: 2014. MicroRNAs and Epigenetics in Adult Neurogenesis; pp. 27–44. PubMed
Budde H., Schmitt S., Fitzner D., Opitz L., Salinas-Riester G., Simons M. Control of Oligodendroglial Cell Number by the MiR-17-92 Cluster. Development. 2010;137:2127–2132. doi: 10.1242/dev.050633. PubMed DOI
Sun X., Zhou Z., Fink D.J., Mata M. HspB1 Silences Translation of PDZ-RhoGEF by Enhancing MiR-20a and MiR-128 Expression to Promote Neurite Extension. Mol. Cell. Neurosci. 2013;57:111–119. doi: 10.1016/j.mcn.2013.10.006. PubMed DOI PMC
Mymrikov E.V., Seit-Nebi A.S., Gusev N.B. Large Potentials of Small Heat Shock Proteins. Physiol. Rev. 2011;91:1123–1159. doi: 10.1152/physrev.00023.2010. PubMed DOI
Perng M.D., Cairns L., van den IJssel P., Prescott A., Hutcheson A.M., Quinlan R.A. Intermediate Filament Interactions Can Be Altered by HSP27 and AlphaB-Crystallin. J. Cell Sci. 1999;112:2099–2112. doi: 10.1242/jcs.112.13.2099. PubMed DOI
Wagstaff M.J.D., Collaço-Moraes Y., Smith J., de Belleroche J.S., Coffin R.S., Latchman D.S. Protection of Neuronal Cells from Apoptosis by Hsp27 Delivered with a Herpes Simplex Virus-Based Vector. J. Biol. Chem. 1999;274:5061–5069. doi: 10.1074/jbc.274.8.5061. PubMed DOI
Jin J., Kim S.-N., Liu X., Zhang H., Zhang C., Seo J.-S., Kim Y., Sun T. MiR-17-92 Cluster Regulates Adult Hippocampal Neurogenesis, Anxiety, and Depression. Cell Rep. 2016;16:1653–1663. doi: 10.1016/j.celrep.2016.06.101. PubMed DOI PMC
Guo F., Han X., Zhang J., Zhao X., Lou J., Chen H., Huang X. Repetitive Transcranial Magnetic Stimulation Promotes Neural Stem Cell Proliferation via the Regulation of MiR-25 in a Rat Model of Focal Cerebral Ischemia. PLoS ONE. 2014;9:e109267. doi: 10.1371/journal.pone.0109267. PubMed DOI PMC
Xin H., Katakowski M., Wang F., Qian J.-Y., Liu X.S., Ali M.M., Buller B., Zhang Z.G., Chopp M. MicroRNA-17–92 Cluster in Exosomes Enhance Neuroplasticity and Functional Recovery After Stroke in Rats. Stroke. 2017;48:747–753. doi: 10.1161/STROKEAHA.116.015204. PubMed DOI PMC
He S., Yang S., Deng G., Liu M., Zhu H., Zhang W., Yan S., Quan L., Bai J., Xu N. Aurora Kinase A Induces MiR-17-92 Cluster through Regulation of E2F1 Transcription Factor. Cell. Mol. Life Sci. 2010;67:2069–2076. doi: 10.1007/s00018-010-0340-8. PubMed DOI PMC
Yan Y., Hanse E.A., Stedman K., Benson J.M., Lowman X.H., Subramanian S., Kelekar A. Transcription Factor C/EBP-β Induces Tumor-Suppressor Phosphatase PHLPP2 through Repression of the MiR-17-92 Cluster in Differentiating AML Cells. Cell Death Differ. 2016;23:1232–1242. doi: 10.1038/cdd.2016.1. PubMed DOI PMC
Liu X.S., Chopp M., Wang X.L., Zhang L., Hozeska-Solgot A., Tang T., Kassis H., Zhang R.L., Chen C., Xu J., et al. MicroRNA-17-92 Cluster Mediates the Proliferation and Survival of Neural Progenitor Cells after Stroke. J. Biol. Chem. 2013;288:12478–12488. doi: 10.1074/jbc.M112.449025. PubMed DOI PMC
Lin D., Shi Y., Hu Y., Du X., Tu G. MiR-329-3p Regulates Neural Stem Cell Proliferation by Targeting E2F1. Mol. Med. Rep. 2019;19:4137–4146. doi: 10.3892/mmr.2019.10096. PubMed DOI PMC
Cortes-Canteli M., Aguilar-Morante D., Sanz-Sancristobal M., Megias D., Santos A., Perez-Castillo A. Role of C/EBPβ Transcription Factor in Adult Hippocampal Neurogenesis. PLoS ONE. 2011;6:e24842. doi: 10.1371/journal.pone.0024842. PubMed DOI PMC
Woods K., Thomson J.M., Hammond S.M. Direct Regulation of an Oncogenic Micro-RNA Cluster by E2F Transcription Factors. J. Biol. Chem. 2007;282:2130–2134. doi: 10.1074/jbc.C600252200. PubMed DOI
Fehlings M.G., Tator C.H. The Relationships among the Severity of Spinal Cord Injury, Residual Neurological Function, Axon Counts, and Counts of Retrogradely Labeled Neurons after Experimental Spinal Cord Injury. Exp. Neurol. 1995;132:220–228. doi: 10.1016/0014-4886(95)90027-6. PubMed DOI
Arbour N., Vanderluit J.L., Le Grand J.N., Jahani-Asl A., Ruzhynsky V.A., Cheung E.C.C., Kelly M.A., MacKenzie A.E., Park D.S., Opferman J.T., et al. Mcl-1 Is a Key Regulator of Apoptosis during CNS Development and after DNA Damage. J. Neurosci. 2008;28:6068–6078. doi: 10.1523/JNEUROSCI.4940-07.2008. PubMed DOI PMC
Dumont R.J., Okonkwo D.O., Verma S., Hurlbert R.J., Boulos P.T., Ellegala D.B., Dumont A.S. Acute Spinal Cord Injury, Part I: Pathophysiologic Mechanisms. Clin. Neuropharmacol. 2001;24:254–264. doi: 10.1097/00002826-200109000-00002. PubMed DOI
Oyinbo C.A. Secondary Injury Mechanisms in Traumatic Spinal Cord Injury: A Nugget of This Multiply Cascade. Acta Neurobiol. Exp. (Wars) 2011;71:281–299. PubMed
Alizadeh A., Dyck S.M., Karimi-Abdolrezaee S. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Front. Neurol. 2019;10:282. doi: 10.3389/fneur.2019.00282. PubMed DOI PMC
Mautes A.E., Weinzierl M.R., Donovan F., Noble L.J. Vascular Events after Spinal Cord Injury: Contribution to Secondary Pathogenesis. Phys. Ther. 2000;80:673–687. doi: 10.1093/ptj/80.7.673. PubMed DOI
Siddiqui A.M., Khazaei M., Fehlings M.G. Progress in Brain Research. Volume 218. Elsevier; Amsterdam, The Netherlands: 2015. Translating Mechanisms of Neuroprotection, Regeneration, and Repair to Treatment of Spinal Cord Injury; pp. 15–54. PubMed
Carmel J.B., Galante A., Soteropoulos P., Tolias P., Recce M., Young W., Hart R.P. Gene Expression Profiling of Acute Spinal Cord Injury Reveals Spreading Inflammatory Signals and Neuron Loss. Physiol. Genom. 2001;7:201–213. doi: 10.1152/physiolgenomics.00074.2001. PubMed DOI
Aimone J., Leasure J., Perreau V., Thallmair M. Thechristopherreeveparalysisfounda Spatial and Temporal Gene Expression Profiling of the Contused Rat Spinal Cord. Exp. Neurol. 2004;189:204–221. doi: 10.1016/j.expneurol.2004.05.042. PubMed DOI
Strasser A., Puthalakath H., Bouillet P., Huang D.C.S., O’Connor L., O’Reilly L.A., Cullen L., Cory S., Adams J.M. The Role of Bim, a Proapoptotic BH3-Only Member of the Bcl-2 Family, in Cell-Death Control. Ann. N. Y. Acad. Sci. 2006;917:541–548. doi: 10.1111/j.1749-6632.2000.tb05419.x. PubMed DOI
Hu J.-R., Lv G.-H., Yin B.-L. Altered MicroRNA Expression in the Ischemic-Reperfusion Spinal Cord with Atorvastatin Therapy. J. Pharmacol. Sci. 2013;121:343–346. doi: 10.1254/jphs.12235SC. PubMed DOI
Liu N.-K., Wang X.-F., Lu Q.-B., Xu X.-M. Altered MicroRNA Expression Following Traumatic Spinal Cord Injury. Exp. Neurol. 2009;219:424–429. doi: 10.1016/j.expneurol.2009.06.015. PubMed DOI PMC
Strickland E.R., Hook M.A., Balaraman S., Huie J.R., Grau J.W., Miranda R.C. MicroRNA Dysregulation Following Spinal Cord Contusion: Implications for Neural Plasticity and Repair. Neuroscience. 2011;186:146–160. doi: 10.1016/j.neuroscience.2011.03.063. PubMed DOI PMC
Yunta M., Nieto-Díaz M., Esteban F.J., Caballero-López M., Navarro-Ruíz R., Reigada D., Pita-Thomas D.W., del Águila A., Muñoz-Galdeano T., Maza R.M. MicroRNA Dysregulation in the Spinal Cord Following Traumatic Injury. PLoS ONE. 2012;7:e34534. doi: 10.1371/journal.pone.0034534. PubMed DOI PMC
De Biase A., Knoblach S.M., Di Giovanni S., Fan C., Molon A., Hoffman E.P., Faden A.I. Gene Expression Profiling of Experimental Traumatic Spinal Cord Injury as a Function of Distance from Impact Site and Injury Severity. Physiol. Genom. 2005;22:368–381. doi: 10.1152/physiolgenomics.00081.2005. PubMed DOI
Buller B., Liu X., Wang X., Zhang R.L., Zhang L., Hozeska-Solgot A., Chopp M., Zhang Z.G. MicroRNA-21 Protects Neurons from Ischemic Death. FEBS J. 2010;277:4299–4307. doi: 10.1111/j.1742-4658.2010.07818.x. PubMed DOI PMC
Hafez M.M., Hassan Z.K., Zekri A.R.N., Gaber A.A., Al Rejaie S.S., Sayed-Ahmed M.M., Al Shabanah O. MicroRNAs and Metastasis-Related Gene Expression in Egyptian Breast Cancer Patients. Asian Pac. J. Cancer Prev. 2012;13:591–598. doi: 10.7314/APJCP.2012.13.2.591. PubMed DOI
Frankel L.B., Christoffersen N.R., Jacobsen A., Lindow M., Krogh A., Lund A.H. Programmed Cell Death 4 (PDCD4) Is an Important Functional Target of the MicroRNA MiR-21 in Breast Cancer Cells. J. Biol. Chem. 2008;283:1026–1033. doi: 10.1074/jbc.M707224200. PubMed DOI
Carrillo E.D., Escobar Y., González G., Hernández A., Galindo J.M., García M.C., Sánchez J.A. Posttranscriptional Regulation of the Β2-Subunit of Cardiac L-Type Ca2+ Channels by MicroRNAs during Long-Term Exposure to Isoproterenol in Rats. J. Cardiovasc. Pharmacol. 2011;58:470–478. doi: 10.1097/FJC.0b013e31822a789b. PubMed DOI
Hutchison E.R., Kawamoto E.M., Taub D.D., Lal A., Abdelmohsen K., Zhang Y., Wood W.H., Lehrmann E., Camandola S., Becker K.G., et al. Evidence for MiR-181 Involvement in Neuroinflammatory Responses of Astrocytes. Glia. 2013;61:1018–1028. doi: 10.1002/glia.22483. PubMed DOI PMC
Tili E., Michaille J.-J., Cimino A., Costinean S., Dumitru C.D., Adair B., Fabbri M., Alder H., Liu C.G., Calin G.A., et al. Modulation of MiR-155 and MiR-125b Levels Following Lipopolysaccharide/TNF-Alpha Stimulation and Their Possible Roles in Regulating the Response to Endotoxin Shock. J. Immunol. 2007;179:5082–5089. doi: 10.4049/jimmunol.179.8.5082. PubMed DOI
Iliopoulos D., Jaeger S.A., Hirsch H.A., Bulyk M.L., Struhl K. STAT3 Activation of MiR-21 and MiR-181b-1 via PTEN and CYLD Are Part of the Epigenetic Switch Linking Inflammation to Cancer. Mol. Cell. 2010;39:493–506. doi: 10.1016/j.molcel.2010.07.023. PubMed DOI PMC
Theis T., Yoo M., Park C.S., Chen J., Kügler S., Gibbs K.M., Schachner M. Lentiviral Delivery of MiR-133b Improves Functional Recovery After Spinal Cord Injury in Mice. Mol. Neurobiol. 2017;54:4659–4671. doi: 10.1007/s12035-016-0007-z. PubMed DOI
Agostini M., Tucci P., Steinert J.R., Shalom-Feuerstein R., Rouleau M., Aberdam D., Forsythe I.D., Young K.W., Ventura A., Concepcion C.P., et al. MicroRNA-34a Regulates Neurite Outgrowth, Spinal Morphology, and Function. Proc. Natl. Acad. Sci. USA. 2011;108:21099–21104. doi: 10.1073/pnas.1112063108. PubMed DOI PMC
Jee M.K., Jung J.S., Im Y.B., Jung S.J., Kang S.K. Silencing of MiR20a Is Crucial for Ngn1-Mediated Neuroprotection in Injured Spinal Cord. Hum. Gene Ther. 2012;23:508–520. doi: 10.1089/hum.2011.121. PubMed DOI
Wang T., Li B., Yuan X., Cui L., Wang Z., Zhang Y., Yu M., Xiu Y., Zhang Z., Li W., et al. MiR-20a Plays a Key Regulatory Role in the Repair of Spinal Cord Dorsal Column Lesion via PDZ-RhoGEF/RhoA/GAP43 Axis in Rat. Cell. Mol. Neurobiol. 2019;39:87–98. doi: 10.1007/s10571-018-0635-0. PubMed DOI PMC
Zhao L., Gong L., Li P., Qin J., Xu L., Wei Q., Xie H., Mao S., Yu B., Gu X., et al. MiR-20a Promotes the Axon Regeneration of DRG Neurons by Targeting Nr4a3. Neurosci. Bull. 2021;37:569–574. doi: 10.1007/s12264-021-00647-2. PubMed DOI PMC
Liu D.-Z., Tian Y., Ander B.P., Xu H., Stamova B.S., Zhan X., Turner R.J., Jickling G., Sharp F.R. Brain and Blood MicroRNA Expression Profiling of Ischemic Stroke, Intracerebral Hemorrhage, and Kainate Seizures. J. Cereb. Blood Flow Metab. 2010;30:92–101. doi: 10.1038/jcbfm.2009.186. PubMed DOI PMC
Liu X.S., Chopp M., Zhang R.L., Tao T., Wang X.L., Kassis H., Hozeska-Solgot A., Zhang L., Chen C., Zhang Z.G. MicroRNA Profiling in Subventricular Zone after Stroke: MiR-124a Regulates Proliferation of Neural Progenitor Cells through Notch Signaling Pathway. PLoS ONE. 2011;6:e23461. doi: 10.1371/journal.pone.0023461. PubMed DOI PMC
Yin K.-J., Deng Z., Huang H., Hamblin M., Xie C., Zhang J., Chen Y.E. MiR-497 Regulates Neuronal Death in Mouse Brain after Transient Focal Cerebral Ischemia. Neurobiol. Dis. 2010;38:17–26. doi: 10.1016/j.nbd.2009.12.021. PubMed DOI PMC
Yin K.-J., Deng Z., Hamblin M., Xiang Y., Huang H., Zhang J., Jiang X., Wang Y., Chen Y.E. Peroxisome Proliferator-Activated Receptor Delta Regulation of MiR-15a in Ischemia-Induced Cerebral Vascular Endothelial Injury. J. Neurosci. 2010;30:6398–6408. doi: 10.1523/JNEUROSCI.0780-10.2010. PubMed DOI PMC
Sepramaniam S., Armugam A., Lim K.Y., Karolina D.S., Swaminathan P., Tan J.R., Jeyaseelan K. MicroRNA 320a Functions as a Novel Endogenous Modulator of Aquaporins 1 and 4 as Well as a Potential Therapeutic Target in Cerebral Ischemia. J. Biol. Chem. 2010;285:29223–29230. doi: 10.1074/jbc.M110.144576. PubMed DOI PMC
Zhong L., Yan J., Li H., Meng L. HDAC9 Silencing Exerts Neuroprotection Against Ischemic Brain Injury via MiR-20a-Dependent Downregulation of NeuroD1. Front. Cell. Neurosci. 2020;14:544285. doi: 10.3389/fncel.2020.544285. PubMed DOI PMC
Eriksen J.L., Mackenzie I.R.A. Progranulin: Normal Function and Role in Neurodegeneration. J. Neurochem. 2008;104:287–297. doi: 10.1111/j.1471-4159.2007.04968.x. PubMed DOI
Wang Y., Guo F., Pan C., Lou Y., Zhang P., Guo S., Yin J., Deng Z. Effects of Low Temperatures on Proliferation-Related Signaling Pathways in the Hippocampus after Traumatic Brain Injury. Exp. Biol. Med. (Maywood) 2012;237:1424–1432. doi: 10.1258/ebm.2012.012123. PubMed DOI
Ge X.-T., Lei P., Wang H.-C., Zhang A.-L., Han Z.-L., Chen X., Li S.-H., Jiang R.-C., Kang C.-S., Zhang J.-N. MiR-21 Improves the Neurological Outcome after Traumatic Brain Injury in Rats. Sci. Rep. 2014;4:6718. doi: 10.1038/srep06718. PubMed DOI PMC
Sabirzhanov B., Stoica B.A., Zhao Z., Loane D.J., Wu J., Dorsey S.G., Faden A.I. MiR-711 Upregulation Induces Neuronal Cell Death after Traumatic Brain Injury. Cell Death Differ. 2016;23:654–668. doi: 10.1038/cdd.2015.132. PubMed DOI PMC
Hébert S.S., Horré K., Nicolaï L., Bergmans B., Papadopoulou A.S., Delacourte A., De Strooper B. MicroRNA Regulation of Alzheimer’s Amyloid Precursor Protein Expression. Neurobiol. Dis. 2009;33:422–428. doi: 10.1016/j.nbd.2008.11.009. PubMed DOI
Wang M., Qin L., Tang B. MicroRNAs in Alzheimer’s Disease. Front. Genet. 2019;10:153. doi: 10.3389/fgene.2019.00153. PubMed DOI PMC
Zhao Y., Zhao R., Wu J., Wang Q., Pang K., Shi Q., Gao Q., Hu Y., Dong X., Zhang J., et al. Melatonin Protects against Aβ-Induced Neurotoxicity in Primary Neurons via MiR-132/PTEN/AKT/FOXO3a Pathway. Biofactors. 2018;44:609–618. doi: 10.1002/biof.1411. PubMed DOI
Tian Z., Dong Q., Wu T., Guo J. MicroRNA-20b-5p Aggravates Neuronal Apoptosis Induced by β-Amyloid via down-Regulation of Ras Homolog Family Member C in Alzheimer’s Disease. Neurosci. Lett. 2021;742:135542. doi: 10.1016/j.neulet.2020.135542. PubMed DOI
Kanagaraj N., Beiping H., Dheen S.T., Tay S.S.W. Downregulation of MiR-124 in MPTP-Treated Mouse Model of Parkinson’s Disease and MPP Iodide-Treated MN9D Cells Modulates the Expression of the Calpain/Cdk5 Pathway Proteins. Neuroscience. 2014;272:167–179. doi: 10.1016/j.neuroscience.2014.04.039. PubMed DOI
Kim W., Lee Y., McKenna N.D., Yi M., Simunovic F., Wang Y., Kong B., Rooney R.J., Seo H., Stephens R.M., et al. MiR-126 Contributes to Parkinson’s Disease by Dysregulating the Insulin-like Growth Factor/Phosphoinositide 3-Kinase Signaling. Neurobiol. Aging. 2014;35:1712–1721. doi: 10.1016/j.neurobiolaging.2014.01.021. PubMed DOI PMC
Miñones-Moyano E., Porta S., Escaramís G., Rabionet R., Iraola S., Kagerbauer B., Espinosa-Parrilla Y., Ferrer I., Estivill X., Martí E. MicroRNA Profiling of Parkinson’s Disease Brains Identifies Early Downregulation of MiR-34b/c Which Modulate Mitochondrial Function. Hum. Mol. Genet. 2011;20:3067–3078. doi: 10.1093/hmg/ddr210. PubMed DOI
Rezaei O., Nateghinia S., Estiar M.A., Taheri M., Ghafouri-Fard S. Assessment of the Role of Non-Coding RNAs in the Pathophysiology of Parkinson’s Disease. Eur. J. Pharmacol. 2021;896:173914. doi: 10.1016/j.ejphar.2021.173914. PubMed DOI
Frankel L.B., Di Malta C., Wen J., Eskelinen E.-L., Ballabio A., Lund A.H. A Non-Conserved MiRNA Regulates Lysosomal Function and Impacts on a Human Lysosomal Storage Disorder. Nat. Commun. 2014;5:5840. doi: 10.1038/ncomms6840. PubMed DOI
Rauch I., Rosebrock F., Hainzl E., Heider S., Majoros A., Wienerroither S., Strobl B., Stockinger S., Kenner L., Müller M., et al. Noncanonical Effects of IRF9 in Intestinal Inflammation: More than Type I and Type III Interferons. Mol. Cell. Biol. 2015;35:2332–2343. doi: 10.1128/MCB.01498-14. PubMed DOI PMC
Bertrand N., Castro D.S., Guillemot F. Proneural Genes and the Specification of Neural Cell Types. Nat. Rev. Neurosci. 2002;3:517–530. doi: 10.1038/nrn874. PubMed DOI
Carraro G., El-Hashash A., Guidolin D., Tiozzo C., Turcatel G., Young B.M., De Langhe S.P., Bellusci S., Shi W., Parnigotto P.P., et al. MiR-17 Family of MicroRNAs Controls FGF10-Mediated Embryonic Lung Epithelial Branching Morphogenesis through MAPK14 and STAT3 Regulation of E-Cadherin Distribution. Dev. Biol. 2009;333:238–250. doi: 10.1016/j.ydbio.2009.06.020. PubMed DOI PMC
Chen R.-L., Balami J.S., Esiri M.M., Chen L.-K., Buchan A.M. Ischemic Stroke in the Elderly: An Overview of Evidence. Nat. Rev. Neurol. 2010;6:256–265. doi: 10.1038/nrneurol.2010.36. PubMed DOI
Donnan G.A., Fisher M., Macleod M., Davis S.M. Stroke. Lancet. 2008;371:1612–1623. doi: 10.1016/S0140-6736(08)60694-7. PubMed DOI
Roy-O’Reilly M., McCullough L.D. Age and Sex Are Critical Factors in Ischemic Stroke Pathology. Endocrinology. 2018;159:3120–3131. doi: 10.1210/en.2018-00465. PubMed DOI PMC
Benjamin E.J., Muntner P., Alonso A., Bittencourt M.S., Callaway C.W., Carson A.P., Chamberlain A.M., Chang A.R., Cheng S., Das S.R., et al. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation. 2019;139:e56–e528. doi: 10.1161/CIR.0000000000000659. PubMed DOI
GBD 2016 Stroke Collaborators Global, Regional, and National Burden of Stroke, 1990-2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:439–458. doi: 10.1016/S1474-4422(19)30034-1. PubMed DOI PMC
Puig B., Brenna S., Magnus T. Molecular Communication of a Dying Neuron in Stroke. Int. J. Mol. Sci. 2018;19:2834. doi: 10.3390/ijms19092834. PubMed DOI PMC
Saver J.L. Time Is Brain—Quantified. Stroke. 2006;37:263–266. doi: 10.1161/01.STR.0000196957.55928.ab. PubMed DOI
Jeyaseelan K., Lim K.Y., Armugam A. MicroRNA Expression in the Blood and Brain of Rats Subjected to Transient Focal Ischemia by Middle Cerebral Artery Occlusion. Stroke. 2008;39:959–966. doi: 10.1161/STROKEAHA.107.500736. PubMed DOI
Laterza O.F., Lim L., Garrett-Engele P.W., Vlasakova K., Muniappa N., Tanaka W.K., Johnson J.M., Sina J.F., Fare T.L., Sistare F.D., et al. Plasma MicroRNAs as Sensitive and Specific Biomarkers of Tissue Injury. Clin. Chem. 2009;55:1977–1983. doi: 10.1373/clinchem.2009.131797. PubMed DOI
Tan K.S., Armugam A., Sepramaniam S., Lim K.Y., Setyowati K.D., Wang C.W., Jeyaseelan K. Expression Profile of MicroRNAs in Young Stroke Patients. PLoS ONE. 2009;4:e7689. doi: 10.1371/journal.pone.0007689. PubMed DOI PMC
Rink C., Khanna S. MicroRNA in Ischemic Stroke Etiology and Pathology. Physiol Genom. 2011;43:521–528. doi: 10.1152/physiolgenomics.00158.2010. PubMed DOI PMC
Siegel C., Li J., Liu F., Benashski S.E., McCullough L.D. MiR-23a Regulation of X-Linked Inhibitor of Apoptosis (XIAP) Contributes to Sex Differences in the Response to Cerebral Ischemia. Proc. Natl. Acad. Sci. USA. 2011;108:11662–11667. doi: 10.1073/pnas.1102635108. PubMed DOI PMC
Ouyang Y.-B., Lu Y., Yue S., Xu L.-J., Xiong X.-X., White R.E., Sun X., Giffard R.G. MiR-181 Regulates GRP78 and Influences Outcome from Cerebral Ischemia in Vitro and in Vivo. Neurobiol. Dis. 2012;45:555–563. doi: 10.1016/j.nbd.2011.09.012. PubMed DOI PMC
Shi G., Liu Y., Liu T., Yan W., Liu X., Wang Y., Shi J., Jia L. Upregulated MiR-29b Promotes Neuronal Cell Death by Inhibiting Bcl2L2 after Ischemic Brain Injury. Exp. Brain Res. 2012;216:225–230. doi: 10.1007/s00221-011-2925-3. PubMed DOI
Selvamani A., Sathyan P., Miranda R.C., Sohrabji F. An Antagomir to MicroRNA Let7f Promotes Neuroprotection in an Ischemic Stroke Model. PLoS ONE. 2012;7:e32662. doi: 10.1371/journal.pone.0032662. PubMed DOI PMC
Branyan T.E., Selvamani A., Park M.J., Korula K.E., Kosel K.F., Srinivasan R., Sohrabji F. Functional Assessment of Stroke-Induced Regulation of MiR-20a-3p and Its Role as a Neuroprotectant. Transl. Stroke Res. 2021;13:432–448. doi: 10.1007/s12975-021-00945-x. PubMed DOI PMC
Sugo N., Yamamoto N. Visualization of HDAC9 Spatiotemporal Subcellular Localization in Primary Neuron Cultures. Methods Mol. Biol. 2016;1436:119–127. doi: 10.1007/978-1-4939-3667-0_9. PubMed DOI
Lang B., Alrahbeni T.M.A., Clair D.S., Blackwood D.H., International Schizophrenia Consortium. McCaig C.D., Shen S. HDAC9 Is Implicated in Schizophrenia and Expressed Specifically in Post-Mitotic Neurons but Not in Adult Neural Stem Cells. Am. J. Stem Cells. 2012;1:31–41. PubMed PMC
Shi W., Wei X., Wang Z., Han H., Fu Y., Liu J., Zhang Y., Guo J., Dong C., Zhou D., et al. HDAC9 Exacerbates Endothelial Injury in Cerebral Ischaemia/Reperfusion Injury. J. Cell. Mol. Med. 2016;20:1139–1149. doi: 10.1111/jcmm.12803. PubMed DOI PMC
Kim H.J., Rowe M., Ren M., Hong J.-S., Chen P.-S., Chuang D.-M. Histone Deacetylase Inhibitors Exhibit Anti-Inflammatory and Neuroprotective Effects in a Rat Permanent Ischemic Model of Stroke: Multiple Mechanisms of Action. J. Pharmacol. Exp. Ther. 2007;321:892–901. doi: 10.1124/jpet.107.120188. PubMed DOI
Management of Concussion/mTBI Working Group VA/DoD Clinical Practice Guideline for Management of Concussion/Mild Traumatic Brain Injury. J. Rehabil. Res. Dev. 2009;46:CP1–CP68. doi: 10.1682/JRRD.2008.03.0038. PubMed DOI
Finfer S.R., Cohen J. Severe Traumatic Brain Injury. Resuscitation. 2001;48:77–90. doi: 10.1016/S0300-9572(00)00321-X. PubMed DOI
Blennow K., Hardy J., Zetterberg H. The Neuropathology and Neurobiology of Traumatic Brain Injury. Neuron. 2012;76:886–899. doi: 10.1016/j.neuron.2012.11.021. PubMed DOI
Bartel D.P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell. 2004;116:281–297. doi: 10.1016/S0092-8674(04)00045-5. PubMed DOI
Lozano D., Gonzales-Portillo G.S., Acosta S., de la Pena I., Tajiri N., Kaneko Y., Borlongan C.V. Neuroinflammatory Responses to Traumatic Brain Injury: Etiology, Clinical Consequences, and Therapeutic Opportunities. Neuropsychiatr. Dis. Treat. 2015;11:97–106. doi: 10.2147/NDT.S65815. PubMed DOI PMC
Werner C., Engelhard K. Pathophysiology of Traumatic Brain Injury. Br. J. Anaesth. 2007;99:4–9. doi: 10.1093/bja/aem131. PubMed DOI
Yang S.H., Gustafson J., Gangidine M., Stepien D., Schuster R., Pritts T.A., Goodman M.D., Remick D.G., Lentsch A.B. A Murine Model of Mild Traumatic Brain Injury Exhibiting Cognitive and Motor Deficits. J. Surg. Res. 2013;184:981–988. doi: 10.1016/j.jss.2013.03.075. PubMed DOI PMC
Zweckberger K., Erös C., Zimmermann R., Kim S.-W., Engel D., Plesnila N. Effect of Early and Delayed Decompressive Craniectomy on Secondary Brain Damage after Controlled Cortical Impact in Mice. J. Neurotrauma. 2006;23:1083–1093. doi: 10.1089/neu.2006.23.1083. PubMed DOI
Besenski N. Traumatic Injuries: Imaging of Head Injuries. Eur. Radiol. 2002;12:1237–1252. doi: 10.1007/s00330-002-1355-9. PubMed DOI
Jalali R., Rezaei M. A Comparison of the Glasgow Coma Scale Score with Full Outline of Unresponsiveness Scale to Predict Patients’ Traumatic Brain Injury Outcomes in Intensive Care Units. Crit. Care Res. Pract. 2014;2014:289803. doi: 10.1155/2014/289803. PubMed DOI PMC
Redell J.B., Moore A.N., Ward N.H., Hergenroeder G.W., Dash P.K. Human Traumatic Brain Injury Alters Plasma MicroRNA Levels. J. Neurotrauma. 2010;27:2147–2156. doi: 10.1089/neu.2010.1481. PubMed DOI PMC
Meissner L., Gallozzi M., Balbi M., Schwarzmaier S., Tiedt S., Terpolilli N.A., Plesnila N. Temporal Profile of MicroRNA Expression in Contused Cortex after Traumatic Brain Injury in Mice. J. Neurotrauma. 2016;33:713–720. doi: 10.1089/neu.2015.4077. PubMed DOI
Hu Z., Yu D., Almeida-Suhett C., Tu K., Marini A.M., Eiden L., Braga M.F., Zhu J., Li Z. Expression of MiRNAs and Their Cooperative Regulation of the Pathophysiology in Traumatic Brain Injury. PLoS ONE. 2012;7:e39357. doi: 10.1371/journal.pone.0039357. PubMed DOI PMC
Wang W.-X., Wilfred B.R., Madathil S.K., Tang G., Hu Y., Dimayuga J., Stromberg A.J., Huang Q., Saatman K.E., Nelson P.T. MiR-107 Regulates Granulin/Progranulin with Implications for Traumatic Brain Injury and Neurodegenerative Disease. Am. J. Pathol. 2010;177:334–345. doi: 10.2353/ajpath.2010.091202. PubMed DOI PMC
Redell J.B., Zhao J., Dash P.K. Altered Expression of MiRNA-21 and Its Targets in the Hippocampus after Traumatic Brain Injury. J. Neurosci. Res. 2011;89:212–221. doi: 10.1002/jnr.22539. PubMed DOI PMC
Bao T., Miao W., Han J., Yin M., Yan Y., Wang W., Zhu Y. Spontaneous Running Wheel Improves Cognitive Functions of Mouse Associated with MiRNA Expressional Alteration in Hippocampus Following Traumatic Brain Injury. J. Mol. Neurosci. 2014;54:622–629. doi: 10.1007/s12031-014-0344-1. PubMed DOI
Hu T., Zhou F.-J., Chang Y.-F., Li Y.-S., Liu G.-C., Hong Y., Chen H.-L., Xiyang Y.-B., Bao T. MiR21 Is Associated with the Cognitive Improvement Following Voluntary Running Wheel Exercise in TBI Mice. J. Mol. Neurosci. 2015;57:114–122. doi: 10.1007/s12031-015-0584-8. PubMed DOI
Bhomia M., Balakathiresan N.S., Wang K.K., Papa L., Maheshwari R.K. A Panel of Serum MiRNA Biomarkers for the Diagnosis of Severe to Mild Traumatic Brain Injury in Humans. Sci. Rep. 2016;6:28148. doi: 10.1038/srep28148. PubMed DOI PMC
Di Pietro V., Yakoub K.M., Scarpa U., Di Pietro C., Belli A. MicroRNA Signature of Traumatic Brain Injury: From the Biomarker Discovery to the Point-of-Care. Front. Neurol. 2018;9:429. doi: 10.3389/fneur.2018.00429. PubMed DOI PMC
Di Pietro V., Porto E., Ragusa M., Barbagallo C., Davies D., Forcione M., Logan A., Di Pietro C., Purrello M., Grey M., et al. Salivary MicroRNAs: Diagnostic Markers of Mild Traumatic Brain Injury in Contact-Sport. Front. Mol. Neurosci. 2018;11:290. doi: 10.3389/fnmol.2018.00290. PubMed DOI PMC
Masters C.L., Simms G., Weinman N.A., Multhaup G., McDonald B.L., Beyreuther K. Amyloid Plaque Core Protein in Alzheimer Disease and Down Syndrome. Proc. Natl. Acad. Sci. USA. 1985;82:4245–4249. doi: 10.1073/pnas.82.12.4245. PubMed DOI PMC
Olsson B., Lautner R., Andreasson U., Öhrfelt A., Portelius E., Bjerke M., Hölttä M., Rosén C., Olsson C., Strobel G., et al. CSF and Blood Biomarkers for the Diagnosis of Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Lancet Neurol. 2016;15:673–684. doi: 10.1016/S1474-4422(16)00070-3. PubMed DOI
Rabizadeh S., Bitler C.M., Butcher L.L., Bredesen D.E. Expression of the Low-Affinity Nerve Growth Factor Receptor Enhances Beta-Amyloid Peptide Toxicity. Proc. Natl. Acad. Sci. USA. 1994;91:10703–10706. doi: 10.1073/pnas.91.22.10703. PubMed DOI PMC
Costantini C., Rossi F., Formaggio E., Bernardoni R., Cecconi D., Della-Bianca V. Characterization of the Signaling Pathway Downstream P75 Neurotrophin Receptor Involved in Beta-Amyloid Peptide-Dependent Cell Death. J. Mol. Neurosci. 2005;25:141–156. doi: 10.1385/JMN:25:2:141. PubMed DOI
Shankar G.M., Bloodgood B.L., Townsend M., Walsh D.M., Selkoe D.J., Sabatini B.L. Natural Oligomers of the Alzheimer Amyloid-Beta Protein Induce Reversible Synapse Loss by Modulating an NMDA-Type Glutamate Receptor-Dependent Signaling Pathway. J. Neurosci. 2007;27:2866–2875. doi: 10.1523/JNEUROSCI.4970-06.2007. PubMed DOI PMC
Baranello R.J., Bharani K.L., Padmaraju V., Chopra N., Lahiri D.K., Greig N.H., Pappolla M.A., Sambamurti K. Amyloid-Beta Protein Clearance and Degradation (ABCD) Pathways and Their Role in Alzheimer’s Disease. Curr. Alzheimer Res. 2015;12:32–46. doi: 10.2174/1567205012666141218140953. PubMed DOI PMC
Haass C., Kaether C., Thinakaran G., Sisodia S. Trafficking and Proteolytic Processing of APP. Cold Spring Harb. Perspect. Med. 2012;2:a006270. doi: 10.1101/cshperspect.a006270. PubMed DOI PMC
Lahiri D.K., Farlow M.R., Sambamurti K., Greig N.H., Giacobini E., Schneider L.S. A Critical Analysis of New Molecular Targets and Strategies for Drug Developments in Alzheimer’s Disease. Curr. Drug Targets. 2003;4:97–112. doi: 10.2174/1389450033346957. PubMed DOI
Selkoe D.J. Treatments for Alzheimer’s Disease Emerge. Science. 2021;373:624–626. doi: 10.1126/science.abi6401. PubMed DOI
Zhao Y., Zong Z., Xu H. RhoC Expression Level Is Correlated with the Clinicopathological Characteristics of Ovarian Cancer and the Expression Levels of ROCK-I, VEGF, and MMP9. Gynecol. Oncol. 2010;116:563–571. doi: 10.1016/j.ygyno.2009.11.015. PubMed DOI
Zhang C., Ge X., Lok K., Zhao L., Yin M., Wang Z.-J. RhoC Involved in the Migration of Neural Stem/Progenitor Cells. Cell. Mol. Neurobiol. 2014;34:409–417. doi: 10.1007/s10571-014-0026-0. PubMed DOI PMC
Narumiya S., Thumkeo D. Rho Signaling Research: History, Current Status and Future Directions. FEBS Lett. 2018;592:1763–1776. doi: 10.1002/1873-3468.13087. PubMed DOI PMC
Wang R., Chopra N., Nho K., Maloney B., Obukhov A.G., Nelson P.T., Counts S.E., Lahiri D.K. Human MicroRNA (MiR-20b-5p) Modulates Alzheimer’s Disease Pathways and Neuronal Function, and a Specific Polymorphism Close to the MIR20B Gene Influences Alzheimer’s Biomarkers. Mol. Psychiatry. 2022 doi: 10.1038/s41380-021-01351-3. PubMed DOI PMC
Dorsey E.R., Bloem B.R. The Parkinson Pandemic-A Call to Action. JAMA Neurol. 2018;75:9–10. doi: 10.1001/jamaneurol.2017.3299. PubMed DOI
Goh S.Y., Chao Y.X., Dheen S.T., Tan E.-K., Tay S.S.-W. Role of MicroRNAs in Parkinson’s Disease. Int. J. Mol. Sci. 2019;20:5649. doi: 10.3390/ijms20225649. PubMed DOI PMC
Jankovic J. Parkinson’s Disease: Clinical Features and Diagnosis. J. Neurol. Neurosurg. Psychiatry. 2008;79:368–376. doi: 10.1136/jnnp.2007.131045. PubMed DOI
Poewe W., Seppi K., Tanner C.M., Halliday G.M., Brundin P., Volkmann J., Schrag A.-E., Lang A.E. Parkinson Disease. Nat. Rev. Dis. Primers. 2017;3:17013. doi: 10.1038/nrdp.2017.13. PubMed DOI
Hallett P.J., Engelender S., Isacson O. Lipid and Immune Abnormalities Causing Age-Dependent Neurodegeneration and Parkinson’s Disease. J. Neuroinflamm. 2019;16:153. doi: 10.1186/s12974-019-1532-2. PubMed DOI PMC
Schulz J., Takousis P., Wohlers I., Itua I.O.G., Dobricic V., Rücker G., Binder H., Middleton L., Ioannidis J.P.A., Perneczky R., et al. Meta-Analyses Identify Differentially Expressed Micrornas in Parkinson’s Disease. Ann. Neurol. 2019;85:835–851. doi: 10.1002/ana.25490. PubMed DOI
Kabaria S., Choi D.C., Chaudhuri A.D., Mouradian M.M., Junn E. Inhibition of MiR-34b and MiR-34c Enhances α-Synuclein Expression in Parkinson’s Disease. FEBS Lett. 2015;589:319–325. doi: 10.1016/j.febslet.2014.12.014. PubMed DOI PMC
Lehmann S.M., Krüger C., Park B., Derkow K., Rosenberger K., Baumgart J., Trimbuch T., Eom G., Hinz M., Kaul D., et al. An Unconventional Role for MiRNA: Let-7 Activates Toll-like Receptor 7 and Causes Neurodegeneration. Nat. Neurosci. 2012;15:827–835. doi: 10.1038/nn.3113. PubMed DOI
Wang Q., Wang Y., Zhou F., Li J., Lu G., Zhao Y. MiR-20a-5p Regulates MPP+-Induced Oxidative Stress and Neuroinflammation in HT22 Cells by Targeting IRF9/NF-ΚB Axis. Evid. Based Complement. Alternat. Med. 2021;2021:6621206. doi: 10.1155/2021/6621206. PubMed DOI PMC
Nan J., Wang Y., Yang J., Stark G.R. IRF9 and Unphosphorylated STAT2 Cooperate with NF-ΚB to Drive IL6 Expression. Proc. Natl. Acad. Sci. USA. 2018;115:3906–3911. doi: 10.1073/pnas.1714102115. PubMed DOI PMC